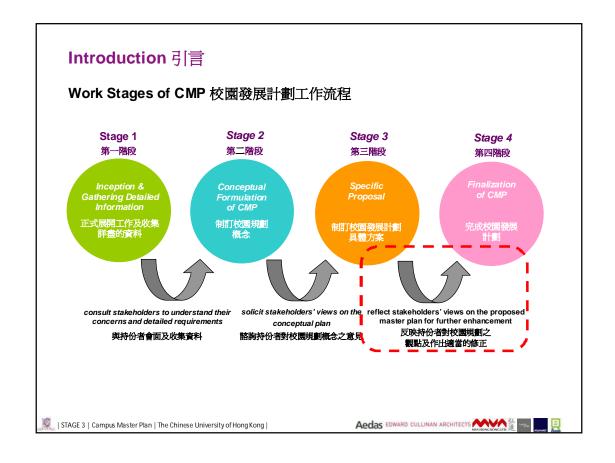

校園發展計劃:第三階段持份者交流活動-研討會(二)

Contents 目錄

- Introduction 引言
- Specific Proposals 具體建議
 - Places for Academic & Recreational Activities 教研康體設施
 - Enhancing College Life 校園生活添姿采
 - Making a Sustainable Campus 可持續發展校園
- Final Submission of Campus Master Plan 發展計劃顧問最後報告


| STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong |

校園發展計劃:第三階段持份者交流活動 - 研討會 (二)

Introduction 引言

Stage 2 - Stakeholders' Engagement 第二階段持份者參與計劃 General Consensus 持份者普遍的期望

Conserving the Places of Value

elaborate the proposed assessment procedure with consideration of consultation process

Places for Academic & Recreational Activities

- maintain the Central Campus as the major teaching and administration centre, yet avoid overcrowding locate research facilities relatively further away from the Central Campus
- · forming communities of academic disciplines to achieve physical proximity and obtain the benefits of interdisciplinary collaboration

Enhancing College Life

- form a neighbourhood setting for the new and existing colleges
- enhance linkage within and among colleges, particularly to enhance linkage to the Central Campus maintain and enhance the identity of each college
- provide more spaces for both resident and non-resident students for social gathering and interaction
- provide more indoor or semi-open venues for learning and share of knowledge

A Landscape of Vital Importance

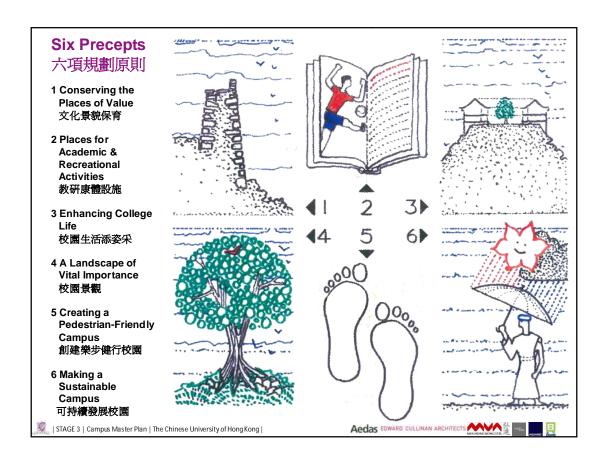
- explore thematic planting, yet maintaining the existing bio-diversity of birds and plants
- promote use of natural trails and preserve the existing natural environment

A Pedestrian-Friendly Campus

- provide additional vertical links with proper integration with the buildings
- provide new exit at northern edge of University Station, with appropriate entrance design to enhance the University's identity
- provide a designated and safe cycling track and parking spaces at low-level precinct
- provide centralized carpark on the fringe of campus, but with sufficient support of a comprehensive pedestrian network and improved shutter bus service
- improve shuttle bus service including reconfiguring the bus route

Making a Sustainable Campus

- establish guidelines for new structures/ buildings
- promote greening and environmentally friendly building design
- establish additional policies on the reduction of gas emissions and energy consumption



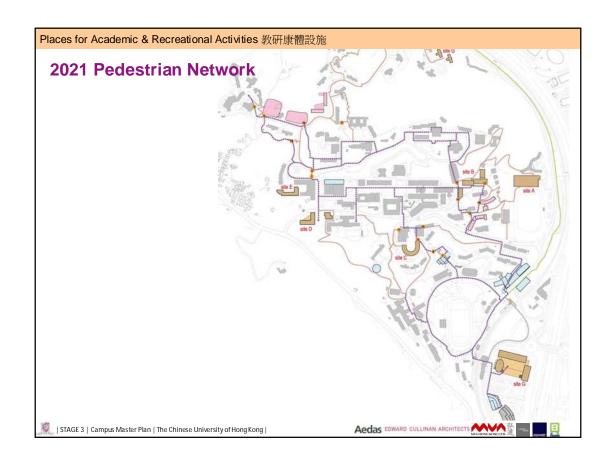
| STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong |

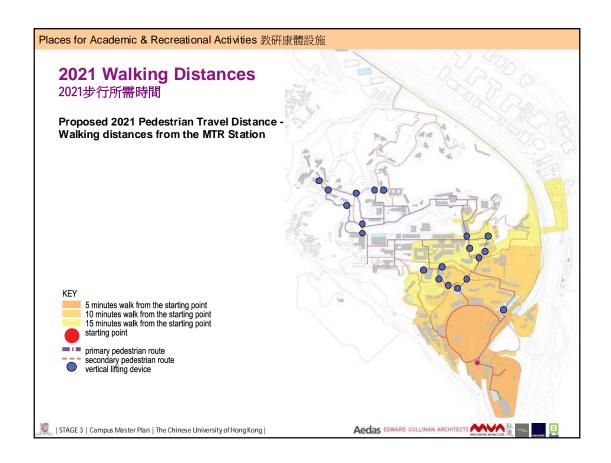
Our Vision for 2021 二零二一年規劃展望

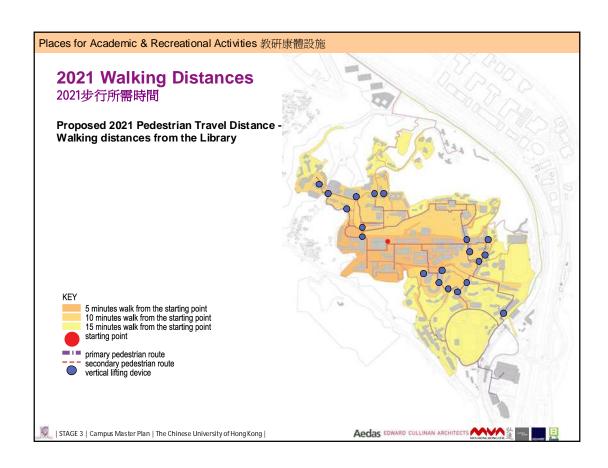
- "To build most sustainable on what we now have, we must strengthen the academic core and the encircling colleges as palpable places in a fine hillside landscape and we should connect the whole composition with a lattice of pathways." Edward Cullinan
- To maintain the CUHK campus as an ideal place for scholarly pursuits and to enhance the quality of life of the entire community by:
 - improving the integration of learning, working, living, and social interaction
 - creating a neighbourhood colleges to strengthen the overall sense of community and identity while accommodating new possibilities
- To formulate a planning framework to enable the evolution of the campus which balances the need for future growth with preserving the lush, green and serene setting

校園發展計劃:第三階段持份者交流活動-研討會(二)

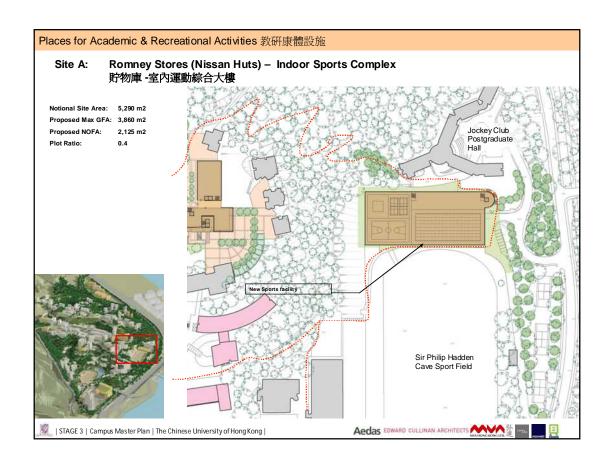
Places for Academic & Recreational Activities 教研康體設施

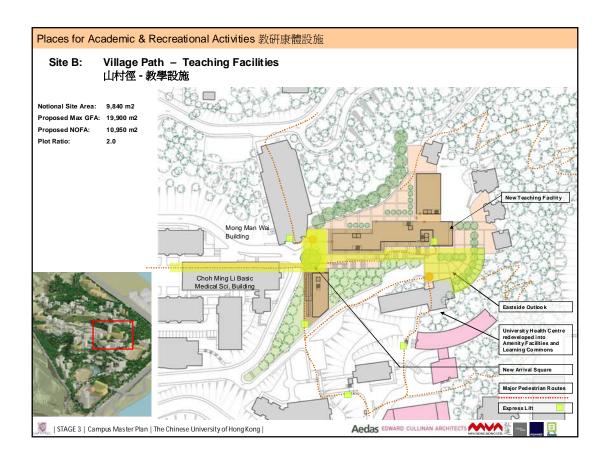

Objectives on Places for Academic & Recreational Activities 教研康體設施的規劃目標

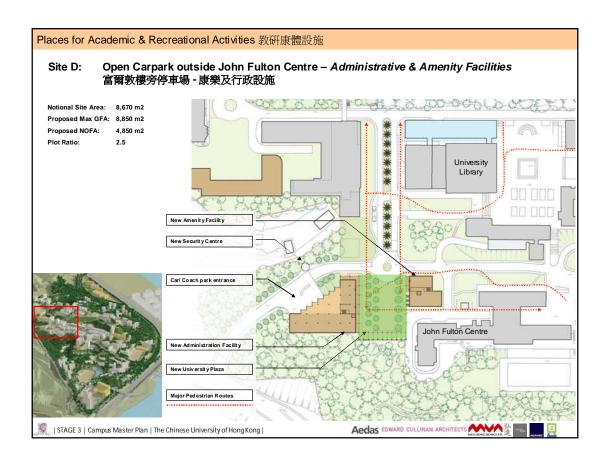

The aim is to strengthen the presence of academic and recreational buildings in the following ways:

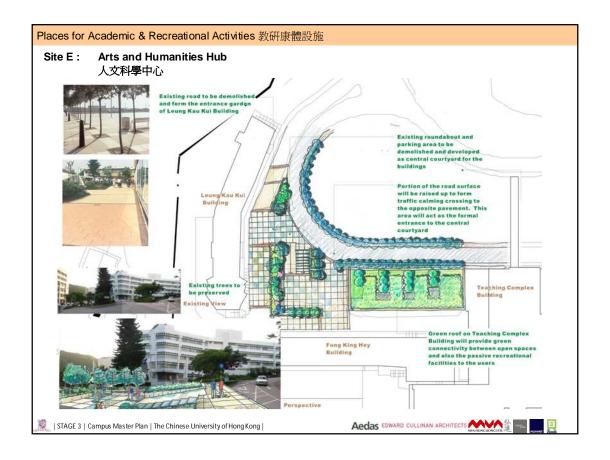

- 1. Preserve and enhance the identities and the usefulness of existing academic facilities
- 2. Strengthen connectivity between academic facilities, existing and new
- 3. Enhance the landscape and make the character of the places between them as important as the buildings themselves
- 4. Promote walking by providing vertical transportation devices where gradients are steep
- 5. Give priority to pedestrians over vehicles
- 6. Create faculty zones to achieve physical proximity and obtain the benefits of interdisciplinary collaboration

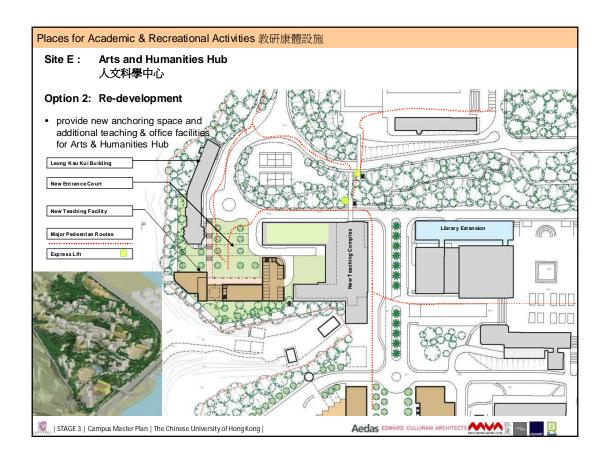
STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong |

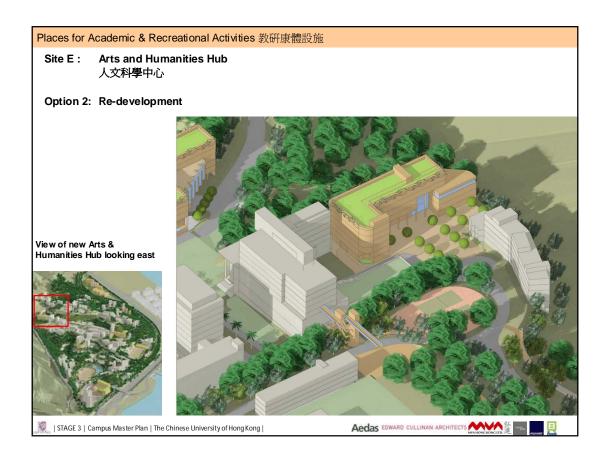


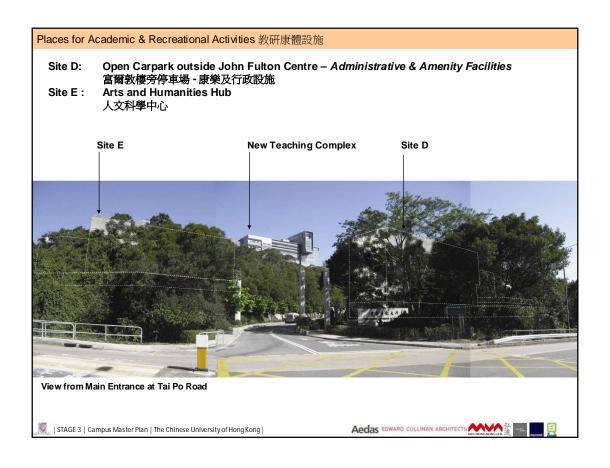


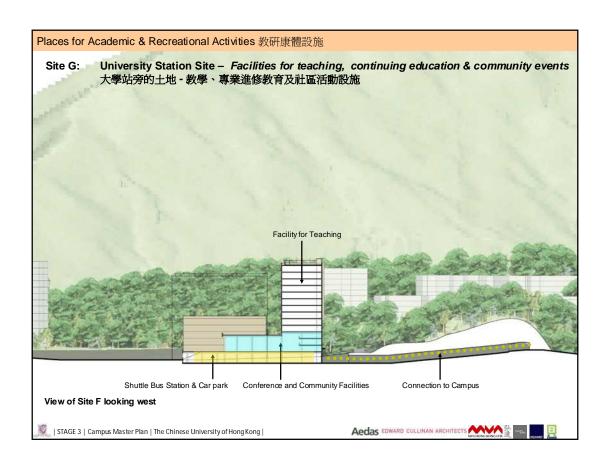


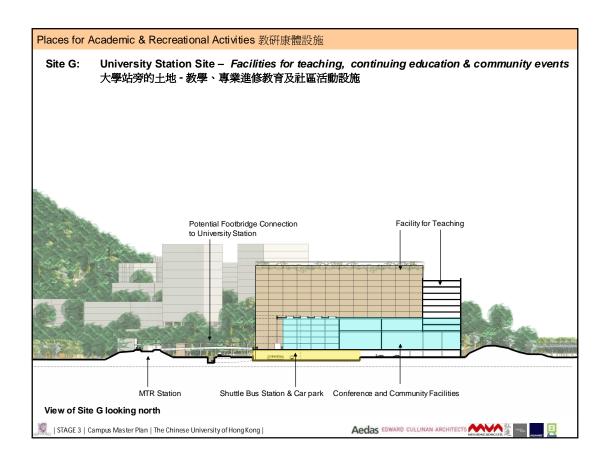


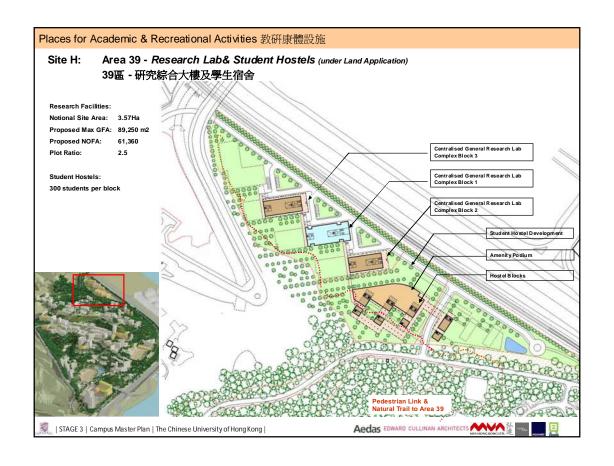


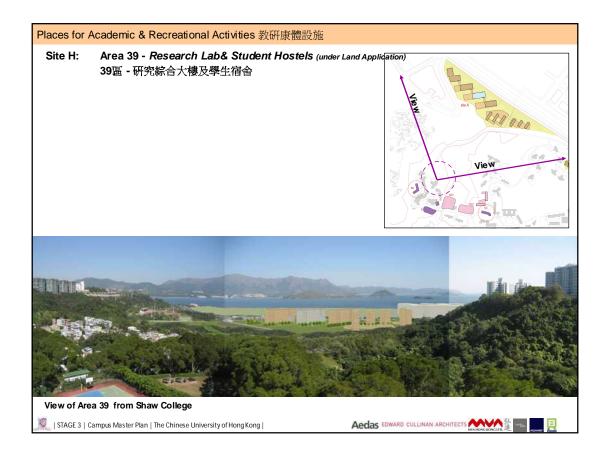


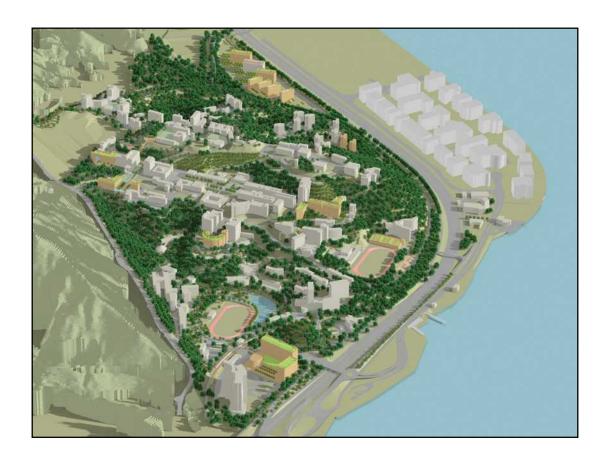


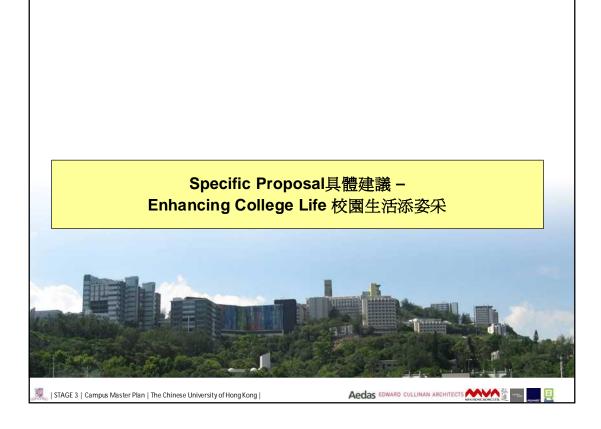












校園發展計劃:第三階段持份者交流活動-研討會(二)

Enhancing College Life 校園生活添姿采

Objectives on Enhancing College Life

校園生活上的規劃目標

To strengthen the identity of the individual colleges, giving each a further sense of being a distinctive place

- 1. Preserve and enhance the existing characteristics of the colleges
- 2. Encourage social interaction by enhancing the landscape and valuing the spaces between buildings
- 3. Strengthen pedestrian routes between colleges and the campus core
- 4. Establish neighborhood settings for the existing & new colleges to enhance sharing of facilities

STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong

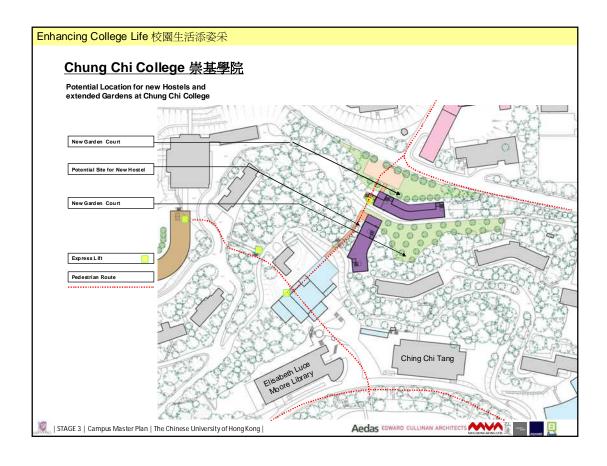
校園發展計劃:第三階段持份者交流活動-研討會(二)

Enhancing College Life 校園生活添姿采

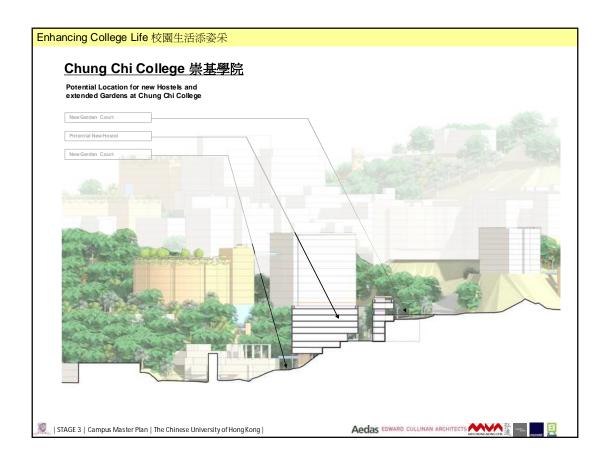
 Opportunity for individual Colleges to contribute to the Masterplan within college boundaries

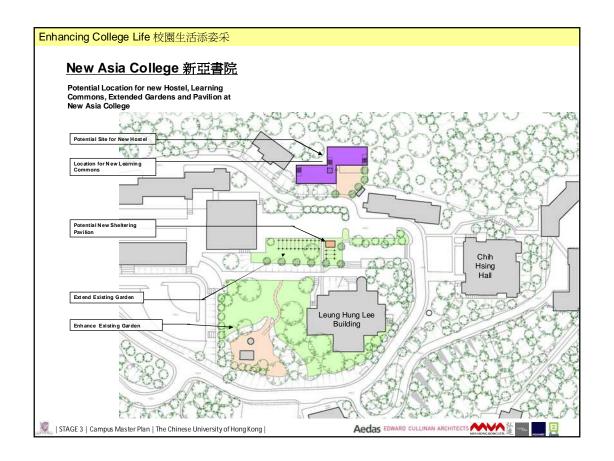
Chung Chi College New Asia College United College Shaw College

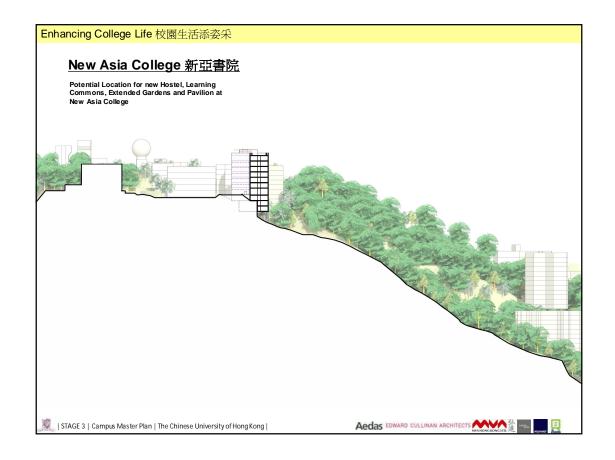
- Enhancement of College Identity
- Potential Location for New Facilities
- Recommendations for Facilities for College Neighborhood

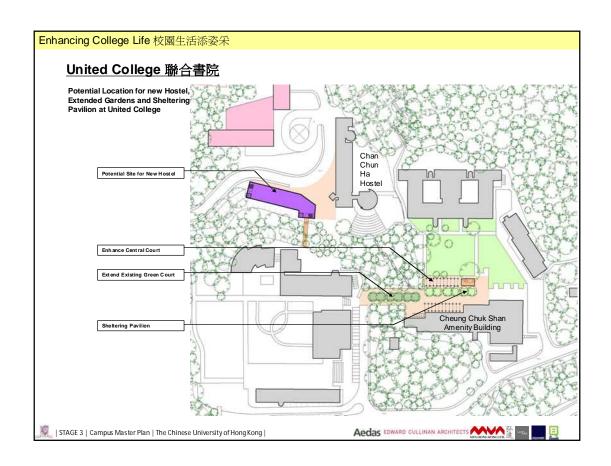

All recommendations are based on each Colleges' own Planning and Resources considerations

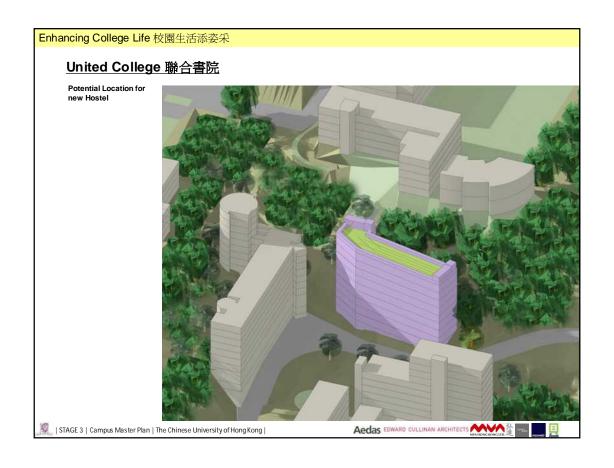
STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong |

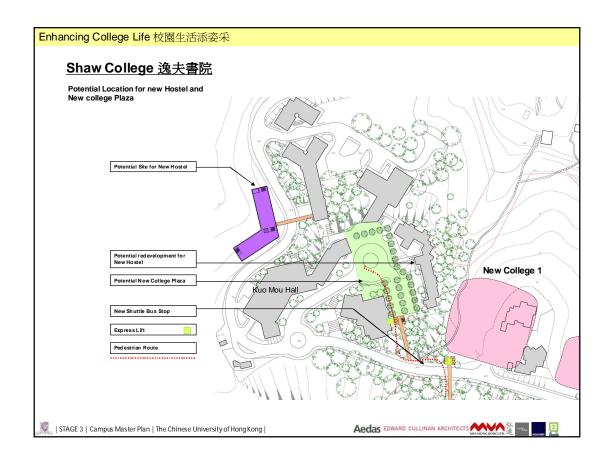


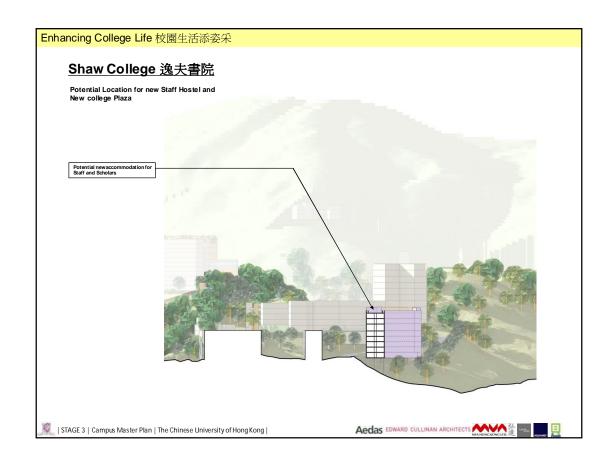


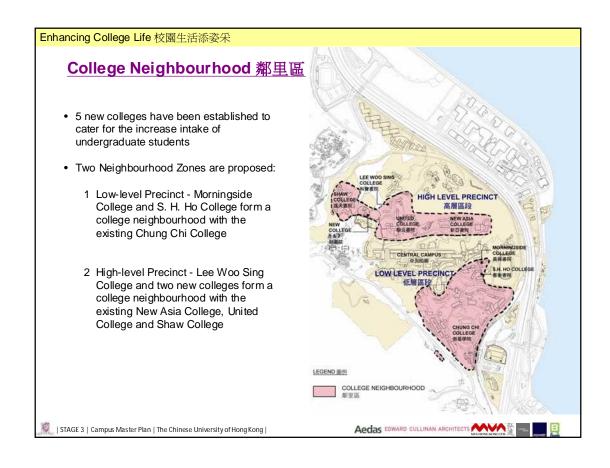


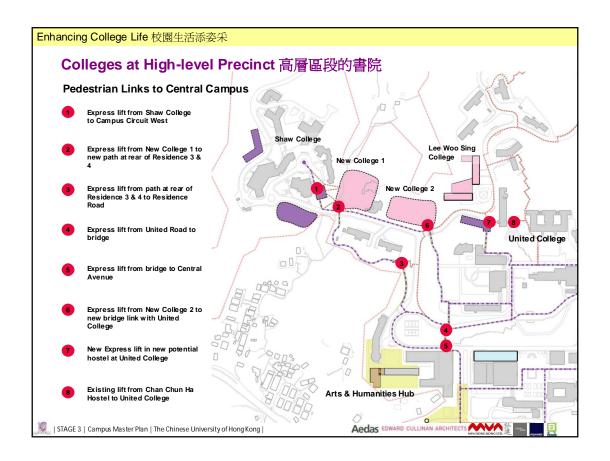


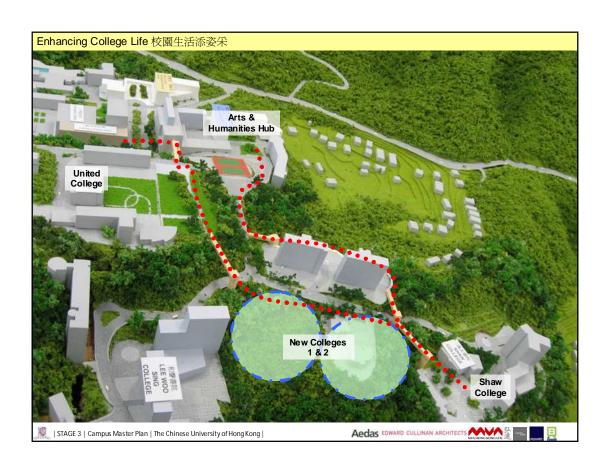












校園發展計劃:第三階段持份者交流活動-研討會(二)

Enhancing College Life 校園生活添姿采

Learning Commons 學習開放空間

New learning spaces to accommodate:

- Changing curriculum demands
- More collaborative learning, problem solving, managing information, knowledge generation,
- Changing student demographics and increased numbers & diversity
- Decreasing cost of technology and increasingly widespread use of new technologies

Learning Commons at ECA's Centre for Mathematical Sciences, Cambridge

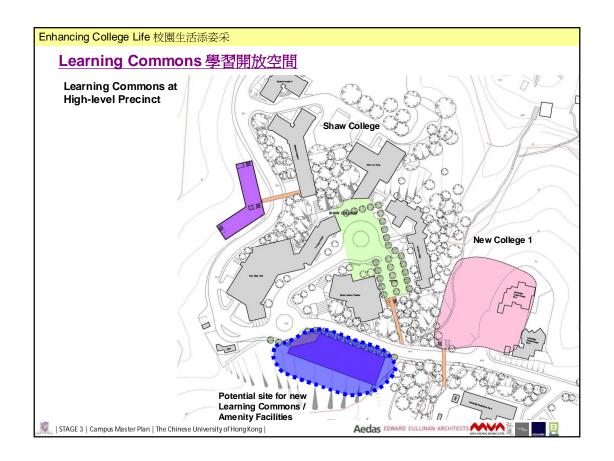
STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong |

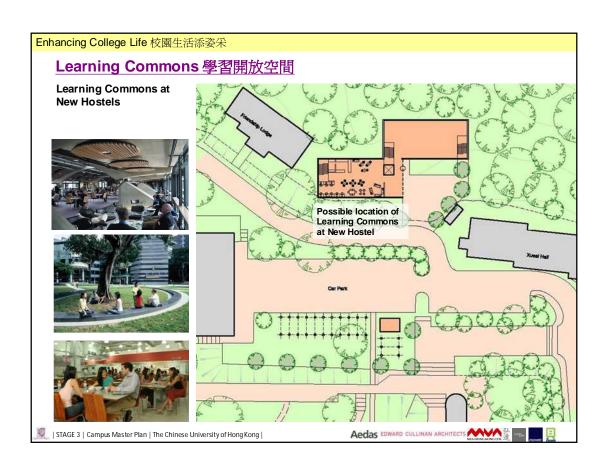
Enhancing College Life 校園生活添姿采

Learning Commons 學習開放空間

Shifting Paradigms in Universities

Old Paradigm	New Paradigm
Knowledge is presented objectively to students	Knowledge is (co)- constructed by individuals and groups
Education process - timetabled by institution & controlled by a teacher	Learning occurs at a time and a place convenient to the learner
Students dependent on institution to guide them through their study	Students independent and have greater choice what they study
Education process - timetabled by institution & controlled by a teacher	Learning occurs at a time and a place convenient to the learner





校園發展計劃:第三階段持份者交流活動-研討會(二)

Enhancing College Life 校園生活添姿采

Learning Commons 學習開放空間

Learning Commons at Anchoring Space

- University Health Centre to be converted into Learning Commons, intergraded with the new Plaza, Eastside Outlook, at the end of Clinic Road
- Possible site for relocation of University Health Centre:
 - Carpark adjacent to Staff Quarters E & Interuniversity Hall

| STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong |

Flexible Learning Space at ECA's St John's College, UK

校園發展計劃:第三階段持份者交流活動-研討會(二)

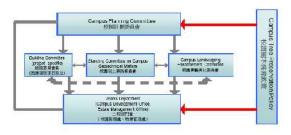
Making a Sustainable Campus 可持續發展校園

Objective on Campus Sustainability

校園可持續發展規劃目標

To create 'A model for a sustainable campus that reduces energy use, minimises waste and reduces the dependency on transport' for CUHK

The sustainability framework refers to overall reductions in and benchmarks for energy consumption across the campus, as well as providing design guidelines for the sustainable development of individual buildings.



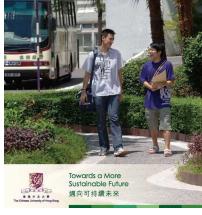
校園發展計劃:第三階段持份者交流活動-研討會(二)

Policy Making

The University Steering Committee on Environment (USCE) continues to promote environmental awareness and champions new initiatives.

Implementation

The University Safety and Environment Office coordinates relevant offices such as the Estates Management Office, the Campus Development Office and the Transport Unit in implementing environmental projects.



Making a Sustainable Campus 可持續發展校園

Sustainability underway 現行工作

Already CUHK has made significant progress:

- · Current Policies include:
- Environmental Policy
- Tree Preservation on Campus
- Policy on recycling
- building electricity use fell by ~10% from 2000-2005 to 260kWh/m2
- new building projects follow HK BEAM & Building Energy Code
- annual carbon audits & sustainability monitoring record progress
- substantial recycling and waste reduction programs (ISO 14000)
- · use of recycled materials in paving (Eco-Glass blocks)
- · rainwater storage at Wei Yuen Lake
- low energy appliance and sensor controls installed
- · environmentally-friendly bio-pesticides
- · reduced waste building practices
- · preservation of biodiversity (particularly bird & butterfly species)

| STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong |

校園發展計劃:第三階段持份者交流活動-研討會(二)

Making a Sustainable Campus 可持續發展校園

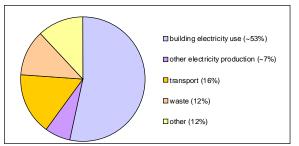
Recommendation for Sustainable Campus 對可持續發展校園的建議

Towards a Low Carbon Campus

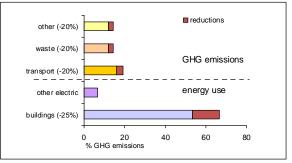
Target to be established by CUHK:

- Reduction in energy use per student
- Reduction in annual greenhouse gas (GHG) emission per student

Making a Sustainable Campus 可持續發展校園


Reference for Consideration 參考知料

Hong Kong, as a member of APEC, is working towards a **25%** reduction in energy use by 2030.


For greenhouse gas (GHG) emissions in Hong Kong:

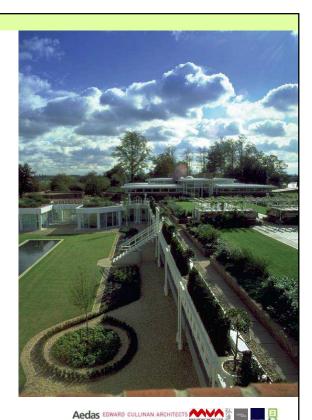
 60% comes from the production of *electricity* of which 89% is used to power <u>buildings</u>

16% comes from <u>transport</u> 12% comes from <u>waste</u> 12% comes from other uses

Hong Kong Greenhouse Gas emissions

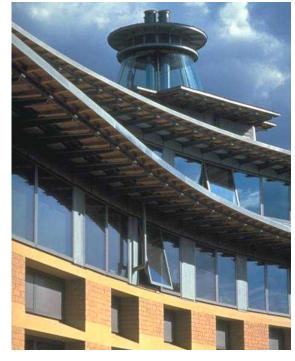
Possible reductions in energy use & GHG emissions at $\underline{\text{CUHK}}$

STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong |

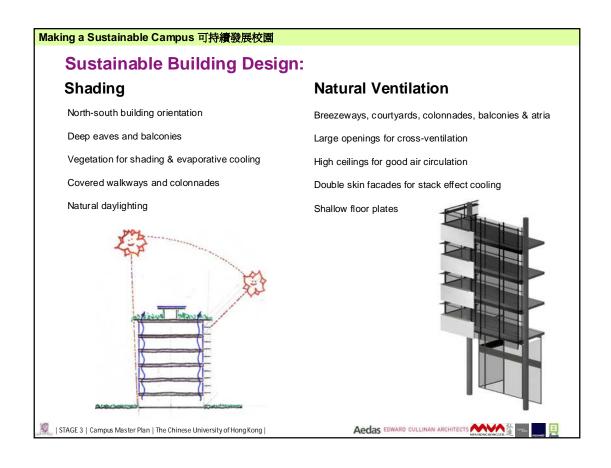

校園發展計劃:第三階段持份者交流活動-研討會(二)

Making a Sustainable Campus 可持續發展校園

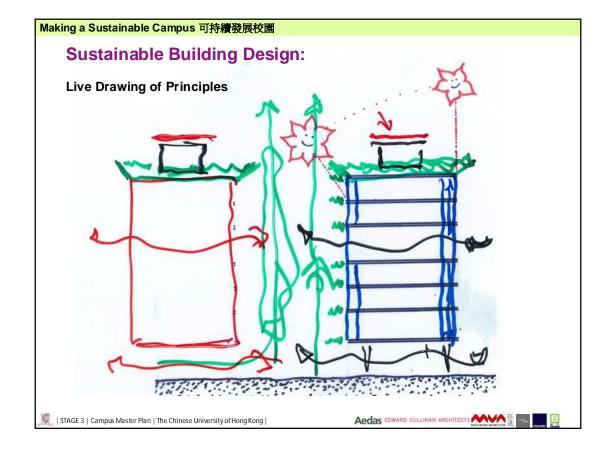
How to become a Low Carbon Campus?


怎樣成爲低碳校園?

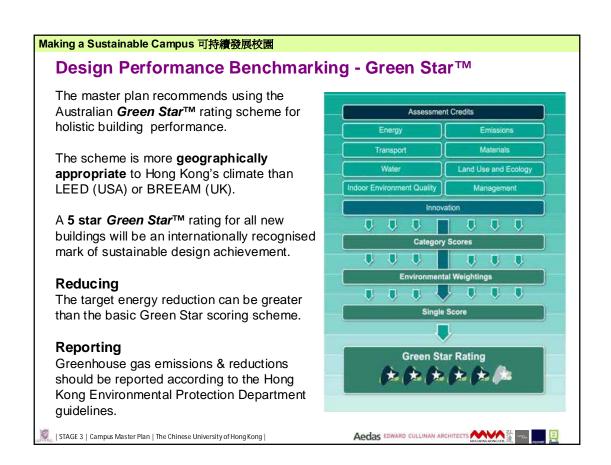
- Enforce current policies on sustainability
- 2. Identify energy efficiency potential in existing and new buildings
 - sustainable building design
 - appoint a qualified assessor to guide building design towards the highest viable Green Star™ ratings
- 3. Minimize waste and resource consumption
- Commission a Renewable Energy Feasibility Study to include the viability of on-site power generation (CCHP) and the production of on-site alternative fuels (Biogas)



Making a Low-carbon Building


STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong |

Aedas EDWARD CULLINAN ARCHITECTS MAHONGONGITO



STAINABIL	ITY MATRIX									
17 / April 2006	500	Section 25000000		2000	4027					Environmental Benefit
OING ENVEL	OPE - STRUCTURE	Included. Firther Study	Ownership	Description	Benefit	Possible Drawbacks	Capital Cost	Operating Cost	Visionly	SMINERS
3-1-	Natural Ventilation			Operable windows allow the building to ventilate naturally.	Finduces fan koads when weather is liuitable, Connects building to external environment, a benefit that is hard to sownth.	Requires operable windows.	=/+£			pp
41	Passive Solar Design			Locate strading devices to allow useful gain in winter but control excessive gain in surrorer.	Takes advantage of passive heating in winter and shading in summer. Allows building performancie to vary with the season.	Depends on architecture. External shading preferable, maintenance sause.	+8	·tt		ppp
1	High Performance Glazing			Use selective performance of glazing to maximize daylight list control fixed gains and losses. Salonce glazed to opaque elements 50 / 50	Reduce heating and cooling demands, improves comfort. Reduces CO ₂ production.		+£	-111	0	PPP
· Var	Daylighting			Provide appropriate levels of daylight through optimisation of femalization.	Reduces energy used for artificial lighting. Improves indoor environment and provides connection to outstoors.	Disylighting has been improved wherever possible, given the constraints of the exteiling building	96	- 6	0	ppp
i i i	Exposed Thermal Mass			Leave concrete slabs exposed internally to set as theretal flywheel and store heal contri durnally.	Reduced demand on heating and cooling systems, and storage of recovered heat in writer. Benefits last life of building.		9.1	- 60	1	P
	Extra Insulation			Increase building insulation above typical levels.	Reduces heating and cooling demands and CO ₂ production. Benefits tast for life of building.	Thicker roof and wall constructions. Influences net and gross sesse.	+ 65	- 656	0	ppp
DING BERVI	CES + ENERGY							70 2		
• :	Heat Recovery Ventilation			Whole house heat recovery ventilation uses heat from exhact six to heat up incoming fresh air supply	Uses the available resources of people / appliances / passive solor gain as heat sources.	Space for plant and risins recessary.	+ 66	- exe	0	ppp
	Ground Source Heat Pump (Closed loop)			Water pumped through an closed loop system is heated i cooled by the ground.	Efficient source of thermal energy. Potential path to project carbon neutrality if supplied with green electricity.	Requires multiple wells and space for feet pump (either in apertments or in a central plant morn)	٠α	·ex	0	00
	River Water Source Heat Pump (Closed loop)			Water pumped through andiosed loop system is heatest / cooled by water drawn from the Rover	Efficient source of thermal energy. Potential path to project carbon reutrality if scooled with green electricity.	Requires water intolers and discharges to hear which all require permits and are high membersance. Requires heat purso as above.	·u	· ex		ppp
20	Combined Heat and Power (CHP)			Gas fired engine governies electric power for building. Waste feat as a by product used to heat the building and hot water.	Very efficient use of energy content of tue when compared to power station + heating.	Capital cost, roise and maintenance sauce. Payback is normally less than 3 years for a Hotel.	+ 65	·ec	1	ppp
W.	Radiant Heating / Cooling systems			Bedroom conditioning using radient chilled ceitings rather than fan-coll units.	Lower energy consumption, better confor if building fabric loads can be controlled. Silent.	Integration into finishes and lighting, May not satisfy US visitor market - too quiet!	•¢	- ε	1	PP
%	Solar Water Heating (min. area)			Solar penels on roof	Reduces demand on fasel fuels for hot water healting and reduces CO ₃ production.	Space for panels at mol level. Maintenance	+£	-k	0	ppp
VE)	Energy Efficient Lighting			Specify lighting filtings that any take high efficiency lamps	Reduces energy used for lighting	Restricts choice of lighting fittings. Requires more attention to lighting types and sourcing.	=/+€	·ex	1	00

JSTAINABILI 1737 / April 2008	TY MATRIX										
vironmental Elemen		Included	Further Study	Ownombio	Description	Ronofi	Possible Drawbacks	Capital Cost	Operating Cost	Melhills	Environment Benefit
Wrotimental Elemen	Controls, Daylight and PIR Sensors	induded	Turner Souty	Ownerally	Measures available daylight occupancy and adjusts artificial lights accordingly. Switches lighting on / off depending if spaces are occupied	Reduces energy used for artificial lighting and allows maximum benefit from daylighting.	Requires dimmed, stepped, or automatic lighting controls in addition to manual controls.	+£	- ££	O	PP
	Photovoltaics				Solar PV's on roof (as part of the shading) or facade (embedded in glazing) for power generation.	Power generation without CO ₂ production.	Space at roof level or on facade. PV panels are expensive and currently not self-financing in their own lifetime without grants	+ £££	-£		P
$\approx \langle \rangle$	Wind Turbines				Horizontal or vertical axis turbines integrated into either building or landscape	Power generation without CO ₂ production. Can be integrated as part of the street furniture / external lighting design	Maintenance and safety issues.	+ ££	-£		P
€G	Green Power				Purchase power from a green energy supplier.	Ensures carbon-neutrality power; if combined with electric mechanical equipment (I.e. GSHP), could provide a carbon-free building.	Cost. Restricts choice of power supplier	-	+ £££		PPP
1111-	Biofuel / Biomass				Boilers for space and water heating are supplied by biofuel rather than gas	Carbon neutral; Carbon Dioxide is required to initially grow the fuel before consumption releases that Carbon Dioxide back into the atmosphere.	Storage space for fuel required; Boilers require higher level of maltenance	+£	*£		PPP
ATERIALS + REC	CYCLING			I	Crushed concrete / bricks from demolition		Requires crushing facility on site.		1		Α Δ
	Re-use Demolition Waste				are re-used for re-fill, sub-bases etc. on site.	Reduces the use of virgin materials; reduces transport to and from site	Requires crusning facility on site. Requires assessment of amount and quality of demolition material.	-	-	\bigcirc	PP
	Recycling				Designated easy-to-access recycling areas for residents, retail and public spaces.	Encourages recycling. Reduces waste going to landfill.	Space for recycling facilities in private and public areas.	=/+£	-		PP
43用	Sustainable Materials in Building Structure				Materials with low embodied energy, cement substitutes (GGBS, PFA), recycled gabion walls, recycled steel, wood etc.	Reduces environmental footprint of building. Supports market for 'green' materials.	Requires more attention to material types and sourcing.	= / + £	-		PP
	Sustainable Materials in Building Finishes				Materials with low embodied energy (loca extract, recycled, rapidly renewable sources). i.e. recycled glass, recycled plastic etc.	Reduces environmental footprint of building. Supports market for 'green' materials.	Requires more attention to material types and sourcing.	=/+£	=		P
FSC	FSC Certified Wood				All specified wood to be FSC (Forest Stewardship Council) certified	Ensures that wood comes from managed forests only. Avoids depletion of natural forests and endangered wood.	Possible restriction on wood types / products which can be specified.	-	-		P
	Low VOC and Urea- Formaldehyde Materials				Materials with low volatile organic compound content and no added urea- formaldehyde,	Improves indoor air quality and occupant health.	Requires more attention to material types and sourcing.	=	=		PP
	Construction Waste Management				Contractors sort and recycle construction waste.	Minimize construction waste going to landfill or incineration. Often saves money.	Requires on-site sorting and a site waste management plan	= / - £	-		PP
帚	Green Street Furniture				Street Furniture with recycled content, local materials, sustainable manufacturing processes, design for recyclability, etc.	Reduces environmental footprint of street furniture package, Supports market for 'green' materials.	Requires more attention to material types and sourcing.	= / + £	=		PP

	Y MATRIX										
1737 / April 2006											
ironmental Elemen	ı	Included	Further Study	Ownership	Description	Benefit	Possible Drawbacks	Capital Cost	Operating Cost	Visibility	Environmer Benefit
	'A' rated appliances				Appliances that use less energy, avoid some toxins, and avoid ozone-depleting substances.	Lowers operating energy and resultant CO ₂ production.	Requires more attention to appliance selection.	= / + £	- £		P
TER	I				Rainwater collected from roof / hard	Reduces demand on stormwater			_		
MAN.	Rainwater Harvesting				landscaping and stored for non-potable uses (irrigation / car park / store wash down points)	infrastructure. Reduces potable water use. Lagune can be used as part of storage system.	Space for storage tank, filters and pumps.	+ £	- £		PP
★ -₩-	Greywater System				Greywater (wash hand basins, showers, baths) from building cleaned and reused for non-potable uses (irrigation and/or toilet flushing).	Reduces wastewater flow from building and potable water use.	Space for tanks, filters; requires regular maintenance.	+ ££	- £		P
	Blackwater Treatment				System of waste decomposition tanks treats blackwater (toilets) and uses it for non-potable uses.	Eliminates waste flow from building and reduces potable water use. Solid wastes produced can be used as compost.	Space for tanks, filters; requires regular maintenance.	+ £££	- ££	\bigcirc	P
	Water Saving Fixtures				Sensor and low-flow taps, low flush tollets, waterless urinals, etc.	Reduces demand on waste water infrastructure and potable water use.	Maintenance requirements may be higher or lower, depending on fixtures.	= / + £	- £		PP
NDSCAPING											
Milak	Native /Adapted Vegetation				Use of plants that are native to the ecosystem or adapt to local conditions without extensive need for fertilizing and watering.	Reduces landscape maintenance, provides habitat, reduces stress on local ecosystem.	Requires more attention to plant selection and may limit options.	= / + £	- £		PP
****	Green Roof				Extensive vegetation on building roof. TBC by landscape architects	Reduces stormwater runoff, improves roof insulation, increases roof life-span, enhances microdimate and biodiversity.	Increases roof load and requires some maintenance depending on green roof type.	+ ££	-£		P
	Drip Irrigation				Permanent irrigation system using less water than conventional systems.	Saves water.		= / + £	-		PP
CIAL SUSTAINA	BILITY										
	Building User Education				Teach building occupants how to use building systems efficiently. (Heating, cooling, ventilation, shading, water saving, recycling etc.)	Higher level of user satisfaction, less maintenance, lower energy / water use.	Requires training.		- £		P
	Electric Car Charging Points				Dedicated electric car parking area with car charging points	Encourages the use of electric cars. Reduces pollution.	Requires dedicated car parking areas with electric charge points.	= / + £	-		PP
PARTITION	Carpool System				Car sharing scheme which allows residents to book cars on hourly / daily rates	Encourages car sharing and reduces individual car use.	Requires dedicated car parking areas for car pool. Requires car management system.	= / + £	-		PP
₩	Cycle Parking				Dedicated secure bicycle storage areas.	Encourages cycling. Reduces the dependency on cars thus reducing emissions.	Requires dedicated area. Takes up space.	+£	-		P

校園發展計劃:第三階段持份者交流活動-研討會(二)

Making a Sustainable Campus 可持續發展校園

UK Experience: ECA's Warwick University Digital Laboratory

BREEAM Excellent

Completed in 2008, the building achieved the highest rating - the UK equivalent of a Green Star 5 or 6 Star rating. The scoring considered management, energy, pollution, transport, land use, ecology, materials & water.

Low carbon footprint:

The building uses just 19.21 kgCO2/m2.

(This is an approximate 84% reduction from a typical UK office building which uses ~125 kgCO2/m2.)

| STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong |

Aedas EDWARD CULLINAN ARCHITECTS

Making a Sustainable Campus 可持續發展校園

UK Experience: ECA's Warwick University Digital Laboratory

How was this achieved?

Photovoltaic panels provide on-site energy production

Highly efficient light fittings, LEDs & sensors

Combined Cooling Heat & Power (CCHP)

"Living Roof" brings 13 grass species & biodiversity to the site, and reduces rainwater run-off

North-facing orientation maximises natural daylighting & minimises solar heat gain

Enhanced insulation minimises heating loads

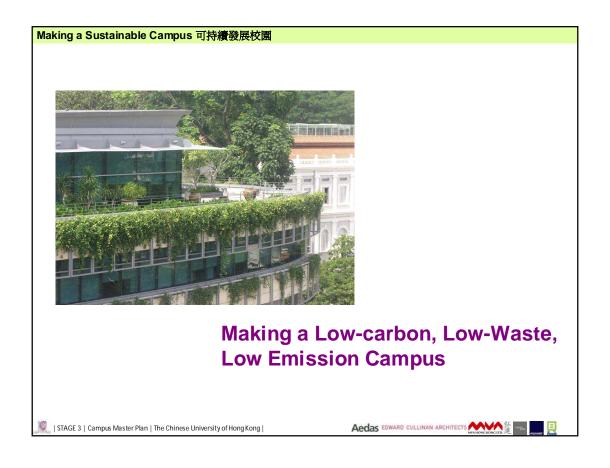
Flexible & adaptable to future wall / floor / services changes (e.g. demountable mezzanine floors)

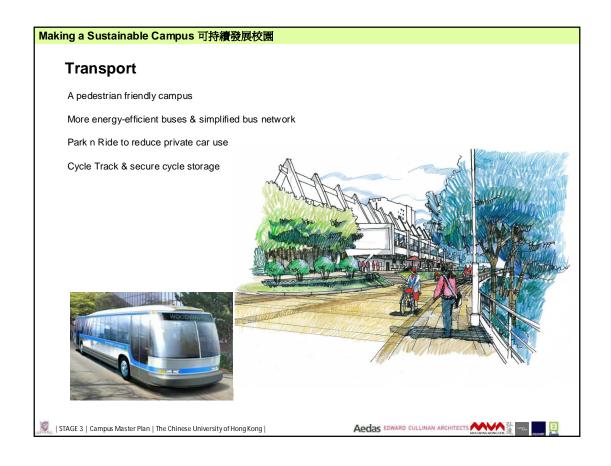
High thermal mass floors & under-slab labyrinth provide temperature stability & support natural ventilation

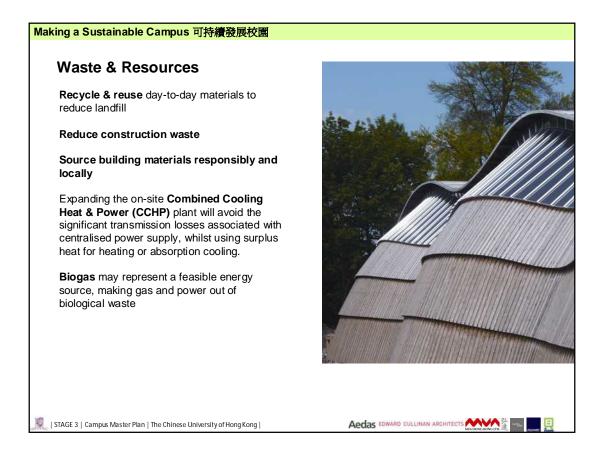
Reinforced grass vehicle surfaces & natural soakaways attenuate rainwater run-off

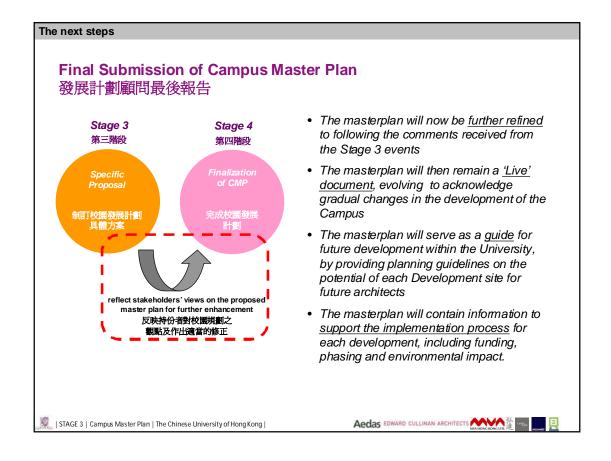
Water-efficient fittings, controls & management (e.g. infrared flushing controls & leak detection systems)

Water quality assessments during construction ensured against site contamination


Aedas EDWARD CULLINAN ARCHITECTS






| STAGE 3 | Campus Master Plan | The Chinese University of Hong Kong |

