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Abstract

This paper provides an explanation for the puzzling phenomenon in Tieslau et al.
(1996, Journal of Econometrics 71, 249-264) that a substantial efficiency loss occurs if
low-order autocorrelations are omitted when estimating the differencing parameter, d.
This is because for all n strictly bigger than 1, the nth-order autocorrelation function does
not depend uniquely on the differencing parameter. We construct a new estimator for the
differencing parameter based on the partial autocorrelation function. Comparisons of the
asymptotic and finite-sample variance of our estimator and those of TSB are made.
A substantial efficiency gain is achieved by our estimator as compared to TSB’s. © 2000
Elsevier Science S.A. All rights reserved.

JEL classification: C22
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1. Introduction

The long-memory processes have found wide applications in various aca-
demic disciplines since 1950s, in fields as diverse as hydrology and climatology.
The most familiar example has been in hydrology, originally documented by
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Hurst (1951) who used 900 geophysical time series to study the persistence of
stream-flow data and the design of reservoirs.

The theory of fractionally integrated models, stemming from the work of
Granger and Joyeux (1980), was designed to fit the behavior of long-memory
processes. The main economic application of such a model has been to study
whether real GNP is difference stationary or trend stationary. Using quarterly
post-World-War II US real GNP data in first differences, Diebold and
Rudebusch (1989) found an estimated value of d, the order of integration, equal
to — 0.5. Sowell (1992b) found that first differenced US real GNP quarterly data
for 1947-1989 can be characterized by an ARFIM A (3, — 0.59, 2) model. Other
researchers also used fractionally integrated models in their studies of asset
pricing models (Ding et al., 1993), stock returns (Lo, 1991), exchange rates
(Diebold et al., 1991; Cheung, 1993; Baillic and Bollerslev, 1994), interest rates
(Shea, 1991; Backus and Zin, 1993; Crato and Rothman, 1994) and inflation
rates (Hassler and Wolters, 1995; Baillie et al., 1996). Baillie (1996) provides an
excellent survey of the literature in this area.

When the development of ARFIMA models was still in its infancy, re-
searchers usually assumed that the fractional differencing parameter was known
in advance. Recently, there has been a tremendous amount of promising re-
search on the estimation of d via various methods. Estimator after estimator has
been proposed. Geweke and Porter-Hudak (1983) developed the well-known
GPH estimator for estimating d of a stationary and invertible fractionally
integrated process at low frequencies. Hurvich and Ray (1995) have extended the
GPH estimator to the case of a non-stationary, non-invertible process. Max-
imum likelihood estimation has been proposed by Li and McLeod (1986) and
Sowell (1992a). More recently, Tieslau et al. (1996) (hereafter referred to as TSB)
have suggested estimating d by minimizing the difference between the sample
and the population autocorrelations. A shortcoming of the TSB estimator
is that a substantial efficiency loss occurs if low-order autocorrelations are
omitted.

The purpose of this paper is to provide a new estimator for the differencing
parameter. This estimator is constructed by equalizing the sample and popula-
tion partial autocorrelations of the underlying process. The advantage of using
the partial autocorrelation function is that it has a unique mapping with the
differencing parameter. Thus, the problem of multiple solutions is avoided and
efficiency of the estimator is increased. A difficulty encountered in using sample
partial autocorrelation functions is that its variance—covariance structure is not
available to us. This paper adds to the literature by deriving the theoretical
variance-covariance structure of the sample partial autocorrelation function.
Such a finding enables us to construct an estimator analogous to that of Tieslau
et al. (1996).

We also endeavor to explain the puzzling phenomenon arising from TSB’s
simulation that a substantial efficiency loss occurs if low-order autocorrelations
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are omitted. We argue that their results are due to the fact that for all n strictly
bigger than 1, the nth-order autocorrelation function does not depend uniquely
on the differencing parameter d. Thus, the problem of multiple solutions arises.
This will increase the variation of the estimate of d.

The notations and structure of this paper closely follow those of TSB’s paper.
Section 2 constructs the model. Section 3 derives our estimator and its asymp-
totic distribution. Sections 4-6 compare the asymptotic and finite-sample vari-
ance of our estimator with TSB’s. The conclusions are drawn in Section 7.

2. The model

A time series process {y,} is said to be integrated of order d if (1 — L)%y, is
stationary, where L is a lag operator such that Ly, = y,_,. If d is not an integer,
then the process is said to be fractionally integrated. In this paper, we shall
assume for ease of exposition that the process under discussion is a fractionally
integrated white noise process. Consider the following model:

A—LYy, =u (t=12..T), (1)

where L is the lag operator and u, is the white noise.
The fractional difference operator (1 — L)* is defined by its Maclaurin series

_ v IG-4d)

o B arg et .

where I'(x) is the Euler gamma function defined as
I'(x) = J‘ z texp(—z)dz for x >0,

© _ l)k L -
g x+kk' Jz exp( — z)dz
forx <0, x# —1,—2,—3,... .
The jth autocorrelation of this ARFIM A(O, d, 0) process is given by

j d —1
]__[ i (G=12..,n). 3)

The sample autocorrelations are defined as

by = ZtT;lj(Yt - J_/)(,Vt+j -¥)
! ZIT:1(yt _)_7)2

@
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In a recent study, Tieslau et al. (1996) proposed a minimum distance estimator
of d defined as

d= Argmin S(d), (5)

de(—0.5, 0.25)

where S(d) = [p — p(d)]'C~'[p — p(d)], p(d) is a vector of dimension (n x 1)
with the jth element p;(d), and p is a vector of dimension (n x 1) with the jth
element p;. C is the asymptotic variance-covariance matrix of p with the (i, j)th
element given by

Cij =, (Ps+i + Ps—i = 20sP))(Ps+j + Ps—j — 2psp;)- (6)

s=1

In Tables 2-4 of TSB’s paper, a substantial efficiency loss occurs when the
first-order autocorrelation is not used in the estimation of d. This implies that
the first-order autocorrelation carries most of the information needed for the
estimation of d. We argue that their findings are due to the fact that the mapping
between p,(d) and d is not one to one for all n = 2.

Note that when n = 1,

pid) =4 ™)

In this instance, the mapping between d and p,(d) is unique. However, forn > 2,
different values of d may generate the same p,(d). Consider the values of d used
in Table 2 of TSB’s paper. Table 1 below shows all other values of d which share
the same nth-order autocorrelation for n = 2, 3.

Table 1
Values of d which share the same nth-order autocorrelation for n = 2, 3

d n=2 n=3
—0.49 —0.2576 —0.1392, — 2.6410
— 045 —0.2895 — 0.1608, — 2.6801
—04 —0.3333 —0.1917, — 2.7213
—-03 — 04375 —0.2714, — 2.7665
—-0.2 —0.5714 —0.3879, — 2.7298
—0.1 —0.75 —0.5772, — 2.5430
0 —1 — 1.0000, — 2.0000
0.1 —1.375 — 1.3497 4+ 0.9213i
0.2 -2 —1.0789 + 1.5197i

0.24 — 2.3846 —0.9317 + 1.7192i
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For example, considering the case where n = 2, we have

2 d+i—1
d) = _
p2(d) U=y
In this case, p,( — 0.4) = p,(— 0.3333) = — 0.0714.
Thus if the true d is dy = — 0.4, and if we estimate d, by using the second-
order autocorrelation only, the estimator converges to the set { — 04,
—0.3333}.

Obviously, for n = 1, the criterion function is U-shaped and thus it has a
unique minimum. However, for n > 2, the shape changes with the true value
of d. Figs. 1 and 2 show the shape of the criterion function against the
differencing parameter d, for n = 2, 3, when the true d is dy = — 0.4.

It should be noted that the minimum of the function is not well located. In
Fig. 1, S(d) has two minima, one at d = — 0.4 and the other atd = — 0.33. The
function is relatively insensitive to d for d < 0. Similarly, in Fig. 2, the minima of
S(d) occur at d = — 0.4 and — 0.1917.

The existence of multiple solutions widens the variation of d. This will make

the variance of ﬁ (d — d) diverge to infinity as the sample size increases.

n=2, d0=-.4

T T T T T T T

x 1076

S(d)
0.4 06

0.2

-0.44 -0.42 —0.40 —-0.38 -0.36 -0.34 -0.32 -0.30
d

0.0

Fig. 1.
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3. The new estimator
Our estimator differs from the TSB estimator in that we use the sample partial

correlation function to form the moment conditions. The nth-order partial
autocorrelation function of a fractional white noise process is

o(d) = : ®)

This expression originally was given by Hosking (1981). For n =1, the
partial correlation function and the autocorrelation are identical. A salient
feature of a,(d) is that its relationship with d is unique for all n. Hence,
we can either use a single «,(d) or a combination of them to form an estimator
of d.

Next, we discuss how to obtain an estimate of «,(d). Let

Y :(yl’ y2$“'>yT),;

p(n) = (pla Pz’ 9pn—la Pn),,
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Since E(y,) is assumed to be 0 for all ¢, if we divide each element in the above
matrix by >'/_,)7; and take probability limit, we have

PS P 1 def
Bn) > @(n —1)""p(n) = P(n),
where @(n — 1) is a Toeplitz matrix of dimension (n x n) defined as

1 P1 o Pa-t
1 D
om—n=| "t ©)

Pn—1 Pn-2 1
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The elements of B(n) will converge in probability to a function of d, in particular,

o L—p, pt—ps\ (2 d
B2)— ¢(1)1p(2)=<p11_2% pp% _p1>=<2_d 2_d>»
3d 3d(1 —d) d \
3—d B3—-dQ2—d) 3—-4d)
4d 6d(1 — d) 4d(1 —d) d >
il

B3) > )1 p(3) =<

4—d G—dB—d G-dB-d) 4-

One can easily generalize that the probability limit of the nth element of f(n) is
given by

B4 S @(3)" ' p(4) =<

d

PN p
— = o,(d).

frn > = m(d)
Hence, the nth-order sample partial autocorrelation can be obtained from the
estimated coefficient of y,_, in the regression of y, on y,—{,Vi—2,..., Vi—p.

Our estimator of d is defined as
d= Argmin S(d), (10)
de(—0.5,0.25)

where

S(d) = [& — a(d)] W[& — «(d)], (11)

a(d) is a vector of dimension (n x 1) with the jth element d/(j — d), & is a vector of
dimension (n x 1) with the jth element f;;, and W is a symmetric, positive-
definite weighting matrix.

Let
_oud) 1 2 n !
b= ad _<(1—d)2’ (Z—d)z""’(n—d)2>' (12)
Note that
osd) .
= 2D'Wa — a(d)], (13)
a;i(j) =2D'W™1D + 0,(1). (14)

Since we use [)A’,,’,, as the estimator for o,(d), the vector & is

a= (al(d)a &Z(d)a cees é\Cn(d))/ = (ﬁl,ls 32,29 5ﬁn,n)/'
For stationary process y,, the estimator ﬁj,j (j=1,2,...,n) is asymptotically
normal. Thus we have
d

JTla — ad)] - N(O, ), (15)
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where
Var(ﬁl,l) COV(ﬁLl: ﬁz,z) COV(BLI: ﬁn,n)
O—lm T 'COV(ﬁz,zs Bi.1) Yar(ﬁz,z) .COV(ﬁz,zs Bun) (16)
Cov(Bn,n’ gl,l) Cov(ﬁn,na 32,2) Var(ﬁn,n)

Note also that

asd) _asd) | 3*Sd) 5
R TRl d—d)=0, (17)

where d,, lies between d and d. Solving for (d — d) gives

S [es@)] s

d_d__[adi} od ’ (19
JT aggz) ° N(0, 4D'W QW D), (19)
JTd - d) ° N(O, [D'WD] 'D'WQWD[D'WD] ™). (20)

Thus, the optimal weighting matrix is
W= (21)

and therefore, under the optimal case, we have
d
ﬁ(ﬁ —d)— N(O, [D’'Q™'D]™Y). (22)
Note that the (I, m)th element of the variance-covariance matrix Q is given by

Q= lim TLLOERBW) — BU)Bm) — Bm)) Lim)],

T—-
where
L= (00...01).
(i) = ( )
i terms (23)
The remaining conundrum is to find E(B(l) — B())(B(m) — B(m)). Since

~ ~

p(n) — p(n) = (n — 1)B(n) — ¢(n — 1)B(n)
= @(n — 1)(B(n) — pm)) + (B(n — 1) — P(n — 1)B(n)
+ (B(n — 1) — ®(n — 1)) — p(n))
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= &(n — 1)(B(n) — Bn) + (B(n — 1) — B(n — 1))B(n)
+ O, (T 1),

we have

~

B(n) — B(n) = &(n — 1) " A(n),
where

A(n) = (p(n) — p(m) — (B(n — 1) — @(n — 1)B(n) + O, (T ).
Hence, 2, ,, is reduced to

lim TLLO)®( — 1)~ BA)Am))®m — 1)~ *Limy].

T— o0

Let

w(l,m) = lim TE()Am)).

T- o

Note that

¥(l,m) = C(l,m) — lim E(&( — 1) — (I — D)BU)p(m) — p(m)y

T-

— lim E(@p(l) — p(1))p(m)(@(m — 1) — &(m — 1))

T- o

(24)

(25)

+ lim E(@( — 1) — &1 — D)B)m) (P(m — 1) — d(m — 1)),

T- o

where C(I,m) is an [ x m matrix with the (i, j)th element ¢; ; defined in (6).

Lastly, the (i, j)th element of the ¥(I,m) is given by

1

(1, m)i,j =Cij— z ﬁl,hcli—hl,j - Z ﬁm,kclj—kl,i

h=1,h#i k=1,k+#j

Y Y E@—1)— o — 1),
h#Ed Lk#j

x  (Pm —1) — Dd(m — 1)) ; BrnBmi

1 m
=Cij— Z ﬁl,hcli—hl,j_ Z ﬁm,kclj—kl,i

h=1,h#i k=1k#j

m

+ Z Z C|i—h|,|k—j|ﬁl,hﬁm,k~

1
h=1,h#ik=1,k#j

(26)
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Thus, an equivalent of Bartlett’s formula for the partial autocorrelation function
is given by

cov(@(d), &w(d)) = coV(Br1, Bum)
= L(Y®( — 1)~ (1, myd( — 1)~ 'L(m), (27)

where L, @ and ¥ are defined in (23) (9) and (26), respectively.

Since all the elements of the variance-covariance matrix Q2 are uncovered, the
matrix W( = Q') can be constructed and we can now evaluate S(d) at various
values of d.

4. Comparison of asymptotic variance of ﬁ (d — d)

In this section, we compare the efficiency of our estimator to that of TSB’s. In
all the tables below, c; ; is approximated by

Cij =2, (Psrit Ps—i = 20PN Ps+j + Ps—j = 205p));
s=1
where the number of items in the summation is x = 5 x 10°.

In TSB’s paper, they did not report the value of x used to calculate ¢; ;.
Therefore, their results may be slightly different from ours, especially for d > 0.
In addition, there are some slight misprints in TSB’s tables. In their Table 1, for
d = 0 and n = 3, the value should be 0.7347 instead of 0.7437. In the same table,
for d = — 0.3 and n = 20, the correct value should be 0.7426 instead of 0.8625.
In Table 3, for d = 0 and n = 2-6, n = 3-7, it is fairly clear that the true values
should be 2.035 and 3.8198 respectively instead of 1.5866 and 2.4957. This is
because all the values reported in their Table 3 should be bigger than those
reported in Table 4.

Table 2
Asymptotic variance of ﬁ (d — d), using 5 partial autocorrelations

d 1-5 2-6 3-7 5-9 10-14
—0.49 1.2305 2.6125 4.4028 9.2274 28.378
— 045 1.2063 2.5530 4.3376 9.1503 28.270
—-04 1.1399 2.4806 4.2583 9.0569 28.139
—-03 1.0122 2.3425 4.1088 8.8829 27.897
—-0.2 0.8917 2.2159 3.9756 8.7328 27.694
—-0.1 0.7803 2.1075 3.8693 8.6247 27.564

0 0.6832 2.0350 3.8198 8.6091 27.603
0.1 0.6187 2.0669 3.9412 8.8813 28.192
0.2 0.7060 2.7407 5.1597 11.044 32.426

0.24 0.9373 4.2363 7.8733 15.785 41.386
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Table 3
Asymptotic variance of ﬁ(ﬁ — d), using 10 partial autocorrelations

d 1-10 2-11 3-12 5-14 10-19
—0.49 0.9776 1.9036 3.0681 6.0495 17.134
—0.45 0.9481 1.8827 3.0563 6.0566 17.190
- 04 09115 1.8581 3.0440 6.0696 17.266
—-03 0.8395 1.8146 3.0294 6.1128 17.448
—02 0.7697 1.7818 3.0337 6.1880 17.685
—0.1 0.7034 1.7674 3.0704 6.3177 18.016

0 0.6453 1.7920 3.1748 6.5623 18.554
0.1 0.6108 1.9309 3.1436 6.3321 19.733
0.2 0.6908 2.7321 5.0047 9.9176 25.045
0.24 0.8372 4.1292 7.8532 15.264 35.234

Tables 2 and 3 below are counterparts of Tables 3 and 4 in TSB’s paper,
respectively. We compare the performance of the asymptotic variance of

ﬁ (d — d) of our estimator, which uses the partial autocorrelation, with that of
TSB, which uses the pure autocorrelation.

Note from Table 2 that for n > 2, an increase in d leads to a decrease in
the asymptotic variance, up to the point where d = 0. For d < 0, the use of the
partial autocorrelation function yields a smaller asymptotic variance than
the use of the autocorrelation function. For example, ford = — 0.2 and n = 5-9,
the asymptotic variance of the TSB estimator is 7417.6, while ours is only 8.7328.

Table 3 also shows that, for d < 0, there is a sharp reduction in the asymptotic
variance of our estimator as compared to the TSB estimator. For example, for
d = — 0.2 and n = 5-14, the asymptotic variance of the TSB estimator is 1398,
while ours is only 6.188.

A general remark from Tables 2 and 3 is that for d < 0, our estimator has an
asymptotic variance much smaller than that of TSB’s. For d > 0, our estimator
has a moderately larger asymptotic variance. Thus if the sign of d is known
a priori, our results, together with TSB’s, provide a useful guiding principle for
the selection of estimation method of d.

5. Short-run dynamics

In the previous sections, we only consider a fractional white noise process.
We would like to examine how robust our estimator is to serial correlation. We
will discuss the asymptotic bias in our estimator of d obtained from the
ARFIMA(0, d, 0) model caused by ignoring short-run dynamics. For compari-
son, we will consider estimators of d based on a single partial autocorrelation o.
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d* is the value of d that generates the same value of o, for ARFIMA(O, d, 0)
model.
Suppose the true model is an ARFIM A(1, d, 0) process of the form

(1 = L1 — ¢L)y, = &,

then we have
yo=( =L (1 = 1)% = ¥ u()La,

where

J Iri+d) imi
%( @i+ 1” )

Hence

P NN —n))
" Yol

If the true model is an ARFIM A(0, d, 1) process of the form
(1 — L)'y, = (1 + 0Lz,

then we have

L& I+d) -
y, = j;o TG+ 1) L(1 + 0L)s, ; ()L,
where
A0) =1,
ap=V=1Edy TG+ oy

H(ad)1r) Hdrg+1)

P Py M(M(J—n))
! Y% o(2())7
A+0HIn+d) O0rn+1+d) N 0r(n — 1+ d)
In+1—4d I'n+2—4d) I'(n—d)
(1 4+ 03)rd) 20rd +d)
(1 —d) r2—d

For the partial autocorrelations in the case of the ARFIMA(0, d, 1) and the
ARFIMA(1, d, 0) processes, one is referred to Hosking (1981, Lemmas 1 and 2).
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Table 4
Asymptotic bias |d* — d| for the MDE from the (0, d, 0) model

d Lag 1 Lag 2 Lag 5 Lag 10 Lag 20 Lag 50
g g g g g g

True model is ARFIMA (1, d, 0) model

0.1 0.4 0.238 0.068 0.024 0.013 0.009 0.008
0.2 0.4 0.185 0.145 0.052 0.033 0.027 0.034
0.24 0.4 0.162 0.180 0.065 0.044 0.039 0.052
0.1 0.8 0.364 0.186 0.082 0.052 0.032 0.019
0.2 0.8 0.278 0.412 0.168 0.108 0.073 0.056
0.24 0.8 0.242 0.517 0.203 0.133 0.094 0.078

True model is ARFIMA (0, d, 1) model

0.1 0.4 0.208 0.343 0.035 0.006 0.003 0.001
0.2 0.4 0.158 0.374 0.027 0.012 0.006 0.002
0.24 0.4 0.137 0.387 0.024 0.014 0.007 0.003
0.1 0.8 0.263 0915 0.541 0.415 0.089 0.002
0.2 0.8 0.197 0.922 0.521 0.426 0.094 0.004
0.24 0.8 0.171 0.925 0.512 0.430 0.096 0.004

Table 4 gives values of d* for d = 0.1, 0.2, and 0.24, for the (1, d, 0) and
(0, d, 1) models. For the (1, d, 0) model we consider ¢ = 0.4 and 0.8, whereas for
the (0, d, 1) model we consider 8 = 0.4 and 0.8.

Comparing our Table 4 to Table 5 of TSB’s paper, if the true model
is an ARFIMA(1, d, 0) model, our estimator yields a smaller bias in most
cases. If the true model is ARFIMA(0, d, 1) model and the number of lags
more than 2, our estimator has a smaller bias for 0 = 0.4. Therefore, we argue
that our estimator is more robust to misspecification in the autoregressive
component.

6. Finite sample comparisons

In the previous sections, we only consider the asymptotic performances of our
estimator. In fact, if the first-order autocorrelation is included, both our es-
timator and the TSB estimator contain the same amount of information, so the
asymptotic variance should be the same. Thus, a more interesting question is
to compare their small-sample behavior. To investigate this, we simulate an
ARFIMA(O, d, 0) process of sample size T. The values of T and d are set at
T =100, 200, and d = —0.4, —0.3, —0.2, —0.1, 0, 0.1 and 0.2.

The simulation method is similar to that of Chung and Baillie (1993). We
make use of the Cholesky decomposition of the covariance matrix assuming
Gaussian noise. In all the simulations, 1000 replications are performed.
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Table 5
Variance of ﬁ(cf — d), using 2nd autocorrelation/partial autocorrelation only

T = 100 T = 100 T = 200 T = 200

d Auto Partial Auto Partial
—04 4.83 2.56 7.43 3.15
—-03 4.70 3.25 7.02 4.14
—-0.2 4.55 3.72 7.22 4.69
—0.1 4.85 417 7.22 4.73

0 4.55 3.56 6.50 4.25

0.1 3.98 3.19 3.84 3.41

0.2 2.54 2.44 1.56 2.05
Table 6

T = 100 T = 200

d\n 1-5 2-6 3-7 1-5 2-6 3-7

(a) Variance of ﬁ(ﬁ — d), using five autocorrelations

—-04 0.75 2.94 3.35 0.86 5.09 6.38
—-03 0.94 2.86 3.28 1.02 5.09 5.73
—-0.2 1.00 333 3.53 0.87 5.59 5.89
—0.1 0.96 3.66 3.99 0.87 6.36 6.86
0 0.97 342 4.20 0.76 5.52 7.24
0.1 0.82 2.70 3.49 0.80 3.50 5.81
0.2 0.59 2.20 2.90 0.58 1.53 3.53

(b) Variance of ﬁ(ﬁ — d), using five partial autocorrelations

—-04 0.66 1.45 293 0.51 1.15 2.45
—-03 0.73 1.61 3.04 0.64 1.45 293
—-0.2 0.83 1.94 3.56 0.68 1.74 3.30
—0.1 0.83 2.18 4.10 0.76 2.12 393
0 0.95 248 4.13 0.65 232 4.53
0.1 0.81 227 4.06 0.75 231 3.96
0.2 0.53 1.84 2.93 0.48 1.41 2.36

We use the T realized values of y, to construct the sample autocorrelations
and sample partial autocorrelations. The search for d is over the range from
— 0.5 to 0.25 at an increment of 0.01. Table 5 gives the variance of \/7(57 —d),
using respectively the second-order autocorrelation and partial autocorrelation
only. Table 6 gives the variance of ./T(d — d), using five autocorrelations and
partial autocorrelations.
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From Tables 5 and 6, it is clear that for T = 100 and 200, our estimator
performs better than the TSB estimator in most cases.

7. Conclusion

In this paper, we derive the theoretical variance-covariance structure of the
sample partial autocorrelation function for the ARFIM A(0, d, 0) model. The
result is then used to construct an estimator analogous to that of TSB. It was
shown that the asymptotic variance of our estimator is more robust to the
differencing parameter as compared to the TSB estimator, when the first partial
autocorrelation (or autocorrelation) is removed. Thus, the statistical inference
based on partial autocorrelation function estimator should be more reliable.

We also uncover the reason behind the puzzling phenomenon of the TSB’s
study. We argue that their results are due to two primary reasons: first, for all
n strictly bigger than 1, the nth-order autocorrelation function does not depend
uniquely on the differencing parameter d. Thus, the problem of multiple solu-
tions arises. This will increase the variation of the estimate of d. Our second
reason has to do with the fact that, for — 0.5 < d < 0, the asymptotic criterion
function is rather insensitive to d for n > 1. This phenomenon together with the
problem of multiple solutions increases the variance of the estimator for d.

Regarding the short-run dynamics when an ARFIM A(0, d, 0) is specified,
our estimator yields a smaller asymptotic variance if the true model is
ARFIMA(1, d, 0).

Finally, we compare the behavior of the two estimators in finite samples. It is
found that our estimator performs better in most cases for samples of size 100
and 200.

For comparison purposes, throughout the paper, we assume the error term is
1.1.d. with zero mean. Expressions in Egs. (3) and (8) would be more cumbersome
were this not assumed. Further comparison of our estimator with TSB’s can be
made by relaxing this assumption.
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