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Abstract

Consider a simple structural break model where yt=a1+b1f(xt)+ut for t5k0 and
yt=a2+b2f(xt)+ut for t\k0. The timing of break and the structural parameters are
unknown. Suppose the true functional form of the regressor f(·) is misspecified as g(·). We
do not place too many restrictions on the functional forms of f(·) and g(·). A frequently
encountered example in economics is that the true model is measured in level, but we
estimate a log-linear model, i.e. when f(xt)=xt and g(xt)= log(xt) For any f(·) and g(·), we
derive a nonstandard limiting null distribution of the sup-Wald test statistic under some very
general regularity conditions. Monte Carlo simulations support our findings. © 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The first generation studies of structural-break models derive tests for the
existence of break under the assumption that the timing of break is known a priori
(Chow, 1960). The exogeneity of the break point has long been criticized, but the
Chow test dominated for decades, as other tests endogenizing of the timing of
break did not provide a useful distributional theory for hypothesis testing purposes
(Quandt, 1960; Brown et al., 1975). The asymptotic distributions of the sup-Wald,
sup LM and sup LR test statistics for structural break at unknown timing were
recently puzzled out by Andrews (1993). These distributions are constructed based
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on correct model specification. In many instances, however, we may not know what
variables should be included and in what functional form they appear in the model.
Misspecification of structural-break models has been considered by Chong
(1995a,b). He shows that the break point can still be consistently estimated even if
the number of breaks is underspecified.

This paper considers the asymptotic null distribution of the Wald type test for
parameter instability when some or all of the variables in a structural break model
are misspecified. The results given here cover most types of specification errors in
the independent variables. The paper is organized as follows: Section 2 presents the
model and states the necessary assumptions. Section 3 derives a nonstandard
asymptotic null distribution of the sup-Wald test statistic for parameter instability
under specification errors. Simulations are performed in Section 4 to support our
theory, and a conclusion is drawn in Section 5. All proofs are collected in an
Appendix.

Before proceeding to the next section, we present some frequently used mathe-
matical notations. Let w= tr(w %w)1/2 be the Euclidean norm of the matrix w. [x ]
signifies the greatest integer 5x. Define a matrix to be Op (1) if all of its elements
are Op (1). The symbol ‘�

p
’ represents convergence in probability, ‘�

d
’ represents

convergence in distribution, and ‘[ ’ denotes the weak convergence in D [0,1] (see
Billingsley, 1968 and Pollard, 1984). All limits are as the sample size T�� unless
otherwise stated.

2. The model and assumptions

We consider a general multivariate structural-break model with a single break
and i.i.d. innovations. Suppose the true model is:

Y=I1Fb1+I2Fb2+U. (2.1)

However, we misspecify the functional form of the regressors and estimate the
following model:

Y=IaGb. 1[tT]+IbGb. 2[tT]+U. , (2.2)

where
Y is a T by 1 matrix with elements yt, t=1, 2, …, T.
F is a T by P matrix with the (t, p)th element fp(xtp), where fp(·) is a real value
function, p=1, 2, ..., P.
G is a T by P matrix with the (t, p) th element gp(xtp), where gp(·) is a real value
function, p=1, 2, …, P.
U is a T by 1 matrix with the t th element ut an i.i.d. process with zero mean and
a finite variance s2.
Ia is a T by T diagonal matrix with the (t, t)th element 1 {t5k}. 1{·} is an
indicator function that equals 1 when the statement inside the bracket is true and
equals 0 otherwise.
Ib=I−Ia.
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I1 is a T by T diagonal matrix with the (t, t)th element 1{t5k0}.
I2=I−I1.
b1= (b11, b21, …, bP1)%, b2= (b12, b22,…, bP2)% are P by 1 vectors of true pre- and
post-shift structural parameters, respectively.
b. 1[tT] and b. 2[tT] are P by 1 vectors of regression coefficients’ estimates for
0B t5k and kB t5T, respectively.
U. is a T by 1 matrix of the residuals for the misspecified model.
Let k= [tT ], where t� [0, 1] the break fraction.
Let Qff and Qgg be positive definite and non-stochastic matrices with the (i, j )th

element limT��1/T �T
t=1E( fi(xti)fj(xtj)) and limT��1/T �T

t=1E(gi(xti)gj(xtj)), re-
spectively, Qfg a non-stochastic matrix with the (i, j ) th element limT��1/T �T

t=1

E(gi(xtp)fj(xtj)).
Let Bfu(t) and Bgu(t) be P by 1 vectors of Brownian motions, and Bgg(t) and
Bfg(t) P by P matrices of Brownian motions.
We assume that:

1
T

F %IaF�
p

tQff uniformly for t� [0, 1], (A1)

1
T

G %IaG�
p

tQgg uniformly for t� [0, 1], (A2)

1
T

G %IaF�
p

tQfg uniformly for t� [0, 1], (A3)

1


T
F %IaU [Bfu(t), (A4)

1


T
G %IaU [Bgu(t), (A5)


T
�1

T
G %IaG−tQgg

�
[Bgg(t), (A6)


T
�1

T
G %IaF−tQfg

�
[Bfg(t), (A7)

For all 15h5 jBT, 15p5P, × some real numbers r\2, Cp\0 and Dp\0
such that

E
) %

j

t=h

fp(xtp)ut

)r
5Cp( j−h)r/2 (A8)

and

E
) %

j

t=h

gp(xtp)ut
)r
5Dp( j−h)r/2,

inf
05krBks5T

detF %(I(ks)−I(kr))F\0, (A9)

inf
05krBks5T

detG %(I(ks)−I(kr))G\0, (A10)
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u0= (t0,b %1,b %2)�U= [t,t ]×B×B¦ (0,1)×R2P. (A11)

Assumptions 1–3 imply the regressors are stationary and ergodic, trending
regressors are not allowed under these assumptions. Assumptions 4–7 are for
statistical inference purposes, they also bound the variation of the stochastic
insignificant terms and help to construct the uniform convergence result. Assump-
tions 6 and 7 allow the explanatory variables in G and F to be stochastic. If all the
explanatory variables in G and F are non-stochastic, then we have Bfg(t)=
Bgg(t)=0. Non-stochastic F and G will not affect our result. In fact, it simplifies
our analysis. Assumptions 9 and 10 ensure the invertibility of the matrices defined
there, so that the structural estimators are properly defined asymptotically as well
as in the finite sample. Assumption 11 requires the true break point to be in a
compact set in (0,1), this assumption is necessary because the structural estimates
b. 1[tT] and b. 2[tT] are not defined at the boundary of time domain.

For any given values of t, the least-squares estimators of the pre- and post-shift
parameters of (2.2) are, respectively:

b. 1[tT]= (G %IaG)−1G %IaY, (2.3)

b. 2[tT]= (G %IbG)−1G %IbY.

We define the break-point estimator as the timing where the residual sum of
squares is minimized, namely:

t̂T=Arg min
t� [t,t]

RSST(t), (2.4)

where

RSST(t)=Y−IaGb. 1[tT]−IbGb. 2[tT]2

is the residual sum of squares in the least squares estimation.
For ease of exposition, we consider here the case of a single regressor, i.e. P=1.

Suppose the true model is:

yt=b1 f(xt)+ut for t=1, 2…, k0. (2.5)

yt=b2 f(xt)+ut for t=k0+1, …, T.

For any given t, our estimated model is:

ŷt=b. 1[tT]g(xt) for t5 [tT ], (2.6)

ŷt=b. 2[tT]g(xt) for t\ [tT ].

Assumptions A1–A7 imply the following:

Sff(t)=
def 1

T
%

[tT]

t=1

f(xt)2�
p

ts f
2 uniformly for t� [0, 1], (A1%)

Sgg(t)=
def 1

T
%

[tT]

t=1

g(xt)2�
p

tsg
2 uniformly for t� [0, 1], (A2%)
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Sfg(t)=
def 1

T
%

[tT]

t=1

f(xt)g(xt)�
p

tsfg uniformly for t� [0,1], (A3%)

Sfu(t)=
def 1


T
%

[tT]

t=1

f(xt)ut [Bfu(t), (A4%)

Sgu(t)=
def 1


T
%

[tT]

t=1

g(xt)ut [Bgu(t), (A5%)


T(Sgg(t)−tsg
2)=

1


T
%

[tT]

t=1

(g(xt)2−sg
2)[Bgg(t), (A6%)


T(Sfg(t)−tsfg)=
1


T
%

[tT]

t=1

( f(xt)g(xt)−sfg)[Bfg (t), (A7%)

where Bfu,(t), Bfu(t), Bgg(t) and Bfg(t) are Brownian motions with zero mean and

variances ts2s f
2, ts2sg

2, lim
T��

E
�

1/T �[tT]
t=1(g(xt)2−sg

2)
�2

and lim
T��

E
�

1/T �[tT]
t=1

( f(xt)g(xt)−sfg)
�2

, respectively.

The residual sum of squares is defined as:

RSST(t)= %
[tT]

t=1

(yt−b. 1[tT]g(xt))2+ %
T

t= [tT]+1

(yt−b. 2[tT]g(xt))2.

3. The sup-Wald test

In this section, we will investigate the validity of the sup-Wald type test statistics
under specification errors. In general, the pre- and post-shift estimators will be
inconsistent when misspecification occurs. However, if there is no structural break,
the probability limits of the pre- and post-shift estimators are the same. While in
the presence of break, their probability limits are different. Therefore in the
presence of specification errors, the Wald type test that based on the magnitude of
the estimated break (Hawkins, 1987) will still be a consistent test. However. because
the model is misspecified, the limiting distribution of the test statistic will be
affected.

Suppose (2.1) is the true model, but (2.2) is estimated, the Wald statistic for the
hypothesis H0:b1=b2 is defined as:

WT(t)=
Tt(1−t)
RSST(t)

(b. 2[Tt]−b. 1[Tt])%G %G(b. 2[Tt]−b. 1[Tt]). (3.1)

Theorem 1. If assumptions A1–A10 hold, then under H0:b1=b2=b, T��, we
ha6e:

WT(t)[
(tBA(1)−BA(t))%Qgg

−1(tBA(1)−BA(t))
t(1−t)(s2+b %(Qff−Q)b)

(3.2)
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and

sup
t�S

WT(t)�
d

sup
t�S

(tBA(1)−BA(t))%Qgg
−1(tBA(1)−BA(t))

t(1−t)(s2+b %(Qff−Q)b)
(3.3)

where S denotes a set whose closure lies in (0, 1), Q=Q %fgQgg
−1Qfg and BA(t)=

(Bfg(t)−Bgg(t)Qgg
−1Qfg)b+Bgu(t) is a P-6ector Brownian motions on [0, 1]. If all

the explanatory 6ariables in G and F are non-stochastic, then we ha6e Bfg(t)=
Bgg(t)=0 and as a result BA(t)=Bgu(t).

If there are no specification errors, we have BA(t)=Bfu(t), Q=Qff, and

supt�SWT(t)[ supt�S

tB(1)−B(t)
t(1−t)

where B(t) is a P-vector of independent

Brownian motions. Thus the limiting distribution reduces to the supremum of the
square of a standardized tie-down Bessel process of order P. If P=1 and if xt and
xs are independent Öt"s, Theorem 1 can be reduced to:

Corollary 2. When P=1, suppose assumptions A1–A10 hold, and xt and xs are
independent Öt"s, then under H0: b1=b2=b, as T��, we ha6e:

WT(t)[C(b, s f
2, sg

2, sfg, s2)
(tB(1)−B(t))2

t(1−t)
, (3.4)

sup
t�S

WT(t)�
d

C(b, s f
2, sg

2, sfg, s2)sup
t�S

(tB(1)−B(t))2

t(1−t)
,

where

C(b, s f
2, sg

2, sfg, s2)=
C

s2sg
2+b2(s f

2sg
2−s fg

2 )
,

C=s2sg
2+b2s fg

2 limT��

1
T

%
[tT]

t=1

Var( f(xt)g(xt)s fg
−1−g(xt)2sg

−2),

B(t) is a Brownian motion on [0, 1].
If all the explanatory variables in G and F are non-stochastic, then C=s2sg

2 and
C(b, s f

2, sg
2, sfg, s2)= (1+b2s−2(s f

2−sg
−2s fg

2 ))−1.
Thus, the asymptotic null distribution of the sup-Wald statistic is the supremum

of the square of a standardized tie-down Bessel process of order one multiplied by
a scaling factor. Note that the scaling factor depends on the absolute values of the
structural parameters as well as on the moments of the true and misspecified
functions. If there is no misspecification, we have f(xt)=g(xt), s f

2=sg
2=

sfg, C(b, s f
2, sg

2, sfg, s2)=1 and

supt�SWT(t)�
d

supt�S

(tB(1)−B(t))2

t(1−t)
,

which is the con6entional null distribution of sup-Wald test statistic for testing
structural break. When f(xt)�nid(0, 1), g(xt)= f(xt)2, s2=1, we ha6e:
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C(b, 1, 3, 0, 1)=
sg

2+b2E( f(xt)6)
sg

2+sg
2b2 =

3+15b2

3(1+b2)
=

1+5b2

1+b2 .

4. Experimental evidence

This experiment is to verify Corollary 2.
Using the definition of WT(t) in (3.1), Table 1 (A–C) shows the critical value c

such that:

Pr
�

sup
t� (l,1−l)

WT(t)\c
�

=a.

Table 1
(A) shows the critical values in the absence of specification errors, the values are very close to those
obtained in Andrews (1993); (B) and (C) display the critical values under specification errorsa

(A) b=1, (No specification errors), C(b, 1, 1, 1, 1)=1
b=2 b=3b=1

C(3, 1, 1, 1, 1)=1C(1, 1, 1, 1, 1)=1 C(2, 1, 1, 1, 1)=1

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05l¯a 0.01
0.25 11.067.706.2311.136.43 7.736.2511.407.97

6.69 8.19 11.73 6.74 8.29 11.45 6.59 8.27 11.610.20
12.628.62 12.17 7.150.15 8.707.14 12.25 7.04 8.94

9.230.10 7.51 9.08 12.84 7.62 9.28 12.91 12.687.64

(B) b=2, C(b,1,3,0,1)=
1+5b2

1+b2
b=1 b=2 b=3

C(2, 1, 3, 0, 1)=4.2 C(3, 1, 3, 0, 1)=4.6C(1, 1, 3, 0, 1)=3

0.010.05 0.01 0.1 0.05 0.01 0.1l¯a 0.050.1
50.2234.7727.8644.5731.820.25 25.5932.5922.7118.47
52.5218.740.20 23.03 33.35 26.96 33.08 47.04 28.95 35.84

49.46 31.01 37.91 53.080.15 34.0920.16 24.63 34.74 28.08
21.44 25.84 35.08 29.10 35.25 50.00 32.70 39.11 54.250.10

(C) b=3, C(b,1,15,3,1)=
25+238b2

25+10b2
b=2 b=3b=1

C(3, 1, 15, 3, 1)=18.84C(1, 1, 15, 3, 1)=7.51 C(2, 1, 15, 3, 1)=15.03

0.010.05l¯a 0.010.1 0.1 0.05 0.01 0.1 0.05
175.34105.7581.74142.8588.930.25 66.4475.8445.3834.12
191.290.20 37.92 50.92 82.55 70.73 93.47 150.11 88.80 113.97

88.3540.70 53.500.15 203.6276.67 128.7798.98167.4398.37
46.74 62.68 100.29 88.57 114.00 182.37 108.43 141.82 223.420.10

a It is apparent that the values in (B) and (C) are close to the values in (A) multiplied by the
corresponding factor C(b, s f

2, sg
2, sfg, s2). These results support Corollary 2.
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True model:

yt=bxt+ut t=1, 2, …, T.

Misspecified models:

yt=bxt
b+ut t=1, 2, …, T.

T=1000 (sample size),
N=1000 (number of replications),
xt�n.i.d. (0,1),
ut�n.i.d. (0,1),
{xt}t=1

T and {ut}t=1
T are independent of each other.

5. Conclusion

For decades, specification error has been an important topic in econometric
modellings. This paper examines how the hypothesis testing of structural-break
models is affected under specification errors. We show that under the null of no
structural break and under almost any kinds of data transformations on the
independent variables, the sup-Wald statistic converges in distribution to the
supremum of the square of a standardized tie-down Bessel process multiplied by a
scaling factor. The theoretical limiting distribution of the sup-Wald statistic is
confirmed by computer simulations.
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Appendix A

Proof of Theorem 1. Define

S1[tT]=
T((G %IbG)−1G %IbF− (G %IaG)−1G %IaF)

=
T
�

(G %IbG)−1G %IbF− (1−t)
�1

T
G %IbG

�−1

Qfg+ (1−t)
�1

T
G %IbG

�−1

Qfg

−t
�1

T
G %IaG

�−1

Qfg+t
�1

T
G %IaG

�−1

Qfg− (G %IaG)−1G %IaF
�

=
T
��1

T
G %IbG

�−1�1
T

G %IbF− (1−t)Qfg
�
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+
�1

T
G %IbG

�−1�1
T

G %IaG−t
1
T

G %G
��1

T
G %IaG

�−1

Qfg

−
�1

T
G %IaG

�−1�1
T

G %IaF−tQfg

��
=
T

��1
T

G %IbG
�−1�1

T
G %IbF− (1−t)Qfg

�
−
�1

T
G %IaG

�−1�1
T

G %IaF−tQfg

�
+
�1

T
G %IbG

�−1�1
T

G %IaG−tQgg−t
�1

T
G %G−Qgg

���1
T

G %IaG
�−1

Qfg

�
.

Using assumptions A2, A7 and A8,

S1[tT][
1

t(1−t)
Qgg

−1(tBfg(1)−Bfg(t)− (tBgg(1)−Bgg(t))Qgg
−1Qfg).

If all the explanatory variables in G and F are non-stochastic, then

S1[tT]�
p

0.

Similarly, using assumptions A2 and A5,

S2[tT]=
�1

T
G %IbG

�−1 1


T
G %IbU−

�1
T

G %IaG
�−1 1


T
G %IaU

[
1

t(1−t)
Qgg

−1(tBgu(1)−Bgu(t)).

Under H0 of no structural break, b1=b2=b,
1
T

RSST(t)�
p

s2+b %(Qff−Q)b,

WT(t)=
Tt(1−t)
RSST(t)

(b. 2[tT]−b. 1[tT])%G %G(b. 2[tT]−b. 1[tT])

=
t(1−t)

1
T

RSST(t)
(S1[tT]b+S2[tT])%

1
T

G %G(S1[tT]b+S2[tT])

[
(tBA(1)−BA(t))%Qgg

−1(tBA(1)−BA(t))
t(1−t)(s2+b %(Qff−Q)b)

where Q=Q %fgQgg
−1Qfg, BA(t)= (Bfg(t)−Bgg(t)Qgg

−1Qfg)b+Bgu(t) is a P-vec-
tor Brownian motions. By the Continuous Mapping Theorem, we have:

sup
t�S

WT(t)�
d

sup
t�S

(tBA(1)−BA(t))%Qgg
−1(tBA(1)−BA(t))

t(1−t)(s2+b %(Qff−Q)b)
’

where S is a set whose closure lies in (0, 1).


Appendix B

Proof of Corollary 2. When P=1, and if xt and xs are independent Öt"s, then
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BA(t)= (Bfg(t)s fg
−1−Bgg(t)sg

−2)sfgb+Bgu(t)=
d

C1/2B(t),

where C=s2sg
2+b2s fg

2 limT��

1
T

�[tT]
t=1Var( f(xt)g(xt)s fg

−1−g(xt)2sg
−2) and B(t)

Brownian motion process in [0, 1].

sup
t�S

WT(t)�
d

sup
t�S

(tBA(1)−BA(t))2

t(1−t)(s2sg
2+b2(s f

2sg
2−s fg

2 ))

=
d

C(b, s f
2, sg

2, sfg, s2)sup
t�S

(tB(1)−B(t))2

t(1−t)
,

where

C(b, s f
2, sg

2, sfg, s2)=
C

s2sg
2+b2(s f

2sg
2−s fg

2 )
.
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