# An Experimental Investigation of Contact-Induced Sound Change in Shanghainese

#### Yao Yao<sup>1</sup> and Charles B. Chang<sup>2</sup>

<sup>1</sup>Hong Kong Polytechnic University and <sup>2</sup>University of Maryland, College Park

<sup>1</sup>y.yao@polyu.edu.hk, <sup>2</sup>cbchang@umd.edu

International Conference on Bilingualism and Comparative Linguistics May 16, 2012

# Outline



### Background

- Merger & Language Contact
- Shanghainese Vowels
- Hypotheses
- 2 Methods
  - Participants & Stimuli
  - Procedure & Analysis
- 3 Results
  - Formant Measures
  - Diphthongization
- 4 Discussion
  - Checking Predictions
  - Post-Hoc Analysis

Merger & Language Contact Shanghainese Vowels Hypotheses

### Reversal of merger

A complete merger cannot be reversed by linguistic means. ("Garde's Principle") [Garde 1961, Labov 1994]

Apparent exceptions when a former contrast is:

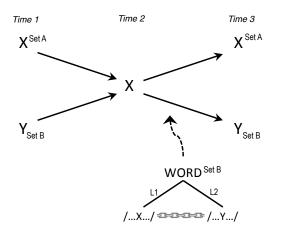
- reconstructible from distinctive phonological roles of the merged segments [Michelena 1957]
- reconstructible from orthography [Kochetov 2006]
- taken in from a different-prestige variety of the language maintaining the contrast [Weinreich et al. 1968, Ihalainen 1994]
- never fully merged [Labov 1975, Labov et al. 1991, Labov 1994]; cf. [Baranowski 2007]

What about cases of language contact? Can language contact reverse a merger?

# Cross-language influence in bilinguals

"The locus of language contact is the bilingual speaker." [Sankoff 2002]

Parallel L1 and L2 representations are often **linked** at one or more levels, allowing for mutual influence in speech production.


[Flege 1995, Laeufer 1996, Chang 2010]

- French-English bilinguals produce French /u/ as relatively front (converging toward English /u/). [Flege 1987]
- Italian-English bilinguals produce English  $/e^{\rm I}/$  as more diphthongized than English monolinguals (diverging from Italian /e/). [Flege et al. 2003]

Merger & Language Contact Shanghainese Vowels Hypotheses

### Language contact as a source of merger reversal?

L1:



Conditions:

- L2-to-L1 influence after merger
- L2 with a cognate set of lexical items
- L2 cognate set containing a sound similar to the sound in the L1 set

# The Shanghainese language and its speakers

Shanghainese (SH): member of the Wu dialect family, local dialect of the municipal area of Shanghai (most populous city in China).

- 1850s–1960s: vast wave of immigration into Shanghai from neighboring regions, which brought in influence from other Wu dialects, esp. Suzhou dialect and Ningbo dialect.
- 1980s onward: increasingly strong influence from the standard language, Mandarin (MN).

# Status of /e/ and $/\epsilon/$ in Shanghainese

Stage I (1850–1920s) and Stage II (1920s–1960s)

separate phonemes

### Stage III (1980s-2000s)

- $\bullet$  allegedly merged into  $/\epsilon/$  [Chen 1995, Tang 1995, Xu and Tang 1988]
- influence from other Wu dialects, especially Suzhou dialect [Chen 1995]

### Stage IV (2000s-present)

- separate again [Gu 2007]
- ostensible influence from Mandarin [Gu 2007]

### Words participating in the sound change

### Three word groups

 $\bullet\,$  MN-[ai], MN-[an], MN-[ei]

| MN rhyme | Example                 | Stage I | Stage II | Stage III | Stage IV |
|----------|-------------------------|---------|----------|-----------|----------|
| ai       | 'to come'<br>(MN: lai⊄) | e       | 3        | 3         | 3        |
| an       | 'orchid'<br>(MN: lan⊄)  | 3       | 3        | 3         | 3        |
| ei       | 'thunder'<br>(MN: lei∕) | е       | е        | 3         | е        |

# Status of merger in Stage III

Mixed findings

- Xu & Tang (1988): only  $/\epsilon/$  listed in the vowel inventory of middle-aged speakers  $_{\rm [Tang 1995, \ Chen \ 1995]}$
- Shen (1981): free variation
- Shi & Jiang (1983): variation among 500 male speakers (middle-aged in the early 1980s)
  - $\bullet$  merged to  $/\epsilon/:$  59.0%
  - free variation: 6.6%
  - non-merger: 34.4%
- Svantesson (1989): consistent distinction of  $/\epsilon/$  and /e/ among 3 male speakers

#### Merger was mainstream, but not complete.

Merger & Language Contact Shanghainese Vowels Hypotheses

# Status of merger in Stage IV

Gu (2007) noted that  $/\epsilon/$  has been **re-split** into  $/\epsilon/$  and /e/ (or even /ei/), presumably due to Mandarin influence.

Gu's report lacks detailed acoustic and statistical analyses.

### Contact as a source of merger reversal in Shanghainese

 $\rm Hypothesis$  1: A reversal of the  $/\epsilon/\text{-}/e/$  merger is ongoing in Shanghainese.

• Prediction: less merging among younger speakers.

 $\operatorname{HYPOTHESIS}\ 2:$  Contact with Mandarin is the major source of this merger reversal.

- Prediction: diphthongization in MN-[ei] words.
- Prediction: less merging in bilingual mode. [Grosjean 2001]

Participants & Stimuli Procedure & Analysis

### Participants

TALKERS: 9 parent-child pairs = 18 native Shanghainese speakers (born and resident in Shanghai for most of their life)

- 9 parents: 3 m., 6 f.; age 55-65 yr
- 9 children: 3 m., 6 f.; age 24-36 yr

 $\operatorname{RATERS}$ : separate group of 23 native Shanghainese speakers

Participants & Stimuli Procedure & Analysis

# Stimuli

Total of 62 items:

- $\bullet$  3 rhyme groups (MN-[ei], MN-[ai], MN-[an])
  - $\times$  2 frequency levels (high, low)
  - $\times$  3 different onset consonant types = 18 critical items
- 12 items testing a different hypothesis, 32 filler items

Critical items were controlled for phonetic makeup.

- all bisyllabic, with one quadrisyllabic item
- critical  $/\epsilon/$  always word-final
- $\bullet$  consonant preceding  $/\epsilon/$  one of  $/p,\,t,\,p^h,\,t^h,\,l,\,n/$

Item frequency was controlled on the basis of frequency scores gathered in a online auditory rating task.

Participants & Stimuli Procedure & Analysis

# Study design

### EXPERIMENT 1: READING

- self-paced reading of a SH sentence presented on screen
- critical items always clause-final (i.e., in pre-pausal position)
- 3 presentations of each of 62 items

### EXPERIMENT 2: TRANSLATION

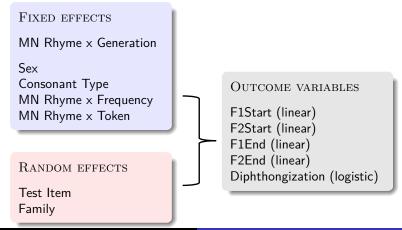
- self-paced audio-to-speech translation of a MN stimulus
  - presented auditorily and visually on screen
  - participants instructed not to look at the screen unless they needed clarification of the intended word
- responses in the frame /gx/ {z//tgip1}.../ 'This is (called)...'
- 3 presentations of each of 62 items

Order: Experiment 1 > questionnaire (15–20 min) > Experiment 2

### Acoustic analysis

Audio was recorded with a head-mounted mic at 44.1 kHz/16 bps.

Recordings were analyzed in Praat. [Boersma and Weenink 2011]


- onset and offset of critical vowels marked by hand in a wide-band spectrogram
- *F*<sub>1</sub>, *F*<sub>2</sub> measured at 20% (start) & 80% (end) points of each vowel using LPC analysis
- formant tracking errors corrected individually by hand

Total of 4 formant measures: F1Start, F2Start, F1End, F2End. Diphthongization measure (categorical): 1 for movement in the direction of /i/, 0 otherwise.

Participants & Stimuli Procedure & Analysis

### Statistical analysis

Data from Experiment 1 (reading) and Experiment 2 (translation) modeled separately > 10 mixed-effects regression models in total.



Yao Yao, Charles B. Chang Contact-Induced Sound Change in Shanghainese

Formant Measures Diphthongization

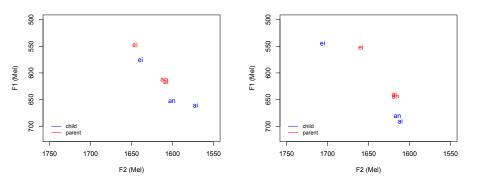
### Summary of critical effects on formant measures

#### Experiment 1: Reading

|                       | F1Start | F2Start | F1End | F2End |
|-----------------------|---------|---------|-------|-------|
| MN Rhyme              | _       | _       | **    | ***   |
| MN Rhyme x Generation | -       | -       | _     | ***   |

#### Experiment 2: Translation

|                       | F1Start | F2Start | F1End | F2End |
|-----------------------|---------|---------|-------|-------|
| MN Rhyme              | _       | -       | ***   | ***   |
| MN Rhyme x Generation | _       | -       | ***   | ***   |

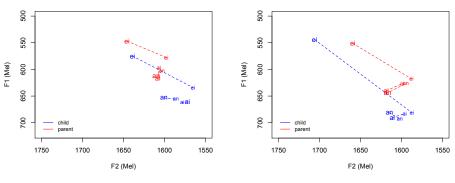

\*\* 0.001 \*\*\* p < 0.001

Formant Measures Diphthongization

# Mean F1End and F2End by MN Rhyme and Generation

Experiment 1: Reading

Experiment 2: Translation




Formant Measures Diphthongization

Mean formant trajectories by MN Rhyme and Generation

Experiment 1: Reading

Experiment 2: Translation



 $[t a? \dashv p^h e \dashv]$  'to match' C11F P11F

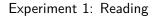
 $[t_{\theta}?^{\dashv} p^{h}e^{\dashv}]$  'to match' C11F P11F

Formant Measures Diphthongization

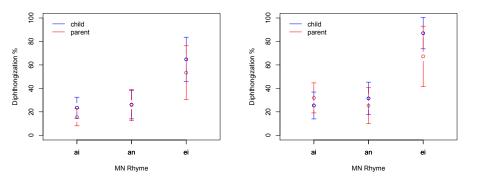
### Summary of critical effects on diphthongization

### Experiment 1: Reading

|                       | Diphthongization |
|-----------------------|------------------|
| MN Rhyme              | **               |
| MN Rhyme x Generation | _                |


Experiment 2: Translation

|                       | Diphthongization |
|-----------------------|------------------|
| MN Rhyme              | ***              |
| MN Rhyme x Generation | ***              |

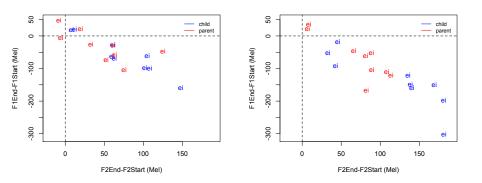

\*\* 0.001 \*\*\* p < 0.001

Formant Measures Diphthongization

# Frequency of diphthongization by MN Rhyme and Generation



Experiment 2: Translation




Formant Measures Diphthongization

Degree of diphthongization by MN Rhyme and Speaker

Experiment 1: Reading

Experiment 2: Translation



Formant Measures Diphthongization

### Strong evidence of diphthongization

 $MN\text{-}[\mathrm{ei}]$  words are more likely to be diphthongized and are diphthongized to a greater degree than  $MN\text{-}[\mathrm{ai}]/MN\text{-}[\mathrm{an}]$  words.

The trend is more evident in:

- younger speakers (compared to older speakers)
- audio-to-speech translation (compared to sentence reading)

Checking Predictions Post-Hoc Analysis

### Revisiting the hypotheses

 $\rm Hypothesis$  1: A reversal of the  $/\epsilon/\text{-}/e/$  merger is ongoing in Shanghainese.

• Prediction: less merging among younger speakers.

 $\operatorname{Hypothesis}\ 2:$  Contact with Mandarin is the major source of this merger reversal.

- Prediction: diphthongization in MN-[ei] words.
- Prediction: less merging in bilingual mode.

Checking Predictions Post-Hoc Analysis

### Revisiting the hypotheses

 $\rm Hypothesis$  1: A reversal of the  $/\epsilon/\text{-}/e/$  merger is ongoing in Shanghainese.

• Prediction: less merging among younger speakers. YES

 $\operatorname{Hypothesis}\ 2:$  Contact with Mandarin is the major source of this merger reversal.

- Prediction: diphthongization in MN-[ei] words. YES
- Prediction: less merging in bilingual mode. YES

Checking Prediction Post-Hoc Analysis

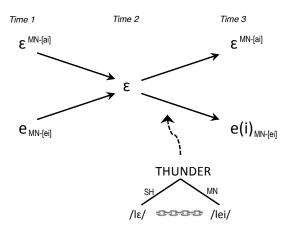
# Confounded by orthography?

- SH and MN share orthography, and some Chinese characters contain a phonetic radical that encode rhyme information (e.g., 贝 'treasure' and 狈 'type of animal').
- 13 out of 18 test items had phonetic radicals.
- However, the same diphthongization patterns were observed in items with no phonetic radicals.

Orthography alone cannot explain the findings.

Checking Prediction Post-Hoc Analysis

### Confounded by vowel duration?


- Lengthening leads to diphthongization?
- Diphthongized and non-diphthongized vowel tokens do not differ in length.
- Parents produced longer vowels than children in both experiments, but showed less diphthongization.

Vowel duration is not a confounding factor.

Checking Predictions Post-Hoc Analysis

# Conclusion

### Shanghainese:



- A previous (near) merger has been canceled via language contact.
- Speech production by bilinguals is complicated by L1-L2 linkages.
- Do bilingual phenomena count as *linguistic* means of change?

### Acknowledgments

Dean's Reserve for Research, Scholarly, and Other Endeavors (2011–2012), Hong Kong Polytechnic University

Brook Hefright

Gregory Iverson

### References I



#### Baranowski, M. (2007).

Phonological Variation and Change in the Dialect of Charleston, South Carolina. Durham, NC: Duke University Press.



#### Boersma, P., Weenink, D. (2011).

Praat: Doing phonetics by computer, Version 5.3. http://www.praat.org.



#### Chang, C. B. (2010).

First Language Phonetic Drift during Second Language Acquisition. Ph.D. thesis, University of California, Berkeley.



#### Chen, Z. (1995).

Shanghai shiqu hua yuyin yibai duo nian lay de yanbian [Phonetic variation of the Shanghai dialect in urban districts in the past 100 years].

In Wuyu he Minyu de Bijiao Yanjiu [Comparative Studies of Wu Dialects and Min Dialects.], ed. T-L. Mei, xx-xx. Shanghai: Shanghai Education Press.



#### Flege, J. E. (1987).

The production of "new" and "similar" phones in a foreign language: Evidence for the effect of equivalence classification.

Journal of Phonetics 15, 47-65.



#### Flege, J. E. (1995).

Second language speech learning: Theory, findings, and problems.

In Speech Perception and Linguistic Experience: Issues in Cross-Language Research, ed. W. Strange, pp. 233–272. Baltimore, MD: York Press.

### References II

### 

#### Flege, J. E., Schirru, C., MacKay, I. R. A. (2003).

Interaction between the native and second language phonetic subsystems. Speech Communication 40, 467–491.



#### Garde, P. (1961).

Réflexions sur les différences phonétiques entre les langues slaves. *Word 17*, 34–62.



#### Grosjean, F. (2001).

#### The bilingual's language modes.

In One Mind, Two Languages: Bilingual Language Processing, ed. J. L. Nicol, pp. 1–22. Malden, MA: Blackwell Publishers.



#### Gu, Q. (2007).

The Influence of Language Contact on the Phonetic Evolution of the Dialects in Shanghai Urban Districts. Ph.D. thesis, Shanghai Normal University.



#### Ihalainen, Ossi. (1994).

The dialects of England since 1776.

In English in Britain and Overseas: Origins and Development, ed. R. W. Burchfield, pp. 197–274. Cambridge, UK: Cambridge University Press.



#### Kochetov, A. (2006).

The role of social factors in the dynamics of sound change: A case study of a Russian dialect. Language Variation and Change 18, 99–119.

### References III



#### Labov, W. (1975).

On the use of the present to explain the past.

In Proceedings of the 11th International Congress of Linguists, Vol. 2, ed. L. Heilmann, pp. 825–851. Bologna, Italy: Mulino.



#### Labov, W., Karen, M., Miller, C. (1991).

Near-mergers and the suspension of phonemic contrast. Language Variation and Change 3, 33–74.



#### Labov, W. (1994).

Principles of Linguistic Change, Volume 1: Internal Factors. Malden, MA: Blackwell Publishers.



#### Laeufer, C. (1996).

#### Towards a typology of bilingual phonological systems.

In A. James and J. Leather (Eds.), Second-Language Speech: Structure and Process, pp. 325–342. Berlin, Germany: Mouton de Gruyter.



#### Michelena, L. (1957).

#### Las antiguas consonantes vascas.

In *Miscelánea Homenaje a A. Martinet*, Vol. 1, ed. D. Catalán, pp. 113–157. La Laguna, Tenerife: Universidad de La Laguna.



#### Sankoff, G. (2002).

#### Linguistic outcomes of language contact.

In *The Handbook of Language Variation and Change*, Vol. 1, ed. J. K. Chambers et al., pp. 638–668. Malden, MA: Blackwell Publishing.

### References IV



#### Shen, T. (1981).

Shanghaihua laopai xinpai de chabie [Differences between Old and New varieties of Shanghainese]. Fangyan [Dialect] 1981-4, 275-283.



#### Shi, R., Jiang, J. (1983).

Shanghai shiqu zhongnianren yuyin gongshi chayi de wubai ren diaocha [A survey of phonetic variation among 500 middle-aged speakers in urban districts of Shanghai].



#### Tang, Z. (1995).

Shanghai fangyin neibu chayi de lishi bianhua [Diachronic changes of the internal variation of Shanghainese pronunciations].

New Asia Academic Bulletin 11, 363-381.



Weinreich, U., Labov, W., Herzog, M. I. (1968).

Empirical Foundations for a Theory of Language Change. Austin, TX: University of Texas Press.



#### Xu, B., Tang, Z., eds. (1988).

Shanghai Shiqu Fangyan Zhi [Documentation of the Shanghai Dialect in Urban Districts]. Shanghai, China: Shanghai Education Press.