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Two visual world eyetracking experiments investigated how acoustic cue value and statis-
tical variance affect perceptual uncertainty during Cantonese consonant (Experiment 1)
and tone perception (Experiment 2). Participants heard low- or high-variance acoustic
stimuli. Euclidean distance of fixations from target and competitor pictures over time
was analysed using Generalised Additive Mixed Modelling. Distance of fixations from tar-
get and competitor pictures varied as a function of acoustic cue, providing evidence for gra-
dient, nonlinear sensitivity to cue values. Moreover, cue value effects significantly
interacted with statistical variance, indicating that the cue distribution directly affects per-
ceptual uncertainty. Interestingly, the time course of effects differed between target dis-
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Eea;tcc;rlle;ene tance and competitor distance models. The pattern of effects over time suggests a global
strategy in response to the level of uncertainty: as uncertainty increases, verification looks
increase accordingly. Low variance generally creates less uncertainty, but can lead to
greater uncertainty in the face of unexpected speech tokens.

© 2016 Elsevier Inc. All rights reserved.
Introduction voiced from voiceless sounds in English. However, there

Human listeners rely on highly variable, non-discrete
acoustic information to discriminate between the different
possible messages a speaker might intend to convey in an
utterance. The question of how acoustic variation affects
perceptual uncertainty during speech processing is an
intriguing one. Listeners use variation between speech
sounds to discriminate between words and messages. For
example, in English, voice onset time (VOT) is longer in
voiceless sounds (e.g. the /p/ in pat) than voiced sounds
(e.g. the /b/ in bat). VOT is the time between the release
burst of the consonant and the onset of voicing in the
vowel, and is the most important cue for distinguishing
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is also a considerable amount of variation within speech
categories. For example, the mean VOT of English [p/ is
58 ms (Lisker & Abramson, 1964), but /p/ can be produced
with a range of VOTs. Acoustic variation can even occur in
productions of the same word by the same speaker in the
same phonetic context under controlled lab settings
(Newman, Clouse, & Burnham, 2001) and increases greatly
across speakers (Ladefoged & Broadbent, 1957), in different
phonetic contexts (Nixon, Chen, & Schiller, 2015) and even
depending on word frequency (Gahl, 2008).

The high degree of variation in the acoustic signal means
that there is nothing in the speech stream that conclusively
points to particular meanings, words or even phonemes.
The listener can only use cues to assess the likelihood that
a speaker intended one message rather than another,
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meaning that there is always some degree of uncertainty in
the process of speech perception. In addition to the issue of
within-category acoustic variation, listeners also face the
challenge of changes in the whole statistical distribution
of acoustic cues in particular contexts, for example, when
encountering a new speaker or accent. Recent evidence
suggests that both variation in acoustic cues (McMurray,
Aslin, Tanenhaus, Spivey, & Subik, 2008; McMurray,
Tanenhaus, & Aslin, 2002, 2009) and changes in the statis-
tics of cue distributions affect listeners’ level of perceptual
uncertainty during speech perception (Clayards,
Tanenhaus, Aslin, & Jacobs, 2008; Escudero, Benders, &
Wanrooij, 2011; Escudero & Williams, 2014; Liu & Kager,
2011; Wanrooij, Boersma, & van Zuijen, 2014; Wanrooij,
Escudero, & Raijmakers, 2013). The present study aims to
contribute to our understanding of perceptual uncertainty
in speech perception by examining the time course of
effects of (a) variation in acoustic cues and (b) the degree
of variance in statistical distributions of acoustic cues in
native Cantonese listeners. In this paper, we use the term
variance to describe, in a given speech sample, the amount
of acoustic variation there is within a speech category. This
term refers to the degree to which acoustic values spread
out from the mean of the distribution of that speech cate-
gory. A variance of zero means that all values are identical.

Early accounts claimed that speech perception was
‘categorical’ in that listeners were unable to detect within-
category acoustic variation, and only able to detect variation
when it occurred across boundaries. Evidence in favour of
this claim came from studies showing sharp categorisation
functions between speech categories, and chance-level per-
formance in detecting within-category acoustic differences
(e.g. Ferrero, Pelamatti, & Vagges, 1982; Liberman, Harris,
Hoffman, & Griffith, 1957; Schouten & van Hessen, 1992).
However, more recently, abundant evidence has accumu-
lated demonstrating listeners’ remarkable sensitivity to
fine-grained phonetic information, given the appropriate
task (e.g. Andruski et al., 1994; Dahan et al, 2001;
Marslen-Wilson and Warren, 1994; McMurray, Aslin,
etal.,2008; McMurray etal.,2002,2009; Utman et al., 2000).

Moreover, not only are listeners sensitive to gradient
acoustic variation, they are able to rapidly adapt to
context-specific changes in acoustic characteristics of
speech, based on the effectiveness of a particular dimen-
sion for speech recognition (Idemaru & Holt, 2011, 2014).
Relatedly, listeners are also sensitive to frequency distribu-
tions of acoustic cues. One line of research has investigated
how the acoustic distance between speech categories
affects categorisation accuracy. For example, several stud-
ies have shown that when trained with a unimodal distri-
bution (no distance between categories), participants are
less likely to categorise the endpoints of a distribution as
different, compared to when they are trained with a bimo-
dal distribution (Escudero & Williams, 2014; Liu & Kager,
2011; Maye & Gerken, 2000; Maye, Weiss, & Aslin, 2008;
Maye, Werker, & Gerken, 2002; Wanrooij et al., 2014). Even
when trained with a bimodal distribution, a greater
distance between categories improves categorisation accu-
racy, compared to training with a bimodal distribution
with a small distance between categories (Escudero et al.,
2011; Wanrooij et al., 2013).

Much of the research in adult distributional learning has
focused on the acquisition and development of non-native
contrasts. For example, a series of recent studies has inves-
tigated the effects of statistical distributions on non-native
perception of Dutch vowel contrasts (Escudero et al., 2011;
Gulian, Escudero, & Boersma, 2007; Wanrooij et al., 2013).
Motivated by the observation that infant and foreigner
directed speech has a ‘stretched’ vowel space, Escudero
et al. (2011) investigated effects of the acoustic interval
between vowel categories in second language acquisition.
They used natural bimodal (reduced acoustic interval; i.e.
vowel categories were similar to each other) versus
enhanced bimodal distributions (increased acoustic inter-
val) to train Spanish learners to distinguish a Dutch vowel
contrast. After two minutes of exposure natural bimodal
or enhanced distributions, there was an increase in ‘correct’
categorisation, compared to the music (control) group. This
increase only reached significance in the enhanced group.

Most studies of distributional learning in adults have
used offline categorisation responses as the measure of
learning. Categorisation measures provide information
about the final outcome of the decision process; however,
they do not provide information about online processing
during perception itself. In discussions of effects on cate-
gorisation, it is often implicitly or explicitly assumed that
assigning tokens to one category rather than two occurs
because the two tokens were not discriminated. This
assumption may not necessarily be justified. In a forced-
choice categorisation task, regardless of the degree of
uncertainty, or any gradient degree of goodness of fit with
one category or another, the participant must make a bin-
ary choice. While it is interesting that factors such as cue
distribution can affect even the final outcome of the deci-
sion process, examining the moment by moment online
processing can tell us about how subtle differences in
statistical distributions can affect the development of per-
ceptual processes over time, prior to the decision process.

One interesting and innovative recent eyetracking study
(Clayards et al., 2008) is, to the best of our knowledge, the
only other study that has used online measures to investi-
gate statistical processing of acoustic cues during percep-
tion of native speech contrasts. This study has examined
how the amount of within-category acoustic variation
affects perceptual certainty. Using the visual world para-
digm (VWP; Allopenna, Magnuson, & Tanenhaus, 1998),
Clayards et al. (2008) tested the hypothesis that greater
variation in the acoustic signal would lead to greater per-
ceptual uncertainty. Native English-speaking participants
saw four pictures on screen, heard an auditory stimulus
and were instructed to click on the picture of the word they
heard. Critical picture stimuli consisted of pairs of words
beginning with /b/ and /p/ (e.g. ‘beach’ and ‘peach’). Audi-
tory stimuli consisted of a VOT continuum which spanned
the word pair (e.g. from beach to peach). Presentation fre-
quency of the tokens on the continuum always followed a
bimodal distribution. However, the amount of within-
category acoustic variation was manipulated between par-
ticipants: participants heard either a high-variance or low-
variance distribution of the acoustic stimuli.

In the analysis, the proportion of categorisation
responses was calculated per participant per condition
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and for each token on the VOT continuum. Overall, the cat-
egorisation slope was shallower in the high-variance condi-
tion, indicating that with greater variation in the acoustic
input, participants were less consistent in their assignment
of cues to the contrastive categories. Eye movement data
were also analysed for the six points on the continuum that
had sufficient data points, three each for the /b/ and /p/
words. There was a significant effect of distribution condi-
tion for the /b/ words and a significant interaction between
distribution condition and VOT token for the /p/ words. In
both word types, the effect was carried by the VOT token
closest to the category boundary; however, the trend was
similar for all VOT tokens analysed: there were more looks
to the competitor in the high-variance, compared to the
low-variance condition. This provided evidence that the
amount of variation in the acoustic signal has direct effects
on speech perception: increased variance can lead to an
increase in perceptual uncertainty.

Our understanding of how acoustic variance affects per-
ceptual uncertainty could be enhanced by knowing at what
point in time these effects come into play. While Clayards
et al. (2008) examined the effects of acoustic cue variance
on eye movements, the measure reported in their study
was the proportion of looks over the whole trial. Information
about the time course of effects is important for understand-
ing the underlying mechanism. As listeners gain experience
with the input distribution, does statistical information
affect the early perceptual processes? Is uncertainty a global
effect that influences eye movement behaviour from the
onset of the trial? Or is the statistical information used only
in the later decision process to discriminate between alter-
native candidates? The present study aims to address these
questions by examining changes in eye movement patterns
over the course of the trial, including nonlinear interactions
between predictors over time.

Similarly, although listeners’ ability to detect and
respond to within-category variation is now well estab-
lished, few studies have investigated the time course of
its effects. One recent VWP study investigated ‘lexical gar-
den path’ recovery in English (McMurray et al., 2009). This
study used a VOT continuum to manipulate bilabial stop
word-onsets, creating temporarily ambiguous words, such
as ‘barricade’ versus ‘parrakeet’. Although the study mea-
sured the time course of fixations, the main focus was to
establish that sensitivity to VOT variation was gradient,
rather than categorical. Therefore, the discussion of the
time course mainly focused on establishing that effects of
within-category differences in VOT persist over durations
longer than a syllable, rather than establishing the point
in time where different VOT values diverged.

The large majority of research investigating speech per-
ception processes, in general, and sensitivity to cue values
and cue distributions in particular, has been conducted on
alphabetic, Indo-European languages, such as English. The
present study examines speech perception by native speak-
ers of a typologically very different language, Hong Kong
Cantonese. Cantonese was selected for the present experi-
ments in order to extend the investigation of perceptual
uncertainty effects to a new set of speech sounds, which
included both the previously-investigated temporal cue,
VOT, as well as a suprasegmental cue, pitch (f0), in a lexical

tone contrast. Cantonese has a complex tonal system, with
six lexical tones (Bauer & Benedict, 1997; Wiener &
Turnbull, 2015; Mok & Wong, 2010; Siddins & Harrington,
2015)." Three of these are level tones, in which the primary
cue is pitch (f0) height. These level tones make Cantonese
an ideal language for investigating distributional effects in
tone processing. In addition to being a tonal language, Can-
tonese also differs from English in other important respects.
Cantonese uses a logographic writing system, in which
phonology is not explicitly represented. Each character repre-
sents a particular morpheme and is pronounced with a single
syllable. The lack of explicit phonological representation
influences the phonological awareness of Cantonese speak-
ers, leading to more holistic processing and less awareness
of low-level phonological changes (McBride-Chang,
Bialystok, Chong, & Li, 2004). In addition, compared to English,
due to its syllabic structure, Cantonese has a large number of
homophones. This means that it is often necessary to rely on
top-down context effects to a greater degree in Cantonese
than in English. Such cross-linguistic differences call for
investigation of typologically diverse languages in order to
have a complete understanding of language-general mecha-
nisms in speech perception.

The present study. The present study investigates the
time course of perceptual uncertainty effects during per-
ception of Cantonese tonal and segmental speech sound
contrasts. Two manipulations were expected to affect per-
ceptual uncertainty: the location of an acoustic cue along
the cue continuum, in particular the distance from the
category boundary; and the distribution condition, that
is, amount of within-category acoustic variance in the sig-
nal. These questions were tested with two sets of models.
The first examined the Euclidean distance of fixations from
the centre of the target picture, and the second examined
the Euclidean distance of fixations from the centre of the
competitor picture.

We tested four main hypotheses. Since we know of no
other similar study of Cantonese speech perception using
VWP, we based these hypotheses on studies in English.
The first was that the fixations would be further from the
target and closer to the competitor picture the closer the
acoustic cue values were to the category boundary. This pre-
diction was based on a number of previous studies in Eng-
lish that have shown gradient effects of acoustic cue
values using a VOT continuum (e.g. McMurray, Aslin, et al.,
2008; McMurray, Clayards, Tanenhaus, & Aslin, 2008;
McMurray et al., 2009). The second was that fixations would
be further from the target and closer to the competitorin the
high-variance condition, compared to the low-variance con-
dition, similar to the results of Clayards et al. (2008).

Our third and fourth hypotheses relate to the time
course of effects, in particular the time course of effects of
the acoustic cue value and of acoustic cue variance. McMur-
ray and colleagues (McMurray, Clayards, et al., 2008;
McMurray et al., 2009) found that when English-speaking
participants were presented with auditory stimuli from a
VOT continuum, divergences in eye movements to target

! The number of tones is sometimes reported as nine, including the
checked tones.
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pictures began around 600 ms after stimulus presentation.
Therefore, we expected to see effects of acoustic cue value
start to emerge around 600 ms after presentation.

Regarding the time course of effects of acoustic variance,
as far as we are aware, the present research is the first to
investigate this question in any language. Therefore the
study is largely exploratory in this respect. The time course
of various other effects during speech perception has been
investigated using VWP. For example, McMurray,
Clayards, et al. (2008) asked at what point asynchronous
cues are integrated during speech perception. Their results
showed that word-initial cues (voicing and formant transi-
tions) influenced eye movements to target pictures earlier
than cues that occurred later in the signal (vowel length),
providing evidence for continuous integration of acoustic
cues as the speech signal unfolds. Another study investi-
gated the time course of effects of lexically-guided retuning
of a fricative contrast. Mitterer and Reinisch (2013) found
that effects of retuning (f-biased versus s-biased training)
occurred very early, around 200 ms after frication onset.
They argued that this was evidence that retuning occurs at
the perceptual level, rather than affecting higher-order
decision processes. The present study differs from Mitterer
and Reinisch (2013) in that it does not require adjustment
of category boundaries. Rather, it investigates participants*
responses to higher or lower levels of uncertainty.

Finally, as the VWP involves both auditory perception
and a visual component, we controlled for the effects of
the location of the pictures on the screen in our analysis.
The pictures were randomly assigned to a screen position
on each trial. We expect that the vertical (top-bottom)
and horizontal (left-right) position of the target and com-
petitor pictures on the screen will influence the distance of
fixations from these respective pictures over time.

In addition to testing these hypotheses, we also present
a statistical modelling method (Generalised Additive Mixed
Modelling, GAMM; Wood, 2006, 2011) that is well suited to
analysis of eyetracking data. This is not a new statistical
method; it has been used in the analysis of a wide variety
of experimental paradigms investigating cognition of lan-
guage, as well as other fields. However, as far as we are
aware, it has not previously been applied to the analysis
of fixation data from the four-field visual world eyetracking
paradigm. GAMMs are well suited to analysis of data with a
time component, because they allow for analysis of changes
of a variable over time. They provide solutions to some of
the challenges of analysing time series data, such as
autocorrelation. They also allow for analysis of complex
interactions (including over time) and nonlinear random
effects. A description of the modelling method and some
of its benefits will be returned to in the Method section.

Experiment 1: Voice onset time
Method

Participants. Thirty-seven native Cantonese-speaking
undergraduate students from the Chinese University of
Hong Kong participated in the experiment for payment.
Participants were tested individually in a quiet room.

Experiment design and stimuli. The experiment design
and stimuli were based on those presented in Clayards
et al. (2008). Visual stimuli were picture pairs whose
names began with either bilabial stops (‘b’, ‘p’) or alveolar
affricates ('j’, ‘ch’). The two members of each word pair
were identical except for the initial consonants, which
were either unaspirated (bou3, ‘cloth’; junl ‘brick’) or
aspirated (pou3, ‘shop’; chunl, ‘village’). Pictures were
black-on-white line drawings.

All auditory stimuli were recorded by a male native
speaker of Hong Kong Cantonese. Stimuli were then
resynthesised into a 12-step VOT continuum using the
Pitch-Synchronous-Overlap-and-Add (PSOLA) method in
PRAAT (Boersma & Weenink, 2012), using the unaspirated
token as the target for resynthesis. Increasing steps of aspi-
ration were added following the stop or affricate burst
before the onset of the vowel. The consonant duration ran-
ged from 0 ms to 88 ms for the stops and 40 ms to 260 ms
for the affricates. The vowel portion of the recorded syllables
ranged from 432 ms to 571 ms. The number of times partic-
ipants heard each step followed a bimodal distribution, with
the two peaks of the distributions corresponding to the pro-
totypical mean VOT for the unaspirated and aspirated stim-
uli, respectively (Cheung & Wee, 2008; Ng & Wong, 2009).
Ten native Cantonese speakers also participated in a percep-
tion test which verified the stimuli. Table 1 shows the pre-
sentation frequency of each step on the continuum. Each
condition contained 456 tokens, 76 for each word pair. All
participants heard the same number of tokens; only the
number of times they heard each token varied between con-
ditions: high-variance versus low-variance distributions.

The experiment consisted of 456 experimental trials,
divided into six blocks of 76 trials, with breaks between
blocks. The order of presentation was pseudo-randomised
for each participant.

Procedure. Participants sat at a comfortable viewing dis-
tance from the computer screen and wore an SR Eyelink II
head mounted eye-tracker with a sampling rate of 500 Hz.
Stimulus presentation and data acquisition were conducted
using SR Research Experiment Builder computer software
(2011; version 1.10.165). The session began with 12 famil-
iarization trials in which participants saw the pictures and
their corresponding written labels once each. This was fol-
lowed by a practice block to familiarize participants with
the experimental procedure. None of the experimental pic-
tures or words were presented during the practice phase.

Each experimental trial began with drift correction to
ensure accurate calibration of the equipment, followed by
brief presentation (1000 ms) of four pictures, one in each
quadrant of the screen (see Fig. 1). The purpose of giving
an advance preview of the stimuli was to reduce the time
and likelihood of participants scanning the pictures at the
beginning of the trial, and hence to reduce noise in the
eye movement data. The display always contained two test
items and two filler items. The location of the picture con-
ditions on screen, as well as their relative location, was
randomised to avoid strategic effects. The picture preview
disappeared, replaced with a gaze-contingent fixation
cross, which ensured participants were looking at the cen-
tre of the screen at the beginning of the critical trial period.
The pictures reappeared and, simultaneously, one of the
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Table 1
Presentation frequency per variant per condition: each variant represents one step on the VOT continuum.
Variant Number of iterations
1 2 3 4 5 6 7 8 9 10 11 12
Distribution condition = Low-variance 0 6 54 108 54 6 6 54 108 54 6 0
High-variance 6 24 54 60 54 30 30 54 60 54 54 6
the analysis of single-field gaze data (van Rij,

Fig. 1. Sample screen display during stimulus presentation.

auditory stimuli was presented and participants chose the
picture they thought most appropriate by clicking on it
with the mouse. Eye movements were monitored from
the onset of the preview until participants made a
response. (Analysis was conducted on a shorter period,
starting just prior to the auditory stimulus).

Analysis

Eye movement data were analysed using Generalised
Additive Mixed Modeling (GAMM; Wood, 2006, 2011) using
the mgcv package (version 1.8-7) conducted in R (version
3.2.2; R core team, 2015; www.r-project.org). GAMM is a
type of Generalised Linear Modelling (GLM) that uses
nonlinear smooth functions to model nonlinear effects for
continuous predictors.

Generalised Additive Models®> are a well-established
method of analysis used with a wide range of psychological,
psychophysiological and speech production data, ranging
from EEG data (de Cat, Klepousniotou, & Baayen, 2014,
2015; Nixon, 2014; Nixon, van Rij, Li, & Chen, 2015;
Tremblay & Newman, 2014) and reaction times (Feldman,
Milin, Cho, Moscoso del Prado Martin, & O’Connor, 2015;
Pham & Baayen, 2013) to articulography (Arnold, Wagner,
& Baayen, 2013; Tomaschek, Wieling, Arnold, & Baayen,
2013) and dialectology (Wieling, Montemagni, Nerbonne,
& Baayen, 2014). As far as we are aware, the present study
is the first to apply GAMMs to the typical four-field visual
world paradigm, although it has previously been to used in

2 The ‘mixed’ in Generalised Additive Mixed Models refers to the
inclusion of random effects, such as participant and item random effects
in the present study, in addition to fixed effects. That is, a GAMM is a type of
GAM that includes random effects.

Hollebrandse, & Hendriks, in press).

There are several characteristics of GAMMs that make
them particularly well suited to analysis of visual world
paradigm eye movement data. Firstly, GAMMs drop the
assumption of a linear relationship between dependent
and independent variables. Assuming linearity when the
relationship in the data is nonlinear can lead to failure to
observe regularities or structure that do exist in the data
(see Tremblay & Newman, 2014 for a discussion of the ben-
efits of relaxing the linearity assumption in psychological
research). Instead, GAMMs determine the linearity or
degree of nonlinearity from the data itself. The method
used for this is penalized iteratively re-weighted least
squares (PIRLS; see Wood, 2006 for details). PIRLS determi-
nes the optimal linear or nonlinear equation for avoiding
both over-fitting and over-generalizing of the model. Sec-
ondly, GAMMs allow for analysis of continuous variables
and nonlinear interactions. This is an advantage for analysis
of fixation data, as processing is often influenced by contin-
uous predictors, such as time and, in the present study,
location on the acoustic continuum; and importantly, often
several predictors may interact. A third aspect of GAMMs
that benefits VWP eye movement analysis is the inclusion
of random effects. This allows the model to take into
account that repeated measures are taken from partici-
pants and items without the need to average over them in
the analysis. This is also an important means of reducing
autocorrelation (see Baayen, van Rij, de Cat, & Wood, in
press; Baayen, Vasishth, Bates, & Kliegl, 2015 for a discus-
sion of the benefits of GAMMs for reducing autocorrelation
in language-related experimental data). Finally, a common
problem in many experimental data sets, and particularly
in data with a time series component, such as eye tracking,
is that autocorrelation can occur between data points. In
the mgcv package, methods have been implemented specif-
ically to deal with autocorrelation (Baayen et al., in press).

All predictors of interest were entered into a GAMM
model. Predictors that did not contribute to model fit were
eliminated. Model comparison was conducted using a x>
test of fREML scores in the compareML function in the
itsadug package (version version 1.0.4; van Rij, Baayen,
Wieling, & van Rijn, 2015) in R. Together with the model
comparisons and model plots, the statistics provided by
the model summaries were used to determine whether
each predictor contributed to the variance explained by
the model.

Fixation data were modelled as two separate continuous
variables of Euclidean distance: distance from the centre of
the target picture (target distance) and distance from the
centre of the competitor picture (competitor distance).
Fig. 2 shows a sample trial as an illustration of the target dis-
tance measure. There are least two advantages to modelling
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the eye movement data in this way. Firstly, it allowed us to
model the data as a gradient measure, rather than a binary
variable with an arbitrary cut-off point. Because data points
that fall short of the target picture or fall between two
pictures are included, the distance measure is more likely
to pick up on uncertainty effects, such as hesitant oculo-
motor movements, undershooting the mark due to low
activation or inaccurate movements due to competing
activations. Secondly, the models are more robust, because
more data is included. We initially ran models with the pro-
portion of fixations on the target picture as the dependent
variable. However, this led to artefacts in the early fixations
due to insufficient data in the initial 200 ms of the trial. The
distance measure solved this issue. Separate models were
run for each of these dependent variables.

Because we were interested in the time course of pro-
cessing over the whole trial, from early perceptual process-
ing to later decision processes, the predictor time was
included. A 1400 ms time window from —200ms (i.e.
200 ms prior to presentation of the auditory stimulus) to
1200 ms was selected for analysis. After this time, the num-
ber of data points became too few, as mean response time
was approximately 1300 ms. An initial model was run with
data downsampled to 20 ms (50 Hz). However, inspection
of the residuals of the first statistical model indicated that
a moderate level of correlation remained between subse-
quent measurements. Therefore, to reduce autocorrelation
further, forty millisecond (25 Hz) time bins were used.

VOT (Experiment 1) and pitch (Experiment 2) were
modelled as continuous variables, centred around 0. The
centred values ranged from —4.5 to 4.5, with the distribu-
tion peaks at —2.5 and 2.5. Distribution condition was
modelled as a factor with two levels, low variance and high
variance. As control variables, the location of the target on
the screen was included in the target distance models, and
location of competitor in the competitor distance models.
This was a factor variable with four levels: top-left, top-
right, bottom-left and bottom right. Changes over the
course of the experiment were investigated by including
a predictor of trial. However, this did not improve model
fit, so was removed from the analysis.

The initial model included intercepts for condition (low-
vs. high-variance) and target position, a nonlinear interac-
tion® of centred VOT (or pitch) by condition over time and a
nonlinear regression line* of target (or competitor) position
over time. After running the models, the residuals were
examined to determine the degree of remaining autocorrela-
tion. We included an AR1 model to account for autocorrela-
tion in the residuals with the rho parameter, which
measures how much the residuals of the current data point
are determined by the residuals at the previous data point.
In GAMM models, shrunk factor smooths can be used to model
random effects. They are the nonlinear equivalent of by-
subject and by-item random slopes and intercepts in an LMM.

3 In the mgcv package, this type of nonlinear interaction is modelled with
the te() function. It includes all main effects and interactions.

4 This nonlinear regression line is modelled with the ti() function. In the
mgcv package, the ti() function can be used to model partial effects,
including nonlinear regression lines and nonlinear interactions without the
main effects or lower-level interactions.
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Fig. 2. Illustration of the Euclidean-distance-from-target measure. This
figure shows a random sample of data points from a trial with the target
picture in the top right corner. Fixations 1, 2 and 3 are sample fixations
from this trial. Note that the absolute X and Y coordinates on the figure
axes are measured from the top left corner of the screen. However, the
measure of interest (Euclidean distance) is measured from the centre of
the target picture. For each fixation, the Euclidean distance (in pixels)
from the centre of the target picture is calculated from the X (x-axis) and Y
coordinates (y-axis). For a given fixation, a distance greater than 176 is
outside the interest area and a distance of 125 or less is within the target
picture interest area.

Results

Target distance model: distance of fixations from the target
picture

Random effects

The best-fit model for target distance (Appendix A)
includes trends over time as random effects per participant
per target item. Random effects were modelled as a sepa-
rate smooth for each participant-item pair in order to cap-
ture participants’ variable responses to the different items.
Each random wiggly curve represents the difference in eye
movement behaviour over time for a particular participant
for a particular item compared to the average.

Effects of voice onset time value on target distance

The best-fit model included a smooth of centred VOT
over time (Appendix A), which significantly contributed to
variance explained in the model (F(65.706,476634.3)
=98.5). Estimated effects of VOT over time are shown in
the top row of Fig. 3. In the figure, time is represented on
the horizontal axis. Centred VOT is on the vertical axis. Cat-
egory means are at VOT —2.5 (for the unaspirated stimuli,
e.g.bou) and 2.5 (for the aspirated stimuli, e.g. pou). The dis-
tance of fixations from the centre of the target picture is
plotted on the z-axis, represented by colour codes. Higher
values (shown in yellow) indicate a relatively greater dis-
tance from the target; lower values (shown in blue) indicate
a relatively shorter distance. The key at the bottom left of
each panel shows the corresponding pixel values and z-
limits for each model plot. Note that the range is different
between the target distance plot (top row) and the competi-
tor distance plots (bottom row): the target plot ranges
between 80 and 320 pixels, while competitor plots range
between 200 and 440 pixels. The scale is the same. Random
effects are excluded from these plots. A plot of the raw
data for target distance in Experiment 1 is provided in
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Fig. 3. Topographical maps for the VOT models in Experiment 1. Top row: model fit for the best fit model of Euclidean distance from the target picture. The
predictor Target Position is ‘top left’ in this plot (see the left panel of Fig. 4 for the effects of Target Position). Bottom row: model fit for the best fit model of
Euclidean distance from the competitor picture for the low-variance (left panel) and high-variance conditions (right panel). The predictor Competitor Position
is ‘top left’ in these plots (see the right panel of Fig. 4 for the effects of Competitor Position). All plots: Estimated effects are in pixels. Time (in milliseconds) is
represented on the x-axis. Voice onset time (VOT) is on the y-axis. VOT is centred around 0, the category boundary. The negative VOT values correspond to
unaspirated stimuli (e.g. bou), the positive values to aspirated stimuli (e.g. pou). Category means are at VOT —2.5 and 2.5, respectively. Distance is plotted on
the z-axis, represented by colour codes. Higher values (yellow areas) indicate a relatively greater distance; lower values (blue areas) indicate a relatively
smaller distance. The key in the bottom left corner shows corresponding pixel values and the z-limits. Note that the range differs between the surface plots for
target and competitor model plots; target plots (top row): 80-320 pixels; competitor plots (bottom row): 200-440 pixels. (The scale is the same.) Random
effects are excluded from these plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Appendix E (upper panel). To assist with interpretation, par-
ticularly for readers who are unfamiliar with topographic
plots, Appendix G provides an illustration of the mapping
between the topographic plot and a line plot of the raw data.
The plot indicates that changes in eye movements over
the course of the trial occur differently at different points
on the VOT continuum. Over the course of the trial period,
the pattern of eye movements increasingly reflects the dif-
ferences in VOT values, with differential fixation behaviour
at central and outer regions of the continuum. Prior to and
for the first 200 ms after presentation of the auditory stim-
ulus, the plot shows a flat distribution. Fixations are consis-
tently around 280 pixels from the target; that is, the
distance between the centre of the target and the fixation
cross. At around 200 ms, the eyes begin to move away from
the fixation cross. From around 400 ms, the distance stea-
dily decreases until the end of the trial. Differences between
VOT values begin to emerge around 400-500 ms. The
decrease in distance from the target occurs more rapidly
at the distribution peaks and peripheries, compared to the
central values. The difference in distance from the target
remains throughout the trial, with a consistently greater
distance for the central VOT values, compared to the outer
values from around 450 ms until the end of the trial.

Effects of distribution condition on target distance

The VOT-by-condition interaction was not significant.
Initial models, which did not include a rho parameter,
hinted that there might be an effect of distribution condi-
tion. However, once autocorrelation was reduced by
including rho, the y? test of fREML scores showed that
including an interaction with distribution condition no
longer significantly improved fit. In the upper panel of
Fig. 3 condition is collapsed.

Effect of target position on target distance

Target picture position was included in the model as a
control variable. If participants had search strategies, such
as left-to-right or top-to-bottom scanning, then the eyes
would be likely to fall on the target more quickly when
the target occurred in certain positions on the screen.
Including these effects would strengthen the ability of
the model to capture our predictors of interest by account-
ing for this variation. The model summary shows that tar-
get position had a significant effect on the distance of
fixations from the target over time (top-left: F
(3.979,476634.3) = 321.5; top-right: F(3.941,476634.3)
=254.7; bottom-left: F(1.002,476634.3)=895.8; bottom-
right: F(3.990,476634.3) = 360.9). The left panel of Fig. 4
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shows the effect of target position over time. Time is on the
x-axis, target distance on the y-axis. Each position on the
screen is represented by a coloured line according to the
key in the top right corner of the plot. The plot shows sub-
stantially different distances, depending on the target posi-
tion. Fixations are closest to the target when the target is in
the top left corner, and furthest when it is in the bottom
right corner. The effect emerges immediately in the first
fixation, around 150-200 ms, and continues until late in
the trial. The eyes locate the target more quickly when it
is in the top left of the screen; otherwise the eyes may ini-
tially move further away from the target compared to the
initial position on the fixation cross. Note that this is true
on average, but does not entail that this occurs on every
trial. Indeed, given the size of the effect, it is unlikely that
it occurs on every trial.

Competitor distance model: distance of fixations from the
competitor picture

Apart from investigating the effects of uncertainty on
how accurately participants fixated the target, we were also
interested in how perceptual uncertainty affects the degree
to which participants were drawn towards the competitor
picture. We therefore ran models looking at the distance
of fixations from the competitor picture. This measure cor-
responds to Clayards et al. (2008), in which the by-trial pro-
portion of fixations on the competitor object was reported.
The models included the same predictors as the target dis-
tance models, only the dependent variable was the distance
of fixations from the competitor picture, and competitor
position on the screen replaced target position. A visualisa-
tion of the raw data for competitor distance in Experiment
1 is shown in Appendix E (lower panel).

Effects of voice onset time value on competitor distance
The model summary for competitor distance (Appendix
B) shows the interaction of VOT by condition over time. The
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baseline (low-variance) condition is shown in the lower left
panel of Fig. 3. For all VOT values, the distance from the
competitor first shows a dip (blue area), then steadily
increases over time. Comparison of the estimated distance
from the target and competitor pictures in this time period
suggests that the eyes initially move toward the competi-
tor, before rejecting it and moving towards the target.

The effect of VOT starts to emerge in the first fixations
of the trial, around 150-300 ms after stimulus presenta-
tion. The distance from the competitor decreases for the
outer and mean VOT values earlier than for the central
VOT values, as the eyes move towards the competitor
object. After this initial period, the distance from the com-
petitor is smallest at the central values. This pattern sug-
gests that when the VOT is near the category boundary,
it takes participants longer to move their eyes away from
the fixation cross for the first fixation of the trial. At all
VOT values, the initial fixations tend to move towards
the competitor object, before rejecting it and moving
towards the target. At the central values, this process
seems to be delayed, with eye movements both towards
and away from the competitor occurring later at the cen-
tral values than at the mean and outer values. That is,
the short distance from the competitor (blue area) starts
later and continues until later in the trial at the central
VOT values. The difference in competitor distance between
central and outer VOT values remains throughout the trial.
At the outer VOT values, the distance from the competitor
steadily increases, starting from around 550 ms (green
then yellow areas). Near the category boundary, although
the distance increases, it does not reach the same level as
the outer VOT values. This suggests that a greater degree
of uncertainty remains for the central VOTs right until
the end of the trial.

Effects of distribution condition on competitor distance
As noted above, there was a significant effect of VOT by
condition over time. Including a VOT-by-condition interac-
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Fig. 4. Model fit for the effect of target position in the best fit model for the Euclidean distance from the target (left panel) and the effect of competitor
position on the Euclidean distance from the competitor (right panel) in Experiment 1. Time (ms) is on the x-axis. Distance from the target (left panel) or
competitor (right panel) is on the y-axis. Each position on the screen is represented by a line, colour-coded according to the legend in the top right corner.
The predictor Condition is set to low-variance; VOT is set to —0.5. As the models did not include an interaction between target/competitor position and VOT
or target/competitor position and condition, the estimated effects of position are the same for low and high variance and for the different VOT values. Error
bars are 95% confidence intervals (indicating the uncertainty around the model estimates). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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tion significantly improved model fit, compared to a model
without condition (y*(5.0) = 8.663, p <.004). This effect is
shown in the model plots (lower panels of Fig. 3), which
show the distance of fixations from the centre of the com-
petitor object in the low-variance (left panel) versus the
high-variance condition (right panel). The effect of distri-
bution condition seems to emerge mainly at the central
VOTs at the beginning and end of the trial, where fixations
are closer to the competitor in the high-variance condition
than in the low-variance condition. In the early fixations,
the effect of VOT is flatter in the high-variance compared
to the low-variance condition. In the low-variance condi-
tion, the eyes take longer to move away from the fixation
cross at the central values compared to the more periph-
eral values. However, this effect is absent in the high-
variance condition, in which the eyes move towards the
competitor object at around the same time for all VOT val-
ues. From around 500 ms onwards, fixations are closer to
the competitor object around the central VOT values in
the high-variance compared to the low-variance condition.

Effects of competitor position on competitor distance

The model summary shows that competitor position
had a significant effect on the distance of fixations from
the competitor over time (top-left: F(3.969,476712.6) =
118.975; top-right: F(3.736,476712.6) = 87.236;
bottom-left: F(3.799,476712.6) = 84.505; bottom-right:
F(3.939,476712.6) = 120.162). The results are shown in
the right panel of Fig. 4. The general pattern is the inverse
of the effects of target position in the target distance mod-
els. The fixations are closest to the competitor picture
when it is in the top left corner, and furthest when it is
in the bottom right corner.

Discussion

Experiment 1 investigated the effects of perceptual
uncertainty on eye movements towards target and com-
petitor pictures during perception of Cantonese words
beginning with aspirated and unaspirated consonants.
Two causes of uncertainty were investigated. On the one
hand, this experiment investigated the time course of
effects of changes in the acoustic cue value, VOT, during
speech perception. This manipulation was the same for all
participants. Greater perceptual uncertainty was predicted
as cues approached the category boundary. On the other
hand, the experiment investigated the effects of within-
category acoustic variance. That is, the presentation fre-
quency of the different acoustic cue values. Based on the
results of Clayards et al. (2008), we predicted that fixations
would fall closer to the target and further from the competi-
tor for participants in the low-variance condition, compared
to the high-variance condition.

Effects of time

Overall, the GAMM models for Experiment 1 showed that
fixations became closer to the target and further from the
competitor over time. However, this was a nonlinear trend.
In the target distance model, there was an initial period of
relative stability, followed by a steady convergence on the
target. In the competitor distance model, there was a

decrease in distance from the competitor in the early period
around 200-400 ms, as fixations initially approached the
competitor for a period before moving steadily away from it.

Effects of voice onset time value

Both the target distance and the competitor distance
models showed a nonlinear effect of VOT value on partici-
pants’ perceptual uncertainty. In the target distance model,
at the outer VOT values, fixations began to rapidly
approach the target picture by around 500 ms; by around
700-800 ms, fixations were within the target picture inter-
est area, on average. However, at the more central VOT val-
ues, a substantial amount of uncertainty remained
throughout the trial. The distance from the target
remained substantially greater near the category boundary
than at the outer VOTs right until the end of the trial. Con-
versely, in the competitor distance models, the distance
from the competitor was generally smaller at the central
VOT values, compared to the outer values. This effect of
VOT on distance to the competitor emerged very early, in
the first fixations of the trial. Near the category boundary,
it took longer for the eyes to move away from the fixation
cross. After this delay, fixations were closer to the competi-
tor at the category boundary for the rest of the trial.

Interestingly, the effect of VOT value seemed to emerge
mainly between the central values and the distribution
peaks. The exaggerated acoustic information in the outer
cue values did not seem to greatly benefit participants in
terms of the time it took to fixate the target. Another inter-
esting observation is that these effects are quite symmetri-
cal. This is surprising given that within-category acoustic
variance is asymmetrical in language. In Cantonese bilabial
stop production (as in English), the variance in unaspirated
stops is much lower than in aspirated stops. The standard
deviation of unaspirated stops in syllable production is less
than 6 ms, compared to more than 21 ms in aspirated stops
(Ng & Wong, 2009). Given that there is more than three
times as much variation in aspirated stimuli in speech,
we might expect that listeners are more tolerant of
variation in aspirated stimuli in the experiment setting.
For example, we might expect to see steeper slopes on
the unaspirated side in the plots. But this was not the case.

Effects of acoustic cue variance

The target distance models did not show any significant
effects of distribution condition. The competitor distance
models, on the other hand, did show a significant interac-
tion with VOT over time. The model plots indicate that the
biggest differences between conditions occur at the central
VOTs, near the category boundary. In the low-variance
condition, the eyes seem to take longer to move away from
the fixation cross at the central values at the beginning of
the trial. Later in the trial, after about 600-700 ms, fixa-
tions are closer to the competitor in the high-variance con-
dition, compared to the low-variance condition. This result
is line with our hypothesis that the greater degree of
within-category acoustic variance would lead to greater
uncertainty in the high-variance condition. The result is
also consistent with the findings of Clayards et al. (2008),
which showed that the overall proportion of fixations on
the competitor versus the target was greater in their
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high-variance condition. One of the aims of this study was
to extend the investigation to examine the time course of
effects. The competitor distance model shows that the
effect of distribution emerges early, affecting the very first
fixations, and continues over the course of the trial.

This early effect could be attributed to changes in early
perceptual processing of the acoustic information as a result
of the distributional input. However, given that there was
no effect of trial in this experiment, it is unlikely that the
effect stems from ‘perceptual learning’ such that there were
shifts in the category boundary. Another possibility is that
participants adopt a global strategy in response to the level
of uncertainty. As uncertainty increases, participants look
around more in search of additional evidence to support
their selection. Participants tend to fixate the competitor
before moving to the target. They do this more and later
in the trial in the high-variance condition. This suggests that
these fixations are part of a kind of verification process. As
competition between target and competitor increases, it
takes longer to reject the competitor in favour of the target.

Effects of target and competitor position

An interesting observation that comes out of this study is
the effect of the location of the target and competitor on the
screen. Fixations were substantially closer to the target
when the target was in the top left corner of the screen,
and further when it was located in the bottom right; con-
versely, fixations were further from the competitor when
the competitor picture was located in the top left corner of
the screen, and closer when it was located in the bottom
right. These effects are probably the result of scanning
strategies during the preview period and the early part of
the trial. If participants had a particular scan path that
favoured the top-left over the bottom-right, this would
enable them to locate the target and reject the competitor
better when it was in the top-left position and least when
it was in the bottom right.

Though we know of no other study that has reported
this effect in the visual world paradigm, a bias for initial
fixations to move to the left is known in scene perception
research (Dickinson & Intraub, 2009; Ossandon, Onat, &
Koenig, 2014). This left-to-right, top-to-bottom pattern
closely matches the direction of eye movements during
reading. However, the extent to which reading direction
contributes to the effect is unclear. Cross-linguistic studies
of scene and face perception have reported mixed results
(Chokron & De Agostini, 2000; Gilbert & Bakan, 1973;
Heath, Rouhana, & Abi Ghanem, 2005; Nicholls & Roberts,
2002; Vaid & Singh, 1989) suggesting that there may be a
language-independent effect that is modulated by the
direction of reading.

Regarding the time course of effects, both the target and
competitor position effects were present for most of the
trial, beginning with the first fixation. However, the time
course is slightly different for target position and competi-
tor position. For target position, when the target is in the
top left, the distance steadily decreases from the first fixa-
tion onwards. When the target is in the bottom right, in
contrast, the first fixations tend to move sharply away
from the target in the first fixations, perhaps landing on
the competitor, or a distractor picture. The distance

continues to increase until around 400 ms. At this time,
the participant presumably realises that they have made
an error and prepares to launch another saccade. But this
error sets the participant back substantially, and although
the distance decreases steadily from this point, the lines
only come together again towards the end of the trial.
For competitor position, the overall effect is roughly the
inverse of the effect of target position: fixations are fur-
thest from the competitor when it is the top left, and come
closest when it is in the bottom right. However, there are
also differences in the time course, compared to the effect
of target position. While the lines of the four positions in
the target position plot are roughly parallel for a large part
of the trial, in the competitor position plot, the effect is clo-
ser to a mirror image. The first fixations move towards the
competitor when it is in the bottom right and away from it
when it is in the top left and this pattern continues well
into the trial. The probable reason for this difference in
the time course between target and competitor is that
when fixations land on the target picture, they are much
more likely to stay there for the rest of the trial. On the
other hand, if early fixations land on the competitor pic-
ture, they are likely to move away again after a time. The
plot shows that the eyes start moving away from the com-
petitor at around 400 to 550 ms, depending on its location.

Experiment 2: Tones
Method

Participants. Thirty-nine native Cantonese-speaking
undergraduate students from the Chinese University of
Hong Kong participated in the experiment. An additional
six participants were recruited, but were excluded from
analysis due to the eyetracker unexpectedly quitting
before the end of the experiment (four participants) and
inability to calibrate (two participants).

Experiment design and stimuli. The experiment design was
the same as Experiment 1, except that different stimulus
items were used. Visual stimuli were picture pairs whose
names were word pairs that were either high level tone
(e.g. jin1 ‘carpet’; gunl ‘crown’) or mid level tone (jin3 ‘ar-
row’; gun3 ‘can’). The two members of each word pair had
the same segmental syllable. Initial consonants were either
velar stops (‘g’) or alveolar affricates (‘j’). Auditory stimuli
were produced by the same speaker as Experiment 1. The
stimuli were then resynthesised in PRAAT (Boersma &
Weenink, 2012), using the mid tone as the target, to create
a 12-step fO continuum with equal semitone steps ranging
from 86 Hz to 129 Hz. Syllable duration ranged from
357 msto491 ms, of which the meaninitial consonant dura-
tion was 41 ms for the stops and 61 ms for the affricates.

Procedure. The procedure was identical to Experiment 1.

Analysis
Analysis was conducted using the same variables as

Experiment 1, except that the acoustic cue was a contin-
uum of pitch (f0) values, instead of VOT values.
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Results

Target distance model: distance of fixations from the target
picture

Random effects

As in Experiment 1, the models for Experiment 2
included by-participant by-item random wiggly curves
over time (Appendix C). Random effects were modelled
as separate smooths for each participant-item pair.

Effects of pitch value on target distance

Model comparisons showed that model fit was improved
by including a nonlinear interaction of pitch by condition
over time. The model summary for target distance is shown
in Appendix C. A visualisation of the raw data is provided in
Appendix F (upper panel). The effect of pitch value over time
is illustrated in the model plots for the baseline (low-
variance) condition (left panel of Fig. 5). The distance of fix-
ations from the target picture is plotted on the z-axis, repre-
sented by colour codes. Higher values (shown in yellow)
indicate a relatively greater distance from the target; lower
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values (shown in blue) indicate a relatively shorter distance.
Category means are at —2.5 (for the mid-tone stimuli, e.g.
jin3) and 2.5 (for the high-tone stimuli, e.g. jin1).

The plot shows a very similar pattern to the results for
the VOT model. Changes in eye movements over the course
of the trial occur differently for different pitch values. Until
around 200 ms, the plot shows a flat distribution, as partic-
ipants are looking at the fixation cross. Then the eyes begin
to move away from the fixation cross. After about 400 ms,
target distance starts to decrease steadily. As in the VOT
model, differences between pitch values begin to emerge
around 400-500 ms after presentation of the auditory stim-
ulus. In addition, the target distance remains greater at the
central values, compared to the outer values, for the rest of
the trial.

However, there are also differences compared to the
VOT model. The plot for the pitch model is not entirely
symmetrical. The greatest distances from the target are
actually centred just above 0, at about 0.5, rather than at
0, as expected. This suggests that the category boundary
in the stimuli may have been slightly lower than partici-
pants’ own category boundary estimates.
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Fig. 5. Topographical maps for the pitch models in Experiment 2. Top row: model fit for the best fit model of Euclidean distance from the target picture for
the low-variance (left panel) and high-variance conditions (right panel). The predictor Target Position is ‘top left’ in this plot (see the left panel of Fig. 6 for
the effects of Target Position). Bottom row: model fit for the best fit model of Euclidean distance from the competitor picture for the low-variance (left
panel) and high-variance conditions (right panel). The predictor Competitor Position is ‘top left’ in these plots (see the right panel of Fig. 6 for the effects of
Competitor Position). All plots: Estimated effects are in pixels. Time (ms) is represented on the x-axis. Pitch is on the y-axis. Pitch is centred around 0, the
category boundary. The negative pitch values correspond to mid-tone stimuli (e.g. jin3), the positive values to high-tone stimuli (e.g. jin1). Category means
are at centred pitch values —2.5 and 2.5, respectively. Distance is plotted on the z-axis, represented by colour codes. Higher values (yellow areas) indicate a
relatively greater distance; lower values (blue areas) indicate a relatively smaller distance. The key in the bottom left corner shows corresponding pixel
values and the z-limits. Note that the range differs between the surface plots for target and competitor model plots: 100-310 for the target plots; 200-410
for the competitor plots. (The scale is the same.) Random effects are excluded from these plots. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Effects of distribution condition on target distance

Unlike the VOT models of target distance, in which
there was no effect of condition, the interaction of pitch
by condition over time significantly contributed to model
fit in the pitch model for target distance (y?(5.0)
=41.812, p <.001). In the upper panel of Fig. 5, differences
in the distance from the target appear between the low-
variance condition (upper left panel) and the high-
variance condition (upper right panel). The differences
are most apparent at the central pitch values, beginning
at around 700 ms. There is greater distance from the target
in the low-variance compared to the high-variance condi-
tion. This result was counter to our expectations. Based
on the results of Clayards et al. (2008), we hypothesised
greater distance in the high-variance condition. A possible
reason for this effect may be that the stimulus category
boundaries differed from participants’ initial category
boundary estimates, as noted above. In the high-variance
condition, because participants had more experience with
these central values, this may have given them the oppor-
tunity to adjust their category boundaries and bring them
in line with the distribution. Unlike in the VOT models,
there are also differences at the category means. Fixations
are further from the target for the high tone (positive pitch
values) and closer to the target for the mid tone (negative
pitch values) in the low-variance condition, compared to
the high-variance condition.

Effects of target position on target distance

The effects of target location in the pitch model are very
similar to those seen in the VOT models. The model
summary shows a significant effect of target position on
target distance over time (top-left: F(3.974,507685.1)
=261.29; top-right: F(2.847,507685.1) = 260.67;
bottom-left: F(1.156,507685.1)=676.26; bottom-right:
F(3.979,507685.1) = 273.96). The effects are shown in the
left panel of Fig. 6. Fixations are closest to the target when
the target occurs in the top left corner of the screen, and fur-
thest when the target is located in the bottom right of the
screen.

Competitor distance model: distance of fixations from the
competitor picture

As with the VOT models, we were interested not only in
the target fixations, but also in how much fixations were
drawn to the competitor during tone perception. The model
summary for competitor distance is shown in Appendix D.
A visualisation of the raw data for competitor distance in
Experiment 2 is shown in Appendix F (lower panel).

Effects of pitch value on competitor distance

The model for competitor distance included a nonlinear
interaction of pitch by condition over time. The effects of
pitch over time are shown in the baseline (low-variance)
condition (lower left panel of Fig. 5). In the early fixations,
the effect of pitch seems to be asymmetrical. As expected,
fixations are closer to the competitor at the central values.
But they are also closer to the competitor at the very high
pitch values. This effect of the peripheral pitch values is
smaller in the mid tones, so that there is an overall bias

towards the mid tone. This effect appears around 200-
400 ms. From around 600 ms, there is a steady increase
in the competitor distance at the outer pitch values; how-
ever, the competitor distance remains shorter the closer
the pitch is to pitch values just above the category bound-
ary, at centred pitch values 0.5-1. We see the same asym-
metry that appeared in the target distance models.

Effects of distribution condition on competitor distance

In the model for competitor distance, the interaction
between condition and pitch over time significantly con-
tributed to model fit, compared to a model without condi-
tion (%(5.0) = 69.970, p <.001). The effect of distribution
condition is shown in the model plots (lower panels of
Fig. 5). As noted above, in the low-variance condition, the
effect of pitch cue value emerges from around 200 to
400 ms. Fixations move towards the competitor early in
the first fixations near the category boundary. These fixa-
tions occur earlier in the low-variance condition (left
panel), compared to the high-variance condition (right
panel). Additionally, at the central values, the competitor
distance is smaller in the low-variance condition, com-
pared to the high-variance condition in this period. The
competitor distance remains shorter in the low-variance
condition right up until near the end of the trial.

Effects of competitor position on competitor distance

The model summary for competitor distance shows a sig-
nificant effect of competitor position over time (top-left:
F(3.967,507729.8) = 127.84; top-right: F(3.700,507729.8)
=105.73; bottom-left: F(3.799,507729.8) = 130.65;
bottom-right: F(3.808,507729.8) = 111.86). This result fol-
lows a very similar pattern to the VOT models of competitor
distance, and roughly the inverse of the effect of target posi-
tion on target distance. As shown in the right panel of Fig. 6,
the competitor distance is greatest when the competitor is
in the top left corner, and smallest when it is in the bottom
right corner.

Discussion

Like Experiment 1, Experiment 2 investigated the
effects of perceptual uncertainty on eye movements
towards target and competitor pictures during Cantonese
speech perception. While Experiment 1 investigated a tem-
poral cue, voice onset time, in a segmental contrast, aspira-
tion, Experiment 2 investigated a suprasegmental cue,
pitch (f0), in a lexical tone contrast. The same two types
of uncertainty effects were investigated: differences in
the acoustic cue value, in this case pitch, and differences
in the amount of acoustic cue variance (low-variance ver-
sus high-variance). As in Experiment 1, greater perceptual
uncertainty was expected as cues approached the category
boundary, compared to more peripheral pitch values, and
in the high-variance compared to the low-variance condi-
tion. Perceptual uncertainty was investigated in two sepa-
rate models. The first examined the distance from the
centre of the target picture; the second, the distance from
the centre of the competitor picture.
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Fig. 6. Model fit for the effect of target position in the best fit model for Euclidean distance from the target (left panel) and the effect of competitor position
on the distance from the competitor (right panel) in Experiment 2. Time is on the x-axis. Distance from the target (left panel) or competitor (right panel) is
on the y-axis. Each position on the screen is represented by a line, colour-coded according to the legend in the top right corner. The predictor Condition is set
to low-variance; pitch is set to —0.5. As the models did not include an interaction between target/competitor position and pitch or target/competitor
position and condition, the estimated effects of position are the same for low and high variance and for the different pitch values. Error bars are 95%
confidence intervals (indicating the uncertainty around the model estimates). (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

Effects of time

The overall trend of fixations over time in the GAMM
models for Experiment 2 was remarkably similar to Exper-
iment 1. Generally, fixations became closer to the target
and further from the competitor over time, but this fol-
lowed an initial small decrease in distance from the com-
petitor in the early period. The eyes initially moved
towards the competitor in the first fixations of the trial,
before steadily moving away from it.

Effects of pitch value

The effect of time was modulated by pitch value. At the
outer pitch values, fixations began to rapidly converge on
the target picture by around 500-600 ms, and by around
700-800 ms, fixations were within the target picture inter-
est area, on average. However, as the pitch values
approached values just above the category boundary, the
distance from the target gradually increased. At the values
0.5-1, fixations were substantially further from the target
compared to the outer values. This pattern of increased tar-
get distance suggests that participants’ category bound-
aries were centred around the values 0.5-1, rather than 0.

While the bulk of the pitch value effect occurs as values
approach these values just above the category boundary,
there is also an interesting effect towards the periphery of
the mid tone, which appears in the lower half of the plot,
in the later part of the trial. There is a peak where fixations
are closest to the target that emerges between 800 and
1200 ms and which occurs at the distribution peak for the
mid tone (pitch —2.5). Fixations are closest to the target at
the distribution peak, and further from the target towards
the edge of the distribution. This differs from the positive
pitch values, as well as the VOT models. The fact that this
effect appears in the tone models, but not in the VOT models
may reflect language-specific properties of the phonological
system. The consonant system in Cantonese has only two
levels of aspiration: aspirated and unaspirated. However,
in the tonal system there are three level tones. This

experiment investigated only the high and mid level tones,
but there is also a low level tone. Although it does not occur
in this experiment, this low tone seems to be having an
affect. As the outer regions of the mid tone begin to slip into
low tone territory, the distance from the target increases
slightly, suggesting that activation of this low tone may be
creating an additional cause of uncertainty.

The presence of the low tone at the lower boundary of
the mid tone seems to have had an additional effect.
Towards the end of the trial, an asymmetry emerges in
the target distance. The pattern of fixations suggests that
the participants’ category boundaries are approximately
half a continuum step higher than the experimental
boundary. This may be due to the pressure of the low tone.
This is supported by evidence from production data show-
ing that there is less variation in the pitch height of the mid
tone (Siddins & Harrington, 2015), presumably due to pres-
sure from the surrounding tones. The effect does not occur
in the high tone, which has no tone above it.

Effects of acoustic cue variance

In Experiment 2, there was a significant interaction
between distribution condition and pitch over time in both
the target distance and the competitor distance models. In
the target distance model, the effect of distribution condi-
tion was greatest near the category boundary, and
emerged around 700 ms. There was also a similar effect
at the category boundary in the early fixations, around
200-400 ms. Contrary to expectations, at the central val-
ues, the distance from the target was greater in the low-
variance condition than the high-variance condition. A
similar effect was found in the competitor distance models,
where distance was shorter in the low-variance condition.
Based on the results of Clayards et al. (2008), we predicted
greater competitor distance in the low-variance condition.

This result is probably due to a mismatch between the
experimental distribution and participants’ initial category
boundaries, as noted above. The VOT models suggest that
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low-variance input leads to clearer, more certain percep-
tion. However, in the pitch experiment, the experimental
category boundaries appear to be slightly lower than par-
ticipants’ initial estimated boundaries. This leads to quite
different effects of the distribution. When participants
encounter an input distribution that does not match their
expectations, this leads to greater uncertainty in the low-
variance condition.

Effects of cue variance also emerged at the category
means. In both groups, there seemed to be a bias toward
the mid tone (negative centred pitch values): fixations
were more likely to be closer to the target and further from
the competitor for the positive pitch stimuli than the neg-
ative pitch stimuli. This effect was stronger in the low-
variance condition. The pattern lends further support to
the idea that the low-variance condition leads to less flex-
ible representations.

General discussion

The present study investigated the temporal dynamics
of perceptual uncertainty during Cantonese speech percep-
tion. Participants saw pictures of word pairs consisting of
aspirated and unaspirated counterparts (Experiment 1) or
mid and high tone counterparts (Experiment 2) and heard
an auditory stimulus sampled from acoustic cue continua
corresponding to the word pairs. Two experimental manip-
ulations were expected to affect participants’ level of per-
ceptual uncertainty. The first manipulation was the
acoustic cue value; i.e. the location of the cue along the
acoustic continuum between speech sounds. The second
manipulation was the degree of within-category acoustic
variance. Participants heard either a relatively large
amount of variation (the high-variance distribution condi-
tion) or relatively little variation in acoustic stimuli (the
low-variance distribution condition). Eye movements to
the pictures were monitored until participants selected a
picture by clicking on it. For each experiment, two sets of
models were run. The first examined the distance of fixa-
tions from the target picture, and the second examined
the distance from the competitor picture.

We expected to see gradient effects in the distance of fix-
ations from the target and competitor pictures, depending
on the location of the cue along the continuum, with fixa-
tions landing further from the target as the cue approached
the category boundary (McMurray et al., 2009). We also
expected that fixations would be further from the target
in the high-variance, compared to the low-variance condi-
tion (Clayards et al., 2008). One of the most interesting
aspects of the study was the investigation of the time course
of effects. Given that the time course of statistical distribu-
tion effects has not previously been investigated, the tem-
poral aspects of the present study were largely exploratory.

Effect of time

Analysis of eye movement data using Generalised Addi-
tive Mixed Modelling (GAMM) revealed that the distance of
fixations both from the target picture and from the
competitor picture in Experiment 1 followed a nonlinear
trajectory over time. Overall, the eyes tended to move

towards the target and away from the competitor over time.
However, this pattern was not constant over the whole trial.
Up until around 200 ms after presentation of the auditory
stimulus, the model plots show that target distance
remained steadily around 280 pixels, as the eyes focused
on the fixation cross. At around 200 ms, the eyes began to
move away from the fixation cross. In the early part of the
trial, between 200 ms and 400 ms, there was an initial small
decrease in distance from the competitor, indicating that fix-
ations initially moved towards the competitor in this per-
iod, before steadily moving away from it. This suggests
that if participants fixate the competitor picture, the most
likely point in time that they will do so is in the first fixa-
tions of the trial. Finally, from around 400 ms onwards,
the distance of fixations from the target steadily decreased
and distance from the competitor increased until the end of
the trial. The time course of effects in Experiment 2 was
essentially the same as Experiment 1. Fixations initially
remained on the fixation cross, then shifted briefly towards
the competitor before moving steadily towards the target
picture for the remainder of the trial.

Effects of acoustic cue value

Models for both target distance and competitor distance
showed that the acoustic cue value had a nonlinear effect
on participants’ perceptual uncertainty. The distance of fix-
ations from the target and competitor over the course of the
trial varied as a function of VOT value (Experiment 1) or
pitch (Experiment 2). As predicted, in the VOT experiment,
the target distance increased as VOT values approached the
category boundary. This is consistent with the results of
earlier studies that have found gradient effects of VOT value
in discrimination of stop contrasts (e.g. McMurray, Aslin,
etal., 2008; McMurray et al., 2002). Conversely, in the com-
petitor distance models, the distance from the competitor
was smaller at the central VOT values, compared to the
outer values, providing further support for the conclusion
that uncertainty increased as cue values approached the
category boundary. The same nonlinear effect of cue value
was also found in Experiment 2, with target distance
increasing and competitor distance decreasing as the pitch
value approached what seemed to be participants’ initial
category boundary, just above the boundary set in the
experiment. This shows that the same kind of gradient sen-
sitivity that has been shown in VOT perception also applies
to perception of pitch height during tone perception.
Although gradient sensitivity to pitch height in Cantonese
has been investigated in offline identification and discrim-
ination tasks (e.g. Francis, Ciocca, & Ng, 2003), as far as we
are aware this is the first investigation of native Cantonese
tone perception using eye movement data, which provides
a measure of participants’ uncertainty over and above their
final category judgment. The results additionally demon-
strate that this is a nonlinear effect.

As for the time course of the cue value effects on target
distance, changes in eye movements over time occurred
differently at different points on the VOT/pitch continua.
Differences between VOT values in Experiment 1 began
to emerge around 400-500 ms after stimulus presentation.
This was consistent with a previous study that examined
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proportions of fixations on the target picture object during
English voiced-voiceless stop discrimination (McMurray
et al., 2009). At the outer regions of the VOT continuum,
after a period of relative stability, fixations began to rapidly
approach the target picture from around 500 ms. The eyes
generally reached the target picture interest area by about
700-800 ms, on average. However, at the central VOT val-
ues, a substantial amount of uncertainty remained
throughout the trial. The distance from the target
remained considerably greater near the category boundary
than at the outer VOTs right until the end of the trial.
There were some intriguing differences in the time
course between the target distance and competitor dis-
tance models. Specifically, the competitor distance effects
emerged earlier in the trial, compared to the target dis-
tance effects. In the competitor distance models, the effect
of VOT starts to emerge around 150-300 ms after stimulus
presentation, compared to around 500 ms in the target dis-
tance models. The competitor distance decreases for the
outer VOT values earlier than for the central VOT values.
This suggests that when the VOT is near the category
boundary, it takes participants longer to move their eyes
away from the fixation cross for the first fixation of the
trial. The early effects in the competitor models are proba-
bly due to participants fixating the competitor mostly in
the first fixation or two, after which time they reject it in
favour of the target. It is interesting that even in these very
early ‘error’ fixations, the acoustic cue value affects the
speed with which the eyes move towards the competitor.
The overall pattern of effects in Experiment 2 was very
similar to Experiment 1. However, the pattern was shifted
upwards. While the largest effect of VOT in Experiment 1
occurs near the category boundary, centred pitch 0, the lar-
gest effect of pitch value in Experiment 2 centres around
0.5-1. This suggests that participants’ category boundaries
were higher than those specified in the stimulus distribu-
tions. In addition, in Experiment 2, the effect of pitch value
on target distance emerged earlier than the VOT effect in
Experiment 1, in the first fixations of the trial. There is also
another interesting difference between the VOT and pitch
cue effects. There appears to be little effect of cue value at
the edges of the VOT cue continuum or in the positive pitch
values (i.e. the high tone). However, in the lower half of the
plot for pitch (Fig. 5), distance from the target starts to
increase again at the edge of the continuum. This is proba-
bly due to an influence of the low level tone. While the pre-
sent experiment investigated only the high and mid level
tones, Cantonese also has a third level tone, the low tone.
The pitch height of the low and mid tones is closer together
than the pitch of the mid and high tones. It is likely that at
the lower edge of our continuum, participants began to
have activation from this low tone, adding another source
of uncertainty to the eye movements. Indeed, acoustic stud-
ies of production data show that the variance in the mid
tone is much less than either the high or low tones
(Siddins & Harrington, 2015), probably as a result of pres-
sure from the surrounding low and high tones. This also
seems to have had a knock-on effect on the perception of
the category boundary in the present experiment. There is
an asymmetry in the fixation distance in the later part of
the trial. Participant category boundaries seem to be shifted

up by half a step relative to the stimuli category boundary.
Since there is no tone higher than the high tone, this crowd-
ing effect is absent at the top edge of the continuum. And
since there are only two levels of aspiration (aspirated
and unaspirated) in Cantonese consonants, the effect is
absent in the VOT models also.

Effects of distribution condition

A very interesting pattern of effects emerged for distri-
bution condition. Based on the results of Clayards et al.
(2008), we hypothesised that the fixations would fall fur-
ther from the target and closer to the competitor in the
high-variance, compared to the low-variance condition.
In Experiment 1, the effect of distribution was not signifi-
cant in the target distance models. However, the competi-
tor distance models showed a significant nonlinear
interaction between condition and VOT over time. The
finding of an effect of cue variance replicated the findings
of Clayards et al. (2008), but with a continuous measure
of competitor distance rather than fixation proportions.
In a visual world eyetracking experiment, Clayards et al.
(2008) presented native English listeners with a 12-step
VOT continuum and pictures of English /b/ and /p/ words,
presented in either a high- or a low-variance condition.
Their results showed that categorisation accuracy and the
proportion of fixations on the competitor depended on
the degree of variance. The same overall pattern of results
that Clayards et al. (2008) found in English voiced and
voiceless stops was found in the present study in Can-
tonese words beginning with aspirated and unaspirated
stops and aspirated and unaspirated affricates (Experiment
1). This finding lends further support to the idea that lis-
teners are sensitive to the amount of acoustic variance in
the signal and that increased variance leads to increased
perceptual uncertainty.

Clayards et al. (2008) hypothesised that the largest dif-
ferences in looks to the competitor object between the
low-variance and high-variance conditions would be at
the VOT values closest to the category boundaries. How-
ever, due to a smaller number of participants in their
experiment and a different method of analysis, the rela-
tively small number of trials at the most central VOT values
meant that there was insufficient power to test this predic-
tion for all VOTs. One of the aims of present experiment
was to test this hypothesis by including these central
acoustic values in the analysis. With the increased power
of GAMMs, along with a larger number of participants,
we were able to evaluate the fixations at these VOT values.
Clayards and colleagues’ predictions were upheld. The
greatest differences emerged at the central VOT values.

Another aim of the present study was to uncover the
time course of perceptual uncertainty effects by analysing
changes in eye movement behaviour over the course of the
trial. While Clayards et al. (2008) reported between-
condition differences in the proportion of fixations col-
lapsed over the trial, we were interested in when these dif-
ferences emerged and how they changed over the course of
the trial. Using a continuous measure of distance and using
GAMMs for analysis enabled us to also investigate the tem-
poral effects. Effects of distribution condition emerged very
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early, in the first fixations of the trial and increased later in
the trial, with maximal effects after around 500 ms.

It is interesting to note the different time course of
effects that emerged in the present study by examining
eye movements to both the target and competitor pictures
separately. In previous eye movement studies that have
used a VOT continuum to investigate acoustic cue process-
ing, where analysis has focused on fixations to the target
(e.g. McMurray et al., 2009), VOT effects emerged around
600 ms. In studies that have included both target and com-
petitor by analysing the proportion of looks to each cate-
gory, e.g. [b/ vs. [p/ (e.g. McMurray, Clayards, et al,
2008), the effects seem to emerge earlier. In the present
study, effects of the VOT value emerged in the target dis-
tance models around 500-600 ms after stimulus presenta-
tion. In the competitor distance models, the cue value
effect emerged early, with fixations further from the target
at the category boundary in the first fixations of the trial,
between 150 and 300 ms.

In Experiment 2, unlike in the VOT models, the interac-
tion between condition and pitch over time had a significant
effect on target distance. As in the VOT models, differences
between conditions were most obvious at the central pitch
values, emerging around 500-600 ms. However, in the pitch
models, the competitor distance was greater in the low-
variance condition than the high-variance condition. This
result was counter to our predictions. Based on the results
of Clayards et al. (2008), we had expected to see greater dis-
tance from the target in the high-variance condition.

We believe that this result may be related to the asym-
metry in the eye movements with respect to the category
boundary. It seems that in the pitch experiments the mid
point between the two peaks of the distribution was lower
than participants’ category boundary estimates. Under
these conditions, the fixations were further from the target
in the low-variance condition. Around the category mean
and periphery of the high tone, starting from around
200 ms until late in the trial, fixations were further from
the target in the low-variance condition, compared to the
high-variance condition. Conversely, around the category
mean and periphery of the mid tone, fixations were closer
to the target in the low-variance condition, compared to
the high-variance condition. The effect started slightly
later in the mid tone, around 400-500 ms. In the low-
variance condition, fixations were closer to the target
when it was a mid tone (negative pitch values) and further
from the target when it was a high tone (positive pitch val-
ues). If participants’ initial category boundaries were
higher than the boundaries set in the experiment, they
would hear more tokens as mid tone. This effect seems to
have been stronger in the low-variance condition. This pat-
tern suggests that a low-variance distribution may lead to
more robust categories, but that this in turn leads to a
trade-off when tokens deviate from the expected values.
Deviations from these expectations are more surprising,
and therefore lead to a greater level of uncertainty.

In addition, differences between these two experiments
may also be partially attributed to acoustic differences
between stimuli. In general, tones seem to be more suscep-
tible to perceptual error and represented less precisely,
compared to consonant contrasts, such as the VOT cue

(Cutler & Chen, 1997; Taft & Chen, 1992)and, at least in Man-
darin, are more mutable than either consonants or vowels
(Wiener & Turnbull, 2015). In fact, the overall level of per-
ceptual uncertainty seems to have been higher in the tone
experiments, compared to the VOT experiments, as indi-
cated by the range of cue values over which target distance
was relatively high. In the VOT experiments, the biggest
effects of VOT occur in the central three to four steps of the
continuum, with largely reduced effects in the outer values.
In the pitch experiments, the effects spread over up to five
steps of the continuum. This suggests that participants had
less precise category boundaries for tones than for the con-
sonants. This may have given a further disadvantage to par-
ticipants in the low-variance condition when it came to
processing tokens towards the edges of their distribution.

One surprising finding of this study was that we did not
see learning effects over the course of the experiment. That
is, the effect of trial was not significant. This is interesting
from the point of view of the effects of acoustic variance
conditions. Since the distributional effects are expected
to occur through a learning process, we expected to find
changes in the pattern of eye movements over time, as par-
ticipants gained experience with the distributions. This
was not the case. The effect of cue variance was constant
throughout the experiment. This points to a more global
strategy that participants adopt in response to uncertainty.
Namely, to look around more under conditions of
increased uncertainty. A strategy such as this can explain
the very early effects in the competitor models, as well
as the lack of trial effects.

The present results show that for a given acoustic cue,
the degree of variance has an immediate effect on the
degree to which the cue is used for discrimination. The
cues used in the present study were contrastive cues in
the listeners’ native language. This raises the question of
how variance affects other acoustic cues present in the
speech signal, such as indexical cues. In principal, the
way that listeners learn to use and process these two types
of cues is presumably affected by the same mechanisms. At
the beginning of life, infants presumably know little about
which types of cues are contrastive and which cues are
indexical.’ But experience of the way in which certain vari-
ations in speech covary with speakers, while other varia-
tions occur consistently over many speakers provides
information from which infants can learn to distinguish
between indexical and contrastive cues. Therefore the same
mechanism that enables learners to acquire contrastive
dimensions may also enable them to lower the weighting
of cues not relevant to the task at hand.

The relationship between these contrastive and non-
contrastive cues may be vital to the process of acquiring
speech categories. Rost and McMurray (2010) demonstrated
a crucial role for indexical cue variation in infant language
acquisition. In a series of experiments in which phonetic
cues were varied or held constant, 14-month-olds were able

5 There is evidence that some information about the native language is
learned in the womb, such as recognising the mother’'s voice and
recognising some prosodic properties of the native language. However,
even if learned before birth, this knowledge comes from experience with
the ambient language.
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to acquire the voicing contrast only when indexical speaker
cues were varied. Statistical information in VOT values
themselves within the same speaker was not sufficient for
learning, but variance in non-contrastive indexical dimen-
sions in the multi-speaker condition enabled infants to
extract therelative invariance in the contrastive VOT dimen-
sion. Thisis consistent with the assumption in learning mod-
els that learning involves not only acquisition of knowledge,
but also learning to ignore cues that are not effective dis-
criminators (Baayen, Hendrix, & Ramscar, 2013).

One question is whether the effects of these experi-
ments would generalise to new phonetic environments.
For example, during or following exposure to high-
variance aspiration or pitch in the present study, would
participants also display high-uncertainty behaviour in
response to unmanipulated stimuli? The present design
did not allow for testing this kind of generalisation, as all
stimuli were in the same variance condition and there were
no separate training and test phases. That is, the whole
experiment was both training and test. However, Idemaru
and Holt (2011, 2014) have shown that when listeners were
presented with a reliable cue (VOT) and a less reliable cue
(f0) in one of two voicing contrasts, beer-pier and deer-
tear, listeners lowered their use of the less reliable cue for
discrimination between the word pair, but the effect did
not generalise to the other place of articulation.

While the present results investigated individual cues in
isolation, real-world speech rarely varies by a single cue. For
example, Lisker (1986) identified as many as 16 different
cues that affect native English listeners’ identification
responses to the voiced-voiceless contrast in stops, such
as rabid-rapid. Jongman and colleagues (Jongman,
Wayland, & Wong, 2000; McMurray & Jongman, 2011)
found 20 cues involved in English fricative discrimination.
So, the process of raising or lowering the weighting of par-
ticular cue values normally occurs in the context of multiple
cues. These cues all compete for relevance in relation to the
particular goals of the listener. Presumably, any detectable
cue can potentially contribute to the process of discrimina-
tion, and the size of the contribution depends in part on its
variance. However, covariance with other cues has also
been shown to be an important factor and may even work
to counter the effects of variance and improve discrimina-
tion. For example, both voice onset time and vowel length
covary with speaking rate. Toscano and McMurray (2012)
found that, rather than normalising for speaking rate, lis-
teners may instead use vowel length in combination with
VOT as a cue to the voicing distinction in stops. The combi-
nation of the two cues together reduces the uncertainty that
would result from variance in the single cue.

Cue weighting has been investigated in categorisation
of non-linguistic auditory stimuli. Holt and Lotto (2006)
presented participants with two categories distinguished
by two acoustic dimensions (centre frequency and modu-
lation frequency). In a pre-test, each dimension was tested
separately to establish the appropriate step size for the
continuum that would achieve an accuracy rate of 70%.
However, when cues were combined, participants exhib-
ited a bias towards use of the centre frequency cue for
discrimination (Experiment 1). This bias remained even
when the between-category acoustic distance for centre

frequency was reduced (Experiment 2). However, when
the within-category acoustic variance of modulation fre-
quency was reduced, the relative cue weighting for modu-
lation frequency increased (Experiment 3). Idemaru and
Holt (2011, 2014) additionally showed that listeners track
covariance of acoustic cues and dynamically adjust weight-
ing of cues in response to changes in cue covariance.

Toscano and McMurray (2010) provided a demonstra-
tion of how listeners can adjust the relative weights of differ-
ent cues in the signal based on their distributional statistics,
using Mixture-of-Gaussians simulations. Importantly, when
simulations were based on multidimensional distributions,
where each cue lay on a separate dimension, the models
failed to account for cue integration effects. Only when cues
were integrated in a cue-weighting updating learning
model, did the model reflect the interaction of effects from
the two cues found in behavioural data. This suggests that
the effects do not emerge purely from the statistics alone
and that the learning process itself plays an important role.

The present results open up several questions for further
investigation. This study involved native Cantonese listen-
ers, who, with a lifetime of experience with the language,
presumably had well-established categories for the con-
trasts investigated. We found that the informativity of the
input can have immediate effects on processing these
established categories. An interesting question is whether
and how the degree of within-category variance affects
acquisition of new speech categories, either in infant first
language learners or in adult second language learners.

The present work focused on within-category variance.
Another factor that is likely to affect speech category
acquisition and processing is the acoustic interval between
categories. As discussed in the introduction, it has been
proposed that certain acoustic properties that are particu-
lar to speech with infants help them to acquire their native
phonology. Studies have shown that speech with infants
tends to have increased acoustic intervals, compared to
speech with adults, at least for some speech contrasts. This
kind of distribution has been mimicked, at least in L2
acquisition (Escudero et al., 2011; Wanrooij et al., 2013).
But infant speech also has increased variance, compared
to speech with adults. Further work is needed to tease
apart the effects of these two properties.
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Appendix A. Model summary of target distance Experiment 1

A. Parametric coefficients Estimate Std. error t-value p-value
(Intercept) 218.1934 2.4675 88.4269 <0.0001
Condition = high variance 1.8210 3.1827 0.5722 0.5672
Target Position = bottom right 24.5794 1.1176 21.9920 <0.0001
Target Position = top left -19.5370 1.1153 -17.5176 <0.0001
Target Position = top right 6.3936 1.0787 5.9272 <0.0001
B. Smooth terms edf Ref.df F-value p-value
s(Time, VOT) 65.7065 67.7241 98.4949 <0.0001
ti(Time, Target Pos = bottom left) 1.0020 1.0021 895.7533 <0.0001
ti(Time, Target Pos = bottom right) 3.9897 3.9996 360.9250 <0.0001
ti(Time, Target Pos = top left) 3.9793 3.9991 321.4577 <0.0001
ti(Time, Target Pos = top right) 3.9414 3.9965 254.7427 <0.0001
s(Time, SubjectTarget) 1827.0807 2145.0000 11.2009 <0.0001

Appendix B. Model summary of competitor distance Experiment 1

A. Parametric coefficients Estimate Std. error t-value p-value
(Intercept) 328.7309 2.3943 137.2987 <0.0001
Condition = high variance 1.1495 3.2648 0.3521 0.7248
Competitor Position = bottom right 22.3582 1.1010 20.3079 <0.0001
Competitor Position = top left —24.9015 1.1028 —22.5794 <0.0001
Competitor Position = top right 5.4476 1.1286 4.8268 <0.0001
B. Smooth terms edf Ref.df F-value p-value
te(Time, VOT, Cond = low variance) 53.4448 60.7526 14.0871 <0.0001
te(Time, VOT, Cond = high variance) 50.5629 59.2332 55.6577 <0.0001
ti(Time, Comp Pos = bottom left) 3.7986 3.8286 84.5055 <0.0001
ti(Time, Comp Pos = bottom right) 3.9394 3.9480 120.1620 <0.0001
ti(Time, Comp Pos = topleft) 3.9687 3.9731 118.9750 <0.0001
ti(Time, Comp Pos = top right) 3.7356 3.7714 87.2358 <0.0001
s(Time, SubjectTarget) 1707.9899 2143.0000 8.8713 <0.0001

Appendix C. Model summary of target distance Experiment 2

A. Parametric coefficients Estimate Std. error t-value p-value
(Intercept) 233.5211 2.7040 86.3600 <0.0001
Conditionw 0.2531 3.9043 0.0648 0.9483
Target Pos = bottom right 13.1427 1.2193 10.7791 <0.0001
Target Pos = top left —15.0850 1.2133 -12.4332 <0.0001
Target Pos = top right -1.2133 1.1551 —1.0504 0.2935
B. Smooth terms edf Ref.df F-value p-value
te(Time, pitch, Cond = low variance) 62.0047 66.4747 87.4145 <0.0001
te(Time, pitch, Cond = high variance) 63.7441 68.0654 81.5326 <0.0001
ti(Time, Target Pos = bottom left) 1.1556 1.1963 676.2567 <0.0001
ti(Time, Target Pos = bottom right) 3.9791 3.9969 273.9594 <0.0001
ti(Time, Target Pos = top left) 3.9738 3.9958 261.2926 <0.0001
ti(Time, Target Pos = top right) 2.8467 3.3261 260.6682 <0.0001

s(Time, SubjectTarget) 873.1670 1049.0000 14.9350 <0.0001
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Appendix D. Model summary of competitor distance Experiment 2
A. Parametric coefficients Estimate Std. error t-value p-value
(Intercept) 324.2913 2.4692 131.3371 <0.0001
Condition = high variance 0.0748 3.4645 0.0216 0.9828
Competitor Position = bottom right 9.5556 1.1813 8.0890 <0.0001
Competitor Position = top left —23.4422 1.1812 —19.8457 <0.0001
Competitor Position = top right -1.8628 1.2080 —1.5420 0.1231
B. Smooth terms edf Ref.df F-value p-value
te(Time, pitch, Cond = low variance) 50.0866 57.7930 82.9908 <0.0001
te(Time, pitch, Cond = high variance) 51.9104 60.6567 78.8503 <0.0001
ti(Time, Comp Pos = bottom left) 3.7987 3.8324 130.6464 <0.0001
ti(Time, Comp Pos = bottom right) 3.8077 3.8361 111.8629 <0.0001
ti(Time, Comp Pos = top left) 3.9669 3.9721 127.8361 <0.0001
ti(Time, Comp Pos = top right) 3.7000 3.7449 105.7310 <0.0001
s(Time, SubjectTarget) 848.9467 1049.0000 12.6510 <0.0001

Appendix E. Raw data Experiment 1
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Raw data for target distance (top row) and competitor
distance (bottom row) over time per VOT value in the
low-variance (left panels) and high-variance conditions
(right panels) in Experiment 1. Data was aggregated to
10 Hz (100 ms intervals) for the purposes of plotting. Time
is on the x-axis. Centred VOT value is on the y-axis. Cate-
gory means are at VOT —2.5 (for the unaspirated stimuli,
e.g. bou2) and 2.5 (for the aspirated stimuli, e.g. pou2). Dis-
tance from the target/competitor is on the z-axis, repre-
sented by colour codes. Higher values (shown in yellow)
indicate a relatively greater distance; lower values (shown
in blue) indicate a relatively shorter distance. The key at
the bottom left of each panel shows the corresponding
pixel values and z-limits for each model plot. Note that
the height range differs between the target and competi-
tor: the target plots range between 80 and 320 pixels,
whereas the competitor plots range between 200 and
440 pixels. (The scale is the same.) To assist with interpre-
tation of the topographical plots, an illustration showing
the relation of the topographical plots of to line plots of
the same raw data is provided in Appendix G.

Appendix F. Raw data Experiment 2

J.S. Nixon et al./Journal of Memory and Language 90 (2016) 103-125

Raw data for target distance (top row) and competitor
distance (bottom row) over time per pitch value in the
low-variance (left panels) and high-variance conditions
(right panels) in Experiment 2. Data was aggregated to
10 Hz (100 ms intervals) for the purposes of plotting. Time
is on the x-axis. Centred pitch value is on the y-axis. Cate-
gory means are at pitch —2.5 and 2.5. Distance of fixations
from the target/competitor is on the z-axis, represented by
colour codes. Higher values (shown in yellow) indicate a
relatively greater distance; lower values (shown in blue)
indicate a relatively shorter distance. The key at the bot-
tom left of each panel shows the corresponding pixel val-
ues and z-limits for each model plot. Note that the height
range differs between the target and competitor. (The scale
is the same.)
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Appendix G. Illustration of the relation between topographic plots and line plots.

Low variance condition:
200 320 440

VOT (centred)

-200 200 600 1000
Time (ms)

300 400

Distance from competitor

200

I —r T 1T T 1
-200 200 600 1000

Time (ms)

This illustration is intended to assist with interpreta-
tion, particularly for readers who are unfamilar with topo-
graphic plots. The plots show the raw data for Competitor
Distance in Experiment 1. The same data are represented
in two ways. In all panels, time is on the x-axis. In the topo-
graphic plots (upper panel), centred VOT value is plotted
on the y-axis. In the line plots (lower panel), in contrast,
centred VOT value is represented as individual, colour-
coded lines. For each value of centred VOT, the lines at
the right edge of the topographic plot panels indicate the
line colour in the line plot and the corresponding location
on y-axis of the topographic plot. In the topographic plots,
distance from the competitor is plotted on the z-axis, rep-
resented by colour codes. Higher values (shown in yellow)
indicate a relatively greater distance; lower values (shown
in blue) indicate a relatively shorter distance. The key at
the top left of each panel shows the corresponding pixel
values and z-limits for each model plot. In the line plots,
in contrast, distance from competitor is represented on
the y-axis.
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