ACID BASE DISTURBANCE

An approach to interpretation of blood gas:

- Is the patient acidaemic or alkalaemic?
 - <7.35 acidaemic
 - >7.45 alkalaemic
- What is the primary acid base disorder?

primary disorder	primary change	compensation
metabolic acidosis	↓ HCO ₃	↓ PaCO₂
metabolic alkalosis	↑ HCO₃	↑ PaCO ₂
respiratory acidosis	↑ PaCO ₂	↑ HCO3
respiratory alkalosis	↓ PaCO₂	acute = 0.75 rise in HCO3 every 1 kPa \uparrow PaCO2 chronic = 3.0 rise in HCO3 every 1 kPa \uparrow PaCO2 \downarrow HCO3 acute = 1.5 fall in HCO3 every 1 kPa \downarrow PaCO2 chronic = 3.5 fall in HCO3 every 1 kPa \downarrow PaCO2

- Determine expected compensatory responses.
 If the actual and the expected response are different, there may be a secondary acid-base disturbance.
- Anion gap

 $AG = (Na^{+} + K^{+}) - (CI^{-} + HCO^{3-})$

Normal = 8 - 16

Increased AG \Rightarrow increased AG metabolic acidosis

AG made up of unmeasured anions, consist of proteins, mainly albumin. Hence, hypoalbuminaemia can reduce the baseline anion gap so that patient may not have a high anion gap even in the presence of a disorder which usually produces an increased in anion gap. AG reduced by approx 2.5 mmol/L for every 10g/L fall in albumin

Corrected AG = 0.2(albumin) x 1.5(phosphate)

The fall in HCO₃ should be of comparative magnitude with the increase in AG. Otherwise, there is a co-existing normal AG acidosis or a metabolic alkalosis.

Respiratory acidosis and alkalosis is mentioned elsewhere under respiratory problems.

METABOLIC ACIDOSIS

Causes: Increase anion gap (list not exhaustive) ketoacidosis - diabetic, alcoholic, starvation lactic acidosis - Type I and II renal failure salicylic acid paraldehyde formaldehyde ethanol methanol ethylene glycol Normal anion gap (hyperchloraemic acidosis) Hypokalaemic – GI Loss (below pylorus) Renal tubular acidosis Hyperkalaemic – Renal tubular acidosis (I and II) Diabetic ketoacidosis with insulin treatment Posthypocapnic acidosis

Adverse Effects:

CVS - decrease contractility, arrhythmia, increase sensitivity to catecholamine arteriolar dilation

Resp - hyperventilation

CNS – obtundation, coma

Metabolic – effects on glycolysis, O2 dissociation etc...

Management :

- treat underlying cause
- HCO3 treatment should be considered in hyperchloraemic metabolic acidosis when pH < 7.2

Problems with NaHCO₃ administration

- 1. Na load
- 2. fluid load
- 3. osmolar load
- 4. intracellular acidosis
- Dialysis

METABOLIC ALKALOSIS

Causes: HCO₃ gain Exogenous HCO₃ gain Conversion of citrate, acetate Loss of H⁺ Urine Cl⁻ < 10mmol/L (saline responsive) GI loss – vomiting, villous adenoma Renal Loss – diuretics, nonreabsorbable anion Rapid correction of chronic hypercapnia Urine Cl⁻ >10mmol/L (saline unresponsive) mineralocorticoid excess glucocorticoid excess hypokalaemia hypomagnesmia refeeding alkalosis etc

Adverse Effects:

CVS - arrhythmia, arteriolar constriction

Resp - hypoventilation

CNS - decrease cerebral blood flow, tetany, delirium

Metabolic – effects on O2 dissociation, glycolysis etc...

Management:

- treat underlying cause
- adequate volume
- replace K⁺
- consider acetazolamide (250mg oral)