Comparative Efficacy and Toxicity of NSAIDs

Dr. Priscilla Wong
Resident Specialist
Division of Rheumatology
Department of Medicine and Therapeutics
Prince of Wales Hospital

17 MILLION Americans use various NSAIDs on a daily basis

Number of prescriptions for older patients is approximately 3.6 fold higher than that for younger patients

5% hospital admission are related to adverse effects of NSAIDs
Questions to be answered...

• Are there clinically importance differences in the efficacy and toxicity between the different NSAIDs?
• If there are differences, which are the ones that are more effective and associated with fewer adverse effects?
• What are the effective therapeutic approaches that could reduce the adverse effects of NSAIDs?
Themes - NSAIDs

- Mechanism of action
- Classification
- Comparative analgesic efficacy
- Comparative gastrointestinal (GI) toxicity
- Comparative cardiovascular (CV) toxicity
- Strategies for prevention of toxicity

NSAID - Mechanism of action

Functions of cyclo-oxygenase (COX)

COX-1: Constitutive
- Present in every organ
- Homeostasis
 - Protection of gastric mucosa
 - Platelet activation
 - Renal functions
 - Macrophage differentiation

COX-2: Inducible
- Present in inflammatory and neoplastic sites
- Also in small intestine, kidney, brain, uterus, ovary
- Pathologic:
 - Inflammation
 - Pain
 - Fever
 - Tissue Repair
- Physiologic:
 - Reproduction
 - Renal function

NSAID - Mechanism of action

- **Arachidonic Acid**
- **COX-1** "Constitutive"
 - GI mucosa
 - Prostaglandins
 - GI mucosal protection
- **COX-2** "Inducible"
 - Platelet
 - Thromboxane A2
 - Hemostasis
 - Prostaglandins
 - Mediate pain, inflammation, fever

NSAID - Mechanism of action

- **Arachidonic Acid**
- **COX-1** (“Constitutive”)
 - GI mucosa
 - Prostaglandins
 - GI mucosal protection
- **COX-2** (“Inducible”)
 - Non-selective NSAIDs
 - Platelet
 - Thromboxane
 - Prostaglandins
 - Hemostasis
 - Mediate pain, inflammation, fever

Classification of NSAIDs by chemical structures

Propionic acid
- Ibuprofen (Advil, Brufen)
- Naproxen (Naprosyn, Synflex)
- Ketoprofen (Ouvail)

Acetic acids
- Diclofenac (Arthrotec, Cataflam, Voltaren)
- Indomethacin (Indocid)
- Sulindac (Clinoril)
- Tolmetin

Oxicams
- Meloxicam (Mobic)
- Piroxicam (Feldene)

Non-acidic
- Nabumetone

Fenamic acid
- Mefenamic

COX-2 inhibitors
- Celecoxib (Celebrex)
- Etoricoxib (Arcoxia)

Classification of NSAIDs by pharmacokinetic properties

<table>
<thead>
<tr>
<th>NSAID</th>
<th>Bio-availability (%)</th>
<th>Half-life (hr)</th>
<th>Volume of distribution</th>
<th>Clearance</th>
<th>Peak (hr)</th>
<th>Renal elimination</th>
<th>Clinical dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibuprofen</td>
<td>>80</td>
<td>2</td>
<td>0.15 L/kg</td>
<td>3.0-3.5 L/h</td>
<td>1-2</td>
<td>45-79</td>
<td>1200-3200</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>50-60</td>
<td>2</td>
<td>0.1-0.2 L/kg</td>
<td>21.0 L/h</td>
<td>2</td>
<td>65</td>
<td>100-150</td>
</tr>
<tr>
<td>Naproxen</td>
<td>95</td>
<td>12-17</td>
<td>0.16 L/kg</td>
<td>0.13 mL/min/kg</td>
<td>2-4</td>
<td>95</td>
<td>500-1000</td>
</tr>
<tr>
<td>Meloxicam</td>
<td>89</td>
<td>15-20</td>
<td>10L</td>
<td>0.4-0.5 L/h</td>
<td>4-5</td>
<td>50</td>
<td>7.5-15.0</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>Not specified</td>
<td>11</td>
<td>400L</td>
<td>27.7 L/h</td>
<td>3</td>
<td>27</td>
<td>200</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>90</td>
<td>2.1</td>
<td>0.1 L/kg</td>
<td>6.9 L/h</td>
<td>≤2</td>
<td>80</td>
<td>200-300</td>
</tr>
<tr>
<td>Etoricoxib</td>
<td>100</td>
<td>22</td>
<td>120L</td>
<td>50 mL/min</td>
<td>1</td>
<td>75</td>
<td>60</td>
</tr>
</tbody>
</table>

Epidemiology of NSAID prescription

- **Proportion of global sales for NSAIDs**
- IMS Health (2008) IMS MIDAS Quantum based on selected markets

Comparative analgesic efficacy: Placebo vs. NSAIDs

NSAIDs have demonstrated short-term efficacy compared with placebo in the treatment of OA

Comparative analgesic efficacy: non-selective (ns) NSAIDs

Agency for Health-care Research and Quality Effective Healthcare Program (UK):

- No clear differences in efficacy among nsNSAIDs at standard doses in treatment of knee, back, or hip pain

Comparative analgesic efficacy: COX-2 inhibitors vs. nsNSAIDs

- No significant differences in efficacy between COX-2 inhibitors and nsNSAIDs in treatment of knee, back, or hip pain

Comparative analgesic efficacy: COX-2 inhibitors vs. nsNSAIDs

• COX-2 inhibitors had equivalent efficacy to nsNSAIDs for treatment of rheumatoid arthritis (RA) and osteoarthritis (OA)
 – Celecoxib 200-800 mg/day
 – Naproxen 1000 mg/day
 – Diclofenac 100-150 mg/day
 – Ibuprofen 2400 mg/day
 – Etoricoxib 60-120 mg/day

Comparative analgesic efficacy
Celecoxib vs. nsNSAIDs

In Successive Celecoxib Efficacy and Safety Study (SUCCESS):

• Celecoxib 200-400 mg/day have efficacy comparable to naproxen 1000 mg/day and diclofenac 100 mg/day for treatment of more than 13,000 patients with OA over 12 weeks

Comparative analgesic efficacy: Etoricoxib vs. nsNSAIDs

- Etoricoxib 90-120 mg/day have greater efficacy compared with naproxen 1000 mg/day over 12 weeks, but similar efficacy over 121 weeks

Overview of adverse effect of NSAIDs

- Anaphylaxis
- Neutropenia
- Anti-platelet
- Liver injury
- Acute renal failure
- Electrolyte abnormalities
- Aseptic meningitis
- Psychosis
- Cognitive impairment
- Myocardial infarction
- Heart failure
- Hypertension
- Dyspepsia
- Peptic ulcer
- GI bleeding

Liver injury

Acute renal failure

Electrolyte abnormalities

Dyspepsia

Peptic ulcer

GI bleeding
Overview of adverse effect of NSAIDs

- Anaphylaxis
- Neutropenia
- Anti-platelet
- Liver injury
- Acute renal failure
- Electrolyte abnormalities
- Aseptic meningitis
- Psychosis
- Cognitive impairment
- Myocardial infarction
- Heart failure
- Hypertension
- Dyspepsia
- Peptic ulcer
- GI bleeding

GI toxicity of NSAID

- 60% Dyspepsia
- 10-30% Endoscopic ulcers
- 1-2% Serious ulcer complications

Risk stratification for GI toxicity

High risk
1. History of a previously complicated ulcer, especially recent
2. Multiple (>2) risk factors

Moderate risk (1-2 risk factors)
1. Age >65
2. High dose NSAID therapy
3. A Previous history of uncomplicated ulcer
4. Concurrent use of aspirin (including low dose), corticosteroids, anticoagulants

Low risk
1. No risk factors

Helicobacter pylori is an independent and additive risk factor

Comparative GI toxicity

Risk of upper gastrointestinal bleeding/perforation with individual NSAIDs from published studies since 1990

Comparative GI toxicity

<table>
<thead>
<tr>
<th></th>
<th>NS-NSAID</th>
<th>COX-2 inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper GI bleed or perforation</td>
<td>RR 4.50; 95% CI 3.82, 5.31</td>
<td>RR 1.88; 95% CI 0.96, 3.71</td>
</tr>
</tbody>
</table>

Concomitant use of low-dose aspirin increases the risk of mucosal damage and eliminates the GI benefits of COX-2 inhibitors

<table>
<thead>
<tr>
<th></th>
<th>COX-2 inhibitors</th>
<th>Aspirin + COX-2 inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper GI bleed or perforation</td>
<td>RR 0.6; 95% CI 0.4, 0.9</td>
<td>RR 1.9; 95% CI 10, 3.6</td>
</tr>
</tbody>
</table>

CV toxicity of NSAID

- Myocardial infarction
- Heart failure
- Stroke
- ↑ Blood pressure

Myocardial infarction
Heart failure
↑ Blood pressure
Stroke
CV toxicity with nsNSAID

CV toxicity with nsNSAID

Comparative CV toxicity: nsNSAIDs

• High dose ibuprofen (rate ratio 1.51; 95% CI 0.96, 2.37) and high dose diclofenac (rate ratio 1.63; 95% CI 1.12, 2.37) were associated with a moderately increased risk of any vascular events compared with placebo
• Risks associated with naproxen was substantially lower (rate ratio 0.92; 95% CI 0.67, 1.26)

Comparative CV toxicity: Placebo vs. COX-2 inhibitors

• Significant increased risk of myocardial infarction with COX-2 inhibitors compared with placebo

Comparative CV toxicity: rofecoxib vs. naproxen

• In Vioxx Gastrointestinal Outcomes Research (VIGOR) study, rofecoxib 50 mg/day was associated with a 4 fold increase in incidence of myocardial infarction compared with naproxen 1000 mg/day in patients with RA

Comparative CV toxicity: rofecoxib vs. naproxen

• In Adenomatous Polyp Prevention On Vioxx (APPROVe) study, rofecoxib 25 mg/day was associated with increased RR of thrombotic events compared with placebo in patients with a history of colorectal adenomas after 18 months of treatment and an increased risk of myocardial infarction after 15 months of treatment

Comparative CV toxicity: Celecoxib

- Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT)
- Adenoma Prevention with Celecoxib (APC) study
- Prevention of colorectal Sporadic Adenomatous Polyps (PreSAP) study

- Celecoxib 200-400 mg/day was associated with a significant and dose-related increase in death from CV causes in APC, but not in PreSAP or ADAPT
- All 3 studies were subsequently suspended

Comparative CV toxicity: Etoricoxib

- In a pooled analysis of data from 3 trials in Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) program, etoricoxib 60 or 90mg/day was compared with diclofenac 150 mg/day
 - No significant risk of thrombotic CV events (hazard ratio 0.95; 95% CI 0.81, 1.11)

Strategies for prevention of NSAID-related GI toxicity

- NSAIDs should be used at the lowest effective dose for the shortest duration of time
- Long-term use should be avoided
- GI risk stratification
- Treat with gastroprotective agent
- PPIs have superior efficacy to H2RA
- Misoprostol has similar efficacy with PPIs in ulcer prevention

Strategies for prevention of NSAID-related GI toxicity

- **Low risk**: nsNSAID alone
- **Moderate risk**: nsNSAID + PPI/misoprostol, COX-2 inhibitor alone
- **High risk**: Alternative therapy if possible, COX-2 inhibitor + PPI/misoprostol

Strategies for prevention of NSAID-related CV toxicity

- NSAIDs should be avoided in patients with risk factors for CV disease
- NSAIDs should be used at their lowest effective dose for the shortest duration of time
- Naproxen is the drug of choice for patients with CV risk factors
Strategies for prevention of NSAID-related GI & CV toxicity

<table>
<thead>
<tr>
<th>Low GI risk</th>
<th>Moderate GI risk</th>
<th>High GI risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low CV risk</td>
<td>NSAID lone</td>
<td>NSAID + PPI / Misoprostol</td>
</tr>
<tr>
<td>High CV risk (low-dose aspirin required)</td>
<td>Naproxen + PPI / misoprostol</td>
<td>Naproxen + PPI / Misoprostol</td>
</tr>
</tbody>
</table>

- High CV risk is arbitrarily defined as requirement for low-dose aspirin for prevention of serious CV events
- All patients with a history of ulcers who require NSAIDs should be tested for H. pylori, and if the infection is present, eradication therapy should be given

Summary

- No significant difference in efficacy between various NSAIDs in treatment of arthritis pain relief
- NSAIDs are associated with GI and CV adverse effects
- Identify risk factors for GI and CV adverse effects before prescribing NSAID
- Therapy should be tailored according to risk
- Naproxen is the drug of choice for patients with CV risk factors
THANK YOU!
FOR YOUR ATTENTION

Phone : (852) 2632 3131
Email : prischwong@cuhk.edu.hk