Role of Hyperbaric Oxygen Therapy in Carbon Monoxide Poisoning and Other Environmental Pollution Induced Poisoning

> 牛柯琪 Niu Ko Chi M.D., Ph.D.

Chi Mei Medical Center, Tainan, Taiwan The Asia-Pacific Society Undersea and Hyperbaric Medical Society

Content

- A general introduction to acute carbon monoxide poisoning
- Delayed neurological syndrome of carbon monoxide poisoning
- The therapeutic effects of HBO on acute carbon monoxide poisoning and possible mechanisms
- Smoking inhalation
- Cases presentation

Chronic CO Toxicity

Delayed Neurological Syndrome

- A 32 y/o male
- C/O: Deep coma, suicide attempt
- GCS: E2V2M4→ E1V1M2 ; pin-point pupils
- COHb: 37.5% (our ER) ; ICU care
- Endotracheal tube with ventilator support
- EEG: diffuse cortical dysfunction Course: 1st~3rd day: E2VEM2
 - 4th~5th day: E2VEM4 6th day: E4VEM6 \rightarrow E4V5M6
 - 12th day: discharged
- 1 month later: Came back to OPD with metal retardation, and Parkinsonism syndrome

Cerebral Ischemic of a Firefighter post Bre HBO Smoke Inhalation – (1)

Post HBO

- A 43 y/o fireman : after a fire fighting.
- 1ATA O₂, and seemed fine.
- 2 weeks later suddenly lapsed into coma.
- Awake with personality changes, non-verbal, and fed with NG-tube.
- SPECT: marked diffuse cerebral deficits, mostly frontal and basal ganglia.
- HBOT: 1hr/1.5 ATA, 65 HBOTs treatments, combined with PT and OT.

Cerebral Ischemic of a Firefighter Post Smoke Inhalation – (2)

- Result: More alert, cognitive improvement, returned to society.
- SPECT: Overall improvement in CBF and perfusion.

Conclusion:

- Repeated insults and unrecognized.
- Multiple poisoning not shown by HbCO%.
- Long term firefighters receive SPECT after any intensive exposure and routinely each 3 years.

Introduction

- Frequent
 - > 5000~8000 cases a year in France
 - > 12000 fire-associated death a year in USA
- Severe
 - > Delayed neurological squeal and death
- Under-diagnosed
 - > 30% overlooked or misdiagnosed

Sources of Carbon Monoxide (1)

Endogenous

- End product of metabolism
- Byproduct of Heme to biliverdin
- Air pollution
- < 0.001% in the atmosphere
- Nonsmokers > : 1~3% HbCO
- Smokers: 10~15% HbCO

Exogenous

Taiwan: Incompletely combusted gas leak from bath heater
 Poorly function heating system

Sources of Carbon Monoxide (2)

• Exogenous :

> High risk workers:

- Exposed to motor vehicle exhaust fumes
- Fork lift trucks
- Casting worker
- Miner
- Car repair shop worker
- Mechanic
- Fire fighter
- Exposed to methylene chloride (paint remover), propane and methane (undergo more complete combustion, skin and lungs absorb and metabolized to CO in liver).

Numb	er of	Suic	ide At	ttemp 2006~	ot Patie 2012)	ents C	ausing	g a Fire
	2006	20	07 20	800	2009	2010	2011	2012
Suicide	61	4	2 :	32	39	25	22	38
Nur	nber	of C	O Poi	sonir 2006-	ng Sen -2012)	t to El	R in Ta	liwan
	2	2006	2007	2008	2009	2010	2011	2012
CO toxi	zity	2006 919	2007 921	2008 1031	2009 774	2010 829	2011 623	2012 654

Veer	CO Pois	oning	C	Smoke i	nhalation	Tata
rear	М	F	Sum.	М	F	Tota
2000、2001	12	5	17			18
2002	8	8	16	3		20
2003	17(82.4%)	15(66.7%)	32(75.0%)	74	14	120
2004	19(89.5%)	26(69.2%)	45(77.8%)	60	2	107
2005	65(75.4%)	71(74.6%)	136(75.0%)	30	2	168
2006	65(96.9%)	49(87.8%)	114(93.0%)	11		126
2007	62(87.1%)	30(96.7%)	92(90.2%)	24		116
2008	95(88.4%)	34(61.8%)	129(81.4%)	150		279
2009	34(76.5%)	44(86.4%)	78(82.1%)	5		83
2010	35(74.3%)	25(60.0%)	60(68.3%)*	4		64
2011	33(90.9%)	25(68.0%)	58(81.0%)**			60
2012	36(94.4%)	37(59.5%)	73(76.7%)***	5	2	80
總計	481(86.1%)	369(74.7%)	850(81.2%)			

Biochemical Effects of HBOT on CO Poisoning

- Colorless, odorless, and nonirritant toxic gas
- Affinity to Hb (COHb) : CO is 200~250x of O₂

Affinity to myoglobin (COMb) : 40x of O_2

• Toxicity:

 $\rm O_2\text{-}Hb$ dissociation curve shift to left ; resulting in impaired release of oxygen at the tissue level and cellular hypoxia

CO on Cytochrome a₃ Oxidase

- Toxicity: intracellular suffocation
 - Directly binding to mitochondria cytochrome a₃ oxidase to block ATP production
 - Direct CO–mediated damage at the cellular level
 - Most seriously damage to CNS

Cytochrome a₃ Oxidase

CO Poisoning

- Clinical presentation (1) • Cardiovascular system
 - Coronary vessel disease, hypotension, arrhythmia
- Respiratory
 - Pulonary edema, bronchospasm
- Nervous system
- Renal function
- Muscles: Rhabdomyolysis
- Skin: Erythema and blisters
- Endocrines
- Reproductive system
- Blood and hemorrhaeology

CO Poisoning

Clinical presentation (2)

- Tachycardia and tachypnea (compensation for cellular hypoxia)
- Headache, nausea, vomiting
- Presyncope, syncope and seizure (cellular hypoxia, cerebral vasodilatation → cerebral edema)
- Angina, pulmonary edema and arrhythmias
- Classic finding: rare
 - >Cherry-red lips
- Cyanosis
- Retinal hemorrhage

CO Poisoning

Clinical presentation (3)

- Headache (頭痛): 90%
- Nausea and vomiting (意心嘔吐): 50% Pulmonary oedema
- Lethargy : 50%
- Altered conscious level (嗜睡): 30%
- Subjective weakness (魚力): 20%
- Rhabdomyolysis
- Parkinsonism and other movement disorders
- Implicated in a case of post-partum haemorrhage

Hypotension	
Coma	
Exacerbation	0

Arrhythmias

- existing disease Confusion
- Depression
- Ataxia
- · Hearing problems

Houck PM. J Emergency Med, 1

Degree of Severity of CO Poisoning, COHb Levels, and Clinical Features

Severity	COHb level	Clinical features
Occult	> 5%	No apparent symptoms, Psychological deficits on testing
	5-10%	Decreased exercise tolerance in P't with COPD Decreased threshold for angina and Increased threshold for visual stimuli
Mild	10-20%	Dyspnea on vigorous exertion Headache, dizziness, Impairment of higher cerebral function, Decreased visual acuity
Moderate	20-30%	Severe headache, irritability, impaired judgement Visual disturbance, nausea, dizziness, increased RR
Severe	40-50%	Fainting on exertion, Mental confusion
Very severe	60-70% > 70%	Coma, frequently fatal within a few minutes Immediately fatal

CO Poisoning

Clinical presentation (4)

• COHb levels don't correlate with the severity of symptoms in most cases

- Duration of exposure: important factor mediating toxicity; CO environment exposure > 1 hour may increase morbidity
- Animal study show the symptoms can be minimal even with high level of COHb if no dissolved CO presents in the plasma
- Administering HBO therapy shouldn't always undergo according to COHb level

Diagnosis

- Clinical history
- Highly suspected by clinicians
- Check COHb alone maybe insufficient to rule out the diagnosis
- Detailed neurological examination
- CO neuropsychological screen battery
- CT is not helpful to diagnose CO poisoning, can use to rule out other brain conditions

Laboratory Diagnosis of CO Poisoning (1)

- 1. Determination of CO in the blood
- 2. Arterial blood gases and lactic acid levels
- Screening tests for drug intoxication and alcohol intoxication
- 4. Biochemistry

Enzyme: Creatine kinase, Lactate dehydrogenase, SGOT, SGPT, Serum glucose

Laboratory Diagnosis of CO Poisoning (2)

- 5. Myoglobin
- 6. Alkine phosphotase, CK total
- 7. Complete blood count
- 8. EKG
- 9. EEG
- 10. CT scan and MRI if needed
- 11. Neuropsychological testing

Work Plan of HBO Therapy

Hyperbaric Oxygen (HBO) versus Normobaric Oxygen

Hyperbaric facilities available	COHb>25% COHb<25%	HBO HBO if symptoms, NBO if none
No hyperbaric	COHb>40%	Immediate referral to HBO center
facilities	COHb<40% no symptoms	NBO
	COHb<40% /c symptoms	Referral to HBO center

Normobaric vs Hyperbaric Oxygen

- CO elimination: minute ventilation duration of exposure FiO₂ if inspired oxygen
- Half-life of COHb:
 - > room air 1ATA → 5 h 20 min
 - > 100% O_2 1ATA \rightarrow 1 h 20 min
 - > 100% O_2 3 ATA \rightarrow 23 min

• Similar brain pathological lesions between post-

- ischemic reperfusion injury and CO poisoning
- Lipid oxidation in rat brain
- Conjugated diene and malonyldialdehyde
- Catalase and glutathione
- > Hydrogen perioxide and hydroxyl salicylate
- HBO ↓ Leukocyte adhesion by beta-2 intergrin expression

Thoms. 1990

Oxygen-Dependent Antagonism

Thom SR, Elbuken ME Free Radical Biol Med 10: 413-426 1991

Brain lipid peroxidation caused by CO is prevented by 100% oxygen at 3 ATA

A Brief Introduction to Hyperbaric Oxygen Therapy

Mechanisms of Hyperbaric Oxygen Therapy (1)

- 1. To release hypoxia-edema induced vicious cycle by increasing tissue oxygen tension and blood flow.
- 2. To improve the wound healing and tissue repair.
- 3. To eliminate the secondary damage of ischemiahypoxia injury in different organs.
- 5. To increase the bacteria killing capacity of neutrophil.
- 6. To provide bacteriostatic or bacteriacidal effect on anaerobic bacteria.

Mechanisms of Hyperbaric Oxygen Therapy (2)

- 5. To eliminate CO from blood.
- To attenuate oxidative stress, inflammatory cytokines, but uprising anti- inflammatory cytokines in severe injury, catastrophic inflammatory response, and critical condition.
- 7. To improve mobilization of stem cells to an ischemic area for tissue regeneration.
- 8. To accelerate medication delivery to tissue by improving blood flow.

Guidelines for the Management of CO Poisoning

- 1. Remove patient from the site of exposure
- 2. Immediately administer oxygen, if possible after taking a blood sample for COHb.
- 3. Endotracheal intubation in comatose patients to facilitate ventilation
- 4. Removal of patient to HBO facility when indicated.
- 5. General supportive treatment: for cerebral edema, acid-base imbalance, etc.
- Keep patient calm and avoid physical exertion by the patient.

Classification of Tissue Poisoning Where HBO Has Been Used Successfully

- Action by combination with cytochrome a₃ oxidase and P-450
- Carbon monoxide
- > Hydrogen sulfide
- Cyanide
- Hepatotoxic ROS mediated by P-450
- > Carbon tetrachloride
- Drug-induced methemoglobinemias
- Nitrites
- Nitrobenzene

- Others
- > Quinine (vision)
- > Organophosphorus Compounds
 - Paroxon (rabbits)
- > Amentia Phalloides (Mushroom)
- Ethacrynic Acid (Otooxicity)

Delayed Neurological Syndrome

- 3 days ~ 8 months after insults
- Prevalence: 10~40%
- Cause
 - Misdiagnosis
 - Inadequate therapy Smith 1079
 - Delayed therapy
- CT showed low density in globus pallidus

神經後遺症

Delayed Neurological Syndrome (1)

- Delayed onset of neuropsychiatric symptoms about 3~240 days after recovery from the acute intoxication
- Occur in 10~30% of victims (even 67%)
- In large clinical series
- > 50~75% DNS complete recovery (mild to moderate)
- 25~50% DNS incomplete recovery (Severe)
 - Cognitive and · Personality changes
- Psychosis · Unsteady gait
 - Parkinsonism Incontinence
- Paralysis Cortical blindness,
- Dementia
- Vegetative state

Chronic CO Toxicity DNS

Pathophysiology and Mechanisms I-R injury, inflammation and Oxidative Stress

- I-R injury brain 腦部缺氧-再灌流傷害
- Lipid peroxidation 脂肪過氧化傷害
- Platelets induced free radicals and NO-血小板異常引發氧游離基和一氧化氮增加

	Hemoprotein	mita ah an dria
	e ⁻ transport	millochondha
一氧化氮		粒線體傷害

• Oxidative stress and inflammatory responses 過氧化傷害及發炎反應

Delayed Neurological Syndrome

- Neurological and psychiatric presentation
 - > Impaired cognition, poor memory, vertigo, ataxia, dementia, parkinsonism, muscle rigidity, gait disturbance, disorientation, mutism, urine and stool incontinence.
 - > Cortical blindness, hearing loss, tinnitus, nystigmus
 - > Depression, anxiety
- Pathology
 - > Demyelination
 - · Cerebral cortex
 - > Neuronal death

Chronic CO Toxicity DNS

Risk Factor

- The initial symptoms: unconsciousness
- Duration longer than one hr exposure
- Pre-existing cardiovascular disease
- Pre-existing CNS disease
- Older than 60 yrs
- Pregnancy

Delayed Neurological Syndrome

744 cases

 Group 0 Headache or nausea 	100% O ₂
 Group 1 NE abnormal 	НВО
Group 2 Consciousness loss	НВО
• Group 3 Comatose (GCS>6)	НВО
 Group 4 Deep comatose (GCS≤6) 	НВО

Chronic CO Toxicity DNS

Clinical Symptoms

- Fatigue
- Headache
- Dizziness
- Flu-like illness
- Tearfulness
- Depression
- Agitation
- Anxiety

- Decreased memory, attention and concentration skill
- Poor reasoning
- Irritability
- Euphoria
- Overall personality changes

Chronic CO Toxicity DNS

Delayed Neuropsychological Sequelae

- 3 days to 8 months after the initial insult
- Impaired cognition
- Memory dysfunction
- Vertigo
- Ataxia
- Parkinsonism
- Muscle rigidityGait disturbance
- disorientationMutism
- Urinary incontinenceFecal incontinence

- Cortical blindnessHearing loss
- Tinnitus
- Nystagmus
- Seizure
- Coma
- EEG abnormality
- Cerebral edema
- Leukoencephalopathy
- Globus pallidus necrosis

Smoke Inhalation and Gases Toxicity (52 cases)

A fire occurred in a pharmacy and science university

Smoke Inhalation Injury and Gas Toxicity

HEAT TOXIC IRRITANTS PARTICLES • Direct injury • CO • H ₂ S • CO 2 • CN • HCI • H ₂ • CI 2 • H ₂ SO ₄ • Burnt Carbon adhere trachea and alveoli layers, suffocation > Dry cough and chest pain • BENZENE • Intracellular suffocation • HOS PHORIC • Acute cough > Severe chest pain • Burnt Carbon adhere trachea and alveoli layers, suffocates and whole body ischemia • BHOZENE • Acute cough > Acute cough > Acute bronchospasm and dyspnea • Burnt nose hair > Bloody secretion with black burnt e congestion • Alveoli layer slough • CNS • Endocrines • CNS • Acute bronchospasm and dyspnea • Dry cough with chest pain	Suspension of	toxic gases, irrit	ant gases, heat and	combustion products
c12HnCl/(10-n).	HEAT • Direct injury > Dry cough and chest pain > Dyspnea > Pulmonary congestion > Alveoli layer slough	TOXIC • CO • H ₂ S • CO ₂ • CN • ORGANIC • BENZENE > Intracellular suffocation • Cerebral and whole body ischemia > Polychlorinat ed biphenyl, PCB • CNS • Endocrines • Sex hormones C12Hc/(Clap)	IRRITANTS •HCI •H ₂ •Cl ₂ •H ₂ SO ₄ •AMONIA •PHOSPHORIC >Acute cough >Acute cough >Acute bronchospasm and dyspnea >Acute pul. congestion	PARTICLES • Burnt Carbon adhere trachea and alveoli layers, suffocates and erode the epithelial cells > Burnt nose hair > Bloody secretion with black burnt particle > Dry cough with chest pain > Dyspnea

Smoke Inhalation Injury and Gas Toxicity

A fire occurred in a pharmacy and science university

IRRITANTS • HCI • CI2 • H2 • H2SO4 • AMONIA • PHOSPHORIC	IRRITANTS and TOXIC • Hexane,n-(正已烷) • Methanol(甲醇) • Ethanol(乙醇) • Acetone(丙酮) • Dichloromethane(二氯化甲烷) •
≻ Skin ≻ Mucosa ≻ Respiratory	

Exposure to Exhaust Fumes for 3 Months Prior to HBOT • 20 y/o female • Memory loss, confusion Poor coordination Inability to resolve problems Advised to seek psychiatric help Referred to HBOT Dr. HBOT 69 sessions HBOTs

- SPECT: Improvement in CBF
- The patient was completely recovered

Factors Affecting the Prognosis of Patients with Delayed Encephalopathy after Acute Carbon Monoxide Poisoning

American Journal of Emergency Medicine (2011) 29, 261-264 Methods: In a retrospective study, 46 DEACMP patients

- A clear history of acute CO poisoning, a distinct "lucid interval," and neuropsychologic symptoms.
- First-time admittance to a hospital (within 1 week of onset of disease).
- Completion of standard treatment period. All patients received HBOT. • CONCLUSION:
- HBOT appears useful in treating DEACMP patients (50% : 23 / 46).
- Age, lucid interval, danger-activities of daily living scores, and complications were related (P < .05) to the prognosis
- Whereas sex, fundamental diseases, HBOT in acute stage, intoxication time, unconsciousness duration, and GM1 ganglioside administration were not related to prognosis (P > .05).

Unsuccessful local Inflammatory Response Induces Systemic Inflammatory Response

The Cytokine "Storm"

- The cytokine release leads to destruction rather than protection.
- The subsequent activation of numerous humoral cascades
- and subsequent loss of circulatory integrity.
- This leads to organ multi-organ dysfunction.

Biochemical Analysis

Microdialysis for measurement of extracellular levels of markers of ischemia and cell damage

- 1. Glutamate is released from neurons during ischemia and initiates a pathological influx of calcium leading to cell death.
- Glycerol is marker of how severely cells are affected by the ongoing pathology. Glycerol is an integral component of the cell membrane. Loss of energy leads to an influx of calcium and activation of phospholipases, where split glycerol from the cell membrane.
- Lactate/ Pyruvate ratio is a well known marker of cell ischemia, that is, an inadequate supply of oxygen and glucose.

 Renal function Liver function Coagulation state Cerebral oxidative stress/fnjury - hypothalamus Lipid peroxidation DHBAs GSSG/GSH Coagulation state Activated partial thromboplastin time Prothrombin time Platelet counts Protein C D - dimer 	Evaluation of tissue ischemia/injury
Cerebral oxidative stress/injury - hypothalamus Lipid peroxidation DHBAs GSSG/GSH Coagulation state Activated partial thromboplastin time Prothrombin time Platelet counts Protein C D - dimer EuropeanJ of Pharmocology. 2007, Aug 13, 552: 94-102	Renal functionLiver functionCoagulation state
 Lipid peroxidation DHBAs GSSG/GSH Coagulation state Activated partial thromboplastin time Prothrombin time Platelet counts Protein C D - dimer 	Cerebral oxidative stress/injury - hypothalamus
Coagulation state Activated partial thromboplastin time Prothrombin time Platelet counts Protein C D - dimer European.J. of Pharmacology, 2007, Aug 13, 562: 94-102	 Lipid peroxidation DHBAs GSSG/GSH
 Activated partial thromboplastin time Prothrombin time Platelet counts Protein C D - dimer 	Coagulation state
D - CIMER European J. of Pharmocology, 2007, Aug 13, 569: 94-102	 Activated partial thromboplastin time Prothrombin time Platelet counts Protein C
	D - dimer European J. of Pharmocology, 2007, Aug 13, 569: 94-102

logiour exam		CONTEX BY THE SIG
NC	HS+NBA	HS+HBO
0		
Treatment	Ν	Veuronal damage score (0-3)
NC-treated rats	at 26 °C	0 (0, 1)
NBA-treated rat	s at 43 °C	2 (2, 2)*
HBO-1h-treated r	ats at 43 °C	$1(0, 1)^{\dagger}$
HPO ava treated	rate at 13 °C	

A Heatstroke Patient treated by HBOT

- Vital sign became stabilized rapidly. •
- The patient regained consciousness at 48 hrs of нвот.
- The ventilation was removed in three days.

