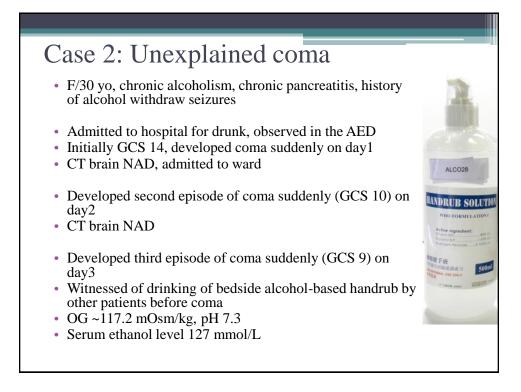
2016 Joint Conference of Poison Control Centres

Evaluation and Management of Seriously Ill Poisoned Patients

Toxic Alcohols Poisoning

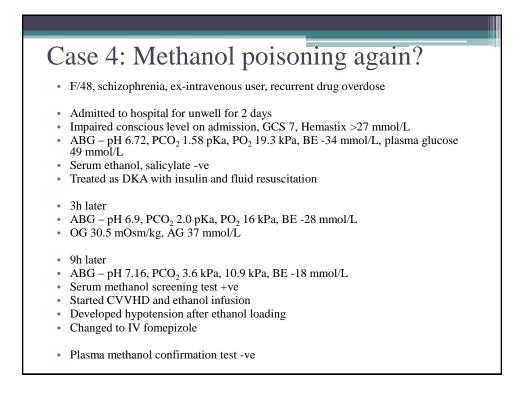

Dr. Jones C.M. Chan Associate Consultant Prince of Wales Hospital Poison Treatment Centre, and Division of Clinical Pharmacology Department of Medicine and Therapeutics The Chinese University of Hong Kong

Content

- Cases of toxic alcohol poisoning
- Metabolic difference
- Diagnostic pitfalls
- Interpretation of osmolar gap (OG)
- ADH inhibition: fomepizole vs ethanol
- Fomepizole monotherapy?
- Elimination: Intermittent HD vs CVVHD/HDF

Case 1: Unanticipated source

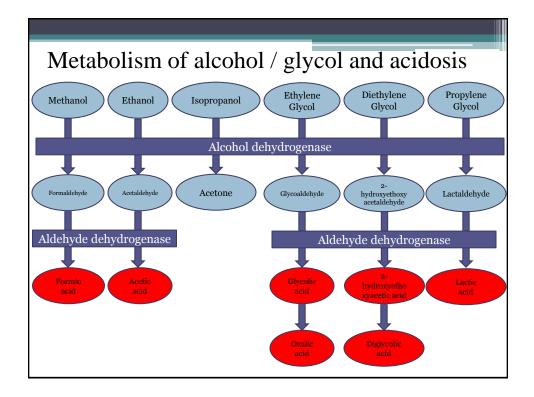
- M/52 yo, history of Kennedy's disease (Motor neuron disease variant)
- Found unconscious by a bystander in a street, with strong thinner smell
- To AED 30 min later, GCS 9, BP 190/99, P 142 bpm, RR 30, SaO2 92% on 15 L O₂
- ECG fast AF / SVT
- ABG pH 7.09, PCO₂ 5.5 kPa, PO₂ kPa, BE -18 mmol/L
- AG, OG not available on admission
- 8.5 h later, OG = 52 mOsm/kg, AG = 14 mmol/L
- Serum ethanol, salicylate, paracetamol -ve
- Serum methanol screening +ve
- · Started HD and ethanol infusion, followed by CVVHD
- Serum methanol level 29 mmol/L



Case 3: Alcohol handrub again!

- M/29 yo, intellectual disability, autism
- Recent admission for ingestion of handrub (surfactant-based)
- Admitted to hospital for ingestion of alcohol-based handrub
- To AED 1h later, GCS 3, BP 111/65, P 68 bpm, SaO2 82% on 15L O2
- ABG: pH 7.28, PCO₂ 7.5 kPa, PO₂ 10.2 kPa, BE -2 mmol/L
- Plasma lactate 3.7 mmol/L
- OG 129 mOsm/kg
- Serum ethanol <4.3 mmol/L
- Serum methanol screening test +ve
- Serum methanol level 72 mmol/L (on admission)
- Serum isopropanol level 55 mmol/L
- Serum acetone 12.9 mmol/L
- Treated with HD, ethanol and Ca folinic acid infusion, and followed by CVVHD

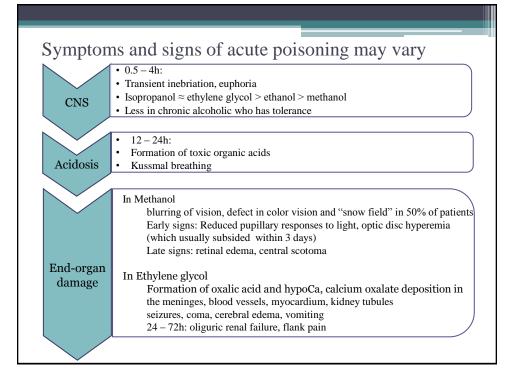
Listed ingredient: Isoproyl alcohol... Isopak – methanol 22%, ethanol 3.5%, isopropanol 36%

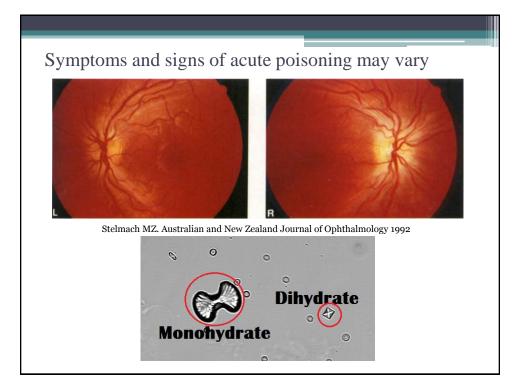

Challenge in management of toxic alcohol poisoning

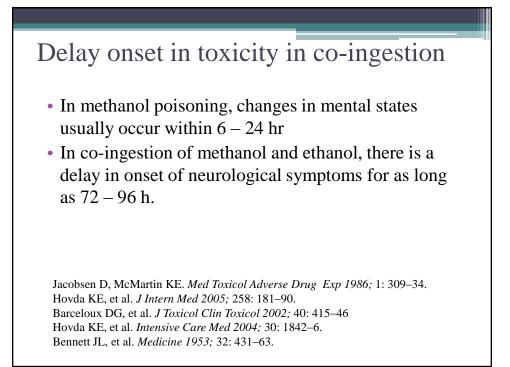
Early diagnosis

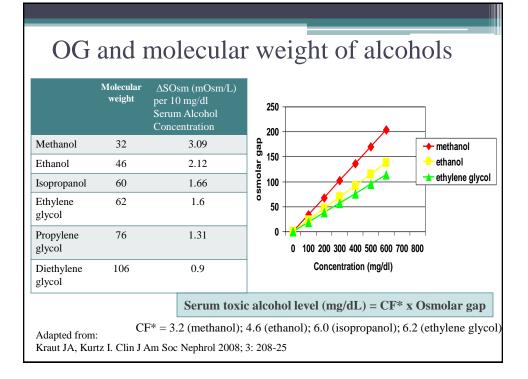
- Unanticipated source of toxic alcohol
- Comatose patient who provides no history
- Non-specific symptoms and signs of poisoning
- Delay onset of toxicity when ethanol is co-ingested
- Limitations in laboratory tests
- Effective treatment
 - ADH inhibition (Fomepizole vs ethanol)
 - Role of haemodialysis

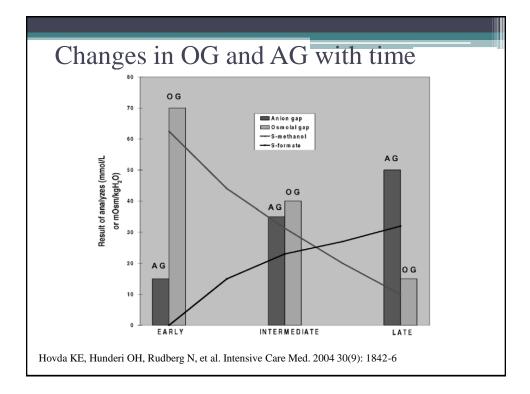
Alcohol: R-OH Glycol: HO-R-R-OH

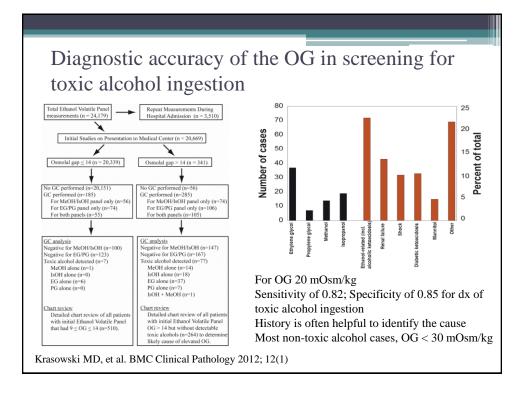

R-OH	Molecular formula	Molecular weight	Vod (L/Kg)
Methanol	СНЗОН	32.04	0.6 - 0.7
Ethanol	CH3CH2OH	46.07	0.5
Isopropanol	СН3СНОНСН3	60.09	0.6-0.7
Ethylene glycol	(HOCH) ₂	62.07	0.7-0.8
Propylene glycol	СН3СНОНСН2ОН	76.09	0.5
Diethylene glycol	(CH2CH2OH) ₂ O	106.12	0.5




Unanticipated sources of toxic alcohol


General Use: Fuel, solvent, precursor to make polymers, antiseptics, dehydrating agents, humectant, screenwash, anti-freeze

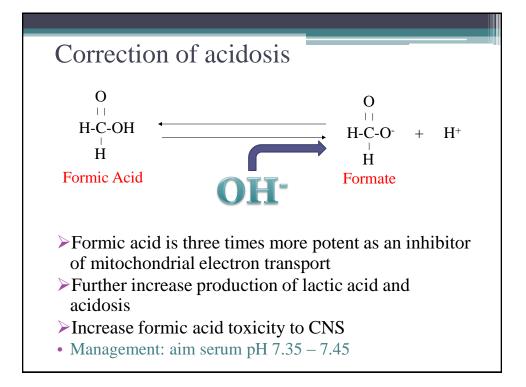




Usefulness of OG

- Normal OG = -14 to 10 mOsm/kg
- A moderately elevated OG (10 to 20 mOsm/kg) can occur in other causes other than toxic alcohol poisoning
- A significant elevated OG (>50 mOsm/kg) is highly suggestive of toxic alcohol poisoning
- A normal OG cannot exclude toxic alcohol poisoning

R-OH	Screening test	t	Quantitative	
Methanol	Colorimetric		GC-FID	
Ethanol	-		Spectrophotome	etry
Isopropanol	-		GC-FID	
Ethylene glycol	LCMS (oxalat	e in urine)	GC-FID (glycol	lic acid)
Propylene glycol	-		GC-FID	
Diethylene glycol	-		GC-FID	
		H H-C-OH H Methanol	<u>KMnO</u> 4	O H-C-H H Formaldehyd


Management overview

• Investigations:

- RFT, glucose, Ca, ethanol, blood gas, Cl, lactate, βhydroxybutyrate
- Determine OG, AG
- Urinalysis for oxalate crystals, urine fluorescence
- Serum methanol, ethylene glycol, isopropanol

• Management:

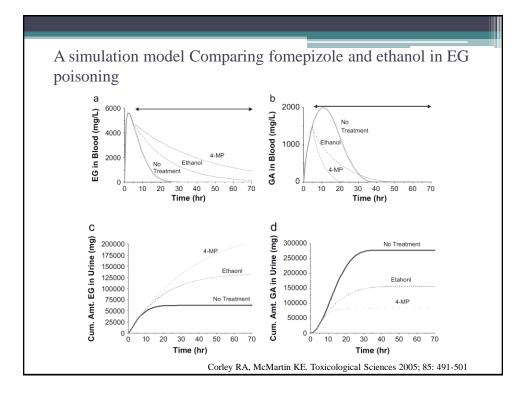
- ABC
- Activated charcoal not useful
- Correction of metabolic acidosis
- ADH inhibition
- Haemodialysis
- Thiamine / pyridoxine / Mg for EG
- Folinic acid for methanol

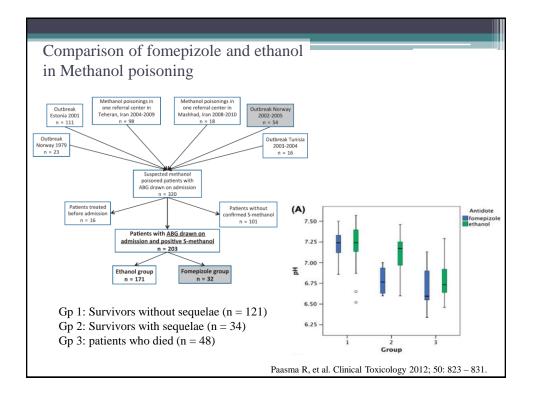
ADH inhibition			
	Fomepizole	Ethanol	
Affinity to ADH	50-100 times > ethanol	20 times > methanol	
Pharmacokinetics	Predictable Metabolised by Cyt P450 2E1, induction occurs after 48 h of administration	Erratic Elimination rate is higher in chronic alcoholism	
Dosing regimen	Standardised and simpler	Complicated	
Treatment monitoring	Not required	Monitoring in every 1-2 h, aim plasma ethanol \approx 100 mg/dL (21.7 mmol/L)	
Adjustment during HD	Shorter time interval	Higher rate of infusion	
Adverse effects	Fewer, milder and transient	Common, CNS depression, hypoglycaemia, thrombophebitis	
Cost	High	Low	
Availability	Low	High	
Efficacy	Shown to prevent metabolic acidosis and end-organ damages, FDA approved for EG (1997), and methanol (2000)	Used since 1940s, no prospective clinical trails Not FDA approved	

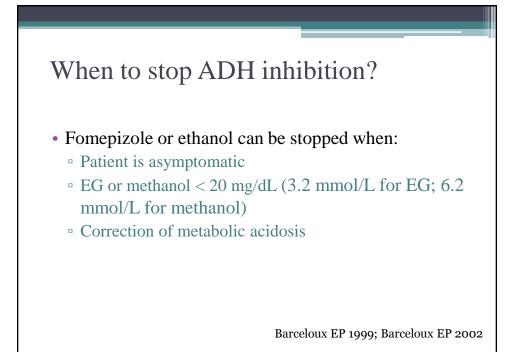
Treatment criteria of fomepizole

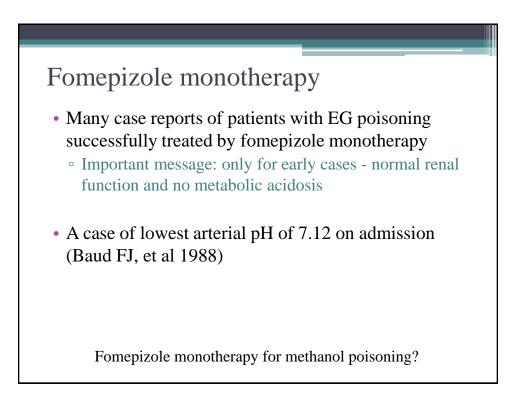
AACT/EAPCCT Recommendations (1999; 2002)

Documented recent history of EG or methanol ingestion and OG >10 mOsm/kg

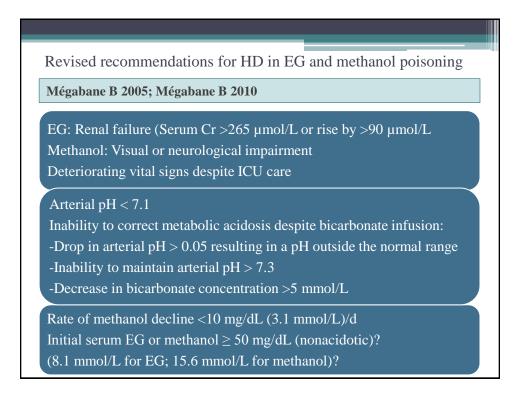

Hx of EG or methanol ingestion and ≥ 2 of the followings:


- Arterial pH <7.3
- Serum HCO₃ <20 mmol/L
- OG >10 mOsm/kg
- Urinary oxalate crystals present (for EG only)


Serum EG or Methanol >20 mg/dL (nonacidotic) (3.2 mmol/L for EG; 6.2 mmol/L for methanol) -Methanol: pH <7.22 is a better predictor of mortality -EG: pH is less useful (Goldfrank Toxicologic Emergencies 10th ed)


-Formic and glycolic acid levels – more correlate with toxicity

-Lack of correlation with clinical effects -Insufficient data to support (Kostic MA 2003)



	EG	Glycolate	Methanol	Formate
Renal clearance	17 – 39 ml/min		1 ml/min	
Half-life + fomepizole	~20 h		~52 h	
Half-life + ethanol	11 – 18 h		30 – 52 h	
Half-life under dialysis	150 – 210 min	$155 \pm 474 \text{ min}$	197 – 219 min	$150 \pm 37 \min$
Half-life spontaneous		$625 \pm 474 \min$		$205 \pm 90 \text{ min}$

Due to methanol's long elimination half-life in ADH inhibition, antidote administration must be prolonged even in case of normal renal clearance The use of fomepizole should obviate the need for HD in EG!

Mégabane B 2005; Mégabane B 2010

Intermittent HD vs CVVHD/HDF in methanol poisoning

 11 intermittent HD and 13 CVVHD/HDF patients during an outbreak of methanol poisonings in Czech Republic in 2012

	Intermittent HD	CVVHD/HDF
Mean methanol elimination half-life	3.7 ± 1.4 h	$8.1\pm1.2~h$
Mean formate elimination half-life	$1.6\pm0.4\ h$	3.6 ± 1.0 h

In methanol poisoning outbreak in resource-limited area, a minimum of 8 h of IHD or 18 h of CVVHD/HDF before discontinuation of the dialysis, if the methanol concentration or the osmolal gap cannot be measured, provided that the metabolic acidosis is corrected, and ADH is blocked. Continued ADH inhibition treatment for at least 12-24 h after discontinuation of the dialysis

Zakharov S, et al. Kidney International 2014

Endpoint of HD Resolution of acid-base disturbance • Resolution of osmolar gap (good correlation with serum methanol concentration) Plasma toxic alcohol concentration < 20 mg/dL • (< 50 mg/dL if given ADH inhibition, no renal failure, no acidosis) • 8-h duration of HD should general be sufficient (when the alcohol concentration is not known) NOT resolution of visual or ocular abnormalties • Monitoring after cessation of HD: • Redistribution of toxic alcohols may result in rebound of serum concentration • Monitor serum level q2-4h for 12-36h after stopping HD Hunderi OH 2006 Mégarbane B 2010 Barceloux EP 1999; Barceloux EP 2002

Bring home message

- Not always a clear-cut diagnosis
 - Interpretation of osmolar gap
 - Limitation in screening tests and confirmatory tests
- Predictors of severe toxicity: metabolic acidosis and end-organ damages, NOT serum EG or methanol levels
- Fomepizole may be better than ethanol
- Fomepizole may obviate the need for HD in stable patient with EG poisoning, but need close monitoring
- Definitive treatment is HD
- Choice between IHD vs CVVHD / HDF

