Detection of Mobile Genetic Elements (MGEs) in Bacterial Genomes

PhD student: Zheng WANG
Supervisor: Professor Margaret IP
Department of Microbiology, CUHK
Date: 3rd Dec, 2013
Contents

Introduction

Methodology

Applications

Future Improvements
Introduction

Mobile genetic element
Any sequence of DNA that is physically moved within an organism genome or between different organisms.

10% - 20% of the Bacterial genome consists of MGEs

Horizontal gene transfer
Transfer of genetic material from one organism to another organism that is not its offspring
Introduction

Mobile genetic elements

Genomic island
In a bacterial genome, a cluster of genes for which there is evidence of horizontal origins.

- Prophage
- Integron
- Integrative conjugative element
- Conjugative transposon
- Integrated plasmids
Importance (X 4)

• 1. Frequently associated with microbial adaptations that are of medical and environmental (or industrial) interest;
 - Metal resistance
 - Antimicrobial resistance
 - Secondary Metabolic properties

• 2. Known virulence factors are over-represented in GIs. The selective loss and regain of GIs could provide an additional means to modulate pathogenicity
Importance (X 4)

3. The spontaneous excision of PAIs has been observed in various pathogens; results in distinct pathogenic phenotypes

4. Had a substantial impact on bacterial evolution.
The **Bioinformatics Approaches** for predicting MGEs (especially GIs) with genome sequencing data fall into two broad categories:

- **Sequence composition**
 - SIGI-HMM (Hidden Markov Model)
 - PAI-IDA.
 - Centroid.
 - Alien_Hunter.
 - PredictBias.
 - PHAST

- **Comparative genomics.**
 - IslandPick
 - MobilomeFINDER
 - Whole genome alignment

In fact, there are also some **wet-lab methods** to detect MGEs. However, here we just focus on the above well-developed bioinformatic methods.
All of the above methods are based on whole genome sequencing data; Most of the methods are designed based on GI's sequence and structural features.

- **Sporadic distribution**
 - Only found in some isolates of a given specie;
 - Gene phyletic patterns different with host genome;

- **Sequence composition bias**
 - Oligonucleotides of various lengths;
 - GC content; (Traditional Methods)

- **Large size (>8 kb)**

- **Mobility, phage and virulence genes**
 - Over-representation of certain classes of genes and unknown function genes

- **Neighbouring tRNA genes; direct repeats**
<table>
<thead>
<tr>
<th>Feature</th>
<th>Methods for detection</th>
<th>Benefits and pitfalls when used for GI prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sporadic distribution, instability and an ability to excise spontaneously</td>
<td>Comparative genomics to identify unique (versus shared) genomic regions</td>
<td>Multiple closely related sequenced genomes are required for comparison</td>
</tr>
<tr>
<td>Sequence composition bias</td>
<td>Various methods</td>
<td>False-positive results are obtained owing to a bias in highly expressed genes, and false-negative results are obtained owing to the sequence composition being similar to that of the host genome (which is sometimes the result of amelioration)</td>
</tr>
<tr>
<td>Size (usually > 8 kb)</td>
<td>Comparative genomics to identify large insertions or features such as sequence composition bias in a region over a certain length</td>
<td>Large horizontally acquired regions are easier to predict than regions containing a single gene</td>
</tr>
<tr>
<td>Adjacent to a tRNA gene</td>
<td>Detection of full or partial tRNA genes using BLAST or tRNAscan-SE</td>
<td>Many GIs are not inserted in or near tRNA genes</td>
</tr>
<tr>
<td>Flanked by direct repeats</td>
<td>Use of repeat finders such as REPuter</td>
<td>Not all GIs are flanked by direct repeats, and the identification of relevant repeats can be difficult owing to their small size</td>
</tr>
<tr>
<td>Over-representation of certain classes of genes such as mobility genes, genes encoding virulence factors, phage-related genes and genes encoding proteins of unknown function</td>
<td>Use of existing genome annotations or searching for similarity to functional databases such as COG or PFAM</td>
<td>Can be used as supporting evidence for GI prediction, and can allow further subclassification of GIs into other MGEs such as prophages or integrated plasmids; but some GIs might have lost all mobility genes, or these genes can be missed because they are not identified by the particular search used</td>
</tr>
<tr>
<td>Program</td>
<td>Description</td>
<td>Accuracy* and limitations</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| SIGI-HMM | Measures the codon adaptation index and removes ribosomal regions | • Precision: 92%
• Recall: 33%
• Accuracy: 86%
• The most precise and most accurate program, along with IslandPath-DIMOB |
| PAI-IDA | Measures percentage GC content and dinucleotide and codon usage | • Precision: 68%
• Recall: 32%
• Accuracy: 84% |
| Centroid | Allows various options, but pentamers are the default | • Precision: 61%
• Recall: 28%
• Accuracy: 82% |
| Alien_Hunter | Uses variable-length k-mers | • Precision: 38%
• Recall: 77%
• Accuracy: 71%
• The program with the highest recall, but at the expense of precision |
| PredictBias | Measures percentage GC content and dinucleotide and codon bias, and predicts PAIs using similarity to a database of virulence genes | • Accuracy measurements could not be calculated, as the entire dataset was not available for download |
| IslandPick | Automatically ‘picks’ default comparison genomes for use in whole-genome alignments | • The highest agreement with a data set of GIs that have been reported in the literature
• Requires related genomes for use |
| MobilomeFINDER | Uses tRNA gene locations and whole-genome alignments to identify GIs | • Limited to only identifying GIs in tRNA genes
• Comparison genomes cannot be automatically selected |
Applicaiton example 1

Identification and characterization of \(\phi H111-1 \): A novel myovirus with broad activity against clinical isolates of *Burkholderia cenocepacia*. (Lynch, K. H., et al., 2013)

- **Prophage identification (One of the most important GIs)**
 Using the PHAST method (prophage-finding program Phage Search Tool) to identify prophages in the *B. cenocepacia strain H111* genome sequence

- **Confirmation of the characterization with laboratory experiments**
Methods Selection

Target Genome status:
B. cenocepacia strain H111 only have Draft Genome (gaps unclosed)

PHAST

This program accepts either raw reas data or contigs data, however, like all the other GI predict programs, to get a better result, complete genome data are recommended.

Input: 71 available H111 contigs.
Applications

PHAST procedures

- Genome-scale ORF prediction/translation (by GLIMMER)
- Protein identification (by BLAST matching; annotation by homology)
- Phage sequence identification (by BLAST matching to a phage-specific database)
- tRNA identification
- Attachment site recognition;
- Gene clustering density measurements (using density-based spatial clustering; DBSCAN)
- Evaluates the completeness of the prophage (give a Score)
Applications

PHAST Results

- **GC_PERCENTAGE; COMPLETENESS**: (intact or incomplete, according to SCORE); REGION_LENGTH and POSITION; CDS;
- In this case, this program identified potential intact prophages (Score > 120; total score 150) in contig 43;
- GC content 62% (lower than the H111 GC content of 67%).
Results

Map of the φH111-1 prophage; the position in the C43 and the CDS; No putative toxin genes were identified.

Confirmation with laboratory experiments

- Transmission electron microscope analysis
- Phage isolation and analysis
- Shotgun cloning;

(Lynch, K. H., et al, 2013)
Applications

Application example 2

Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen *Streptococcus equi ssp. zooepidemicus* strain ATCC35246

(Ma, Z. et al, 2013)

- Identification of GIs by Comparative genomics and Sequence composition related methods
Target strain: *S. zooepidemicus* strain ATCC35246
NGS: Complete Genome; 454 Platform.

Comparative Genomics

- 3 Reference genomes: *S. zooepidemicus* MGCS10565 and H70 *S. equi* 4047. (All Complete Genomes)
- Identify clusters of genes in target genome that are not present (or scattered) in closely related other 3 Reference genomes
- Identify important mobility genes, such as integrases, transposases were present at the boundaries of the region
- GC content (different with the average of whole genome)
Confirm with IslandViewer
An genomic island predictor that integrates 3 methods: IslandPick, IslandPath-DIMOB, SIGI-HMM
GI's which identified by at least 2 methods were marked.

Total 4 GI's associated with pathogenicity and virulence were confirmed (Ma, Z. et al, 2013)
Future Improvements

• **Difficulties:** How to Handle un-assembled millions of raw reads.

 An increasing proportion of microbial genome sequences are the result of unfinished/unclosed genome sequences. Shorter reads might not provide enough signals for sequence composition.

• **Trends:** The integration of the strengths of previously developed methods coupled with increased genomic database of bacteria and phages.
References

Thank You!