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1  | INTRODUC TION

Oceanic plateaux classified as large igneous provinces are com-
monly thought to derive from ascending mantle plumes (Coffin 

& Eldholm,  1993, 1994; Eldholm & Coffin,  2000; Taylor,  2006). 
Plateau/seamount subduction has been observed at different 
trenches, such as the Amami Plateau at the Ryukyu Trench, the 
Caroline ridge and numerous seamounts at the Southern Mariana 
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Abstract
The influence of subducting plateaux on inter-plate earthquakes has been exten-
sively studied. However, its effects on plate bending, stress distribution and intra-
plate earthquakes remain unclear. Here we model the deflection of a subducting 
oceanic plate with an oceanic plateau regarded as a high flexure rigidity body near 
the trench using a thin plate model. Dozens of models were carried out to study the 
effects of the distance between plateau and trench on flexural bending and stress 
with variable flexural rigidity. We find that the influence of plateau depends on its 
location with respect to the trench axis and it begins to affect the plate bending 
when its distance from the trench axis is ~70–120 km. It changes the bending stress 
distribution and causes concentrated deformation to the trench-ward of the plateau. 
After the plateau starts to subduct, pre-existing bending faults may be reactivated by 
the differential forces caused by the lateral variation in slab buoyancy between the 
shallower seamounts/plateaus and the deeper slab.
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Trench (Figure 1), the Hikurangi plateau in the north New Zealand 
subduction zone (Herath et al., 2020), and the Yakutat plateau in the 
Alaska subduction zone (Worthington et al., 2012). The influences 
of plateau or seamount subduction on inter-plate seismicity at sub-
duction zone have been widely investigated (Bell et al., 2014; Gao & 
Wang, 2014; Geersen et al., 2015; Kodaira et al., 2000; Mochizuki 
et al., 2008; Ruh et al., 2016; Sallares et al., 2013; Singh et al., 2011; 
Yang et al., 2012, 2013). However, the impacts of plateaux on sub-
ducting plate bending, stress state and intraplate earthquakes have 
been rarely studied.

Plate bending may cause active trench-parallel normal faulting, 
providing important pathways for seawater to hydrate the incoming 
plate (e.g., Cabrera et al., 2021; Cai et al., 2018; Zhang et al., 2021; 
Zhou et al., 2015; Zhu et al., 2021) and generating tensional earth-
quakes at outer rise. A thin plate model was most often used to inves-
tigate the plate deflection and bending stress, and the corresponding 
outer rise intraplate earthquakes (Garcia-Castellanos et  al.,  2000; 
Watts,  2001; Contreras-Reyes & Osses,  2010; Emry et  al.,  2014; 
Zhou et al., 2015, 2018; Zhou & Lin, 2018; Zhang et al., 2014; Zhang 
et al., 2018). Based on the thin plate model, the deflection of sub-
ducting plate is determined by the trench axis loading and the flexural 
rigidity or the effective elastic thickness (Te) of the plate (Turcotte 
& Schubert,  2014). In previous studies, the Te of subducting plate  
was regarded as a constant at the area seaward of the outer rise and 
decreased with the distance from the trench axis due to inelastic de-
formation (Contreras-Reyes & Osses, 2010). The swell topographies 
of the oceanic plateau obscure the outer rise signature and make 
more complicated to isolate the signature caused by plate bending 
(Contreras-Reyes et al., 2019, 2021).

Recent works reported that the subducted plateaus can mod-
ify the patterns of plate bending deformation and bending-related 
earthquakes (Arai et al., 2017; Herath et al., 2020; Shulgin et al., 2011) 
(Figure 2). Here, we used a simple thin plate flexural model to investi-
gate the effects of incoming plateau near the outer rise region on the 
plate flexure, bending stress and the corresponding intraplate seismic-
ity. We finally proposed a mechanism to explain the observed faulting 
near the outer rise region at the Ryukyu and the Java subduction zones.

2  | METHOD AND MODEL SETUP

2.1 | Method

Here, we simulated the plate deflection by a variable-thickness elas-
tic cantilever beam on Winkler basement (Figure 3). The deflection w 
of the plate can be described as (Turcotte & Schubert, 2014).

where F is the horizontal force which is set to zero in our model. ρm and 
ρw represent the densities of mantle and seawater, respectively. q(x) is 
the overlying load. D is the flexure rigidity of lithosphere given by 

D =
ET3

e

12(1− �2)
, where E is the Young's modulus, μ is the Poisson's ratio 

and Te is the effective elastic thickness (Please see Table S1).
Once the plate deflection w is obtained, the plate bending stress 

(σ) can be calculated by � =
E

1− �2

d2w

dx2
z, where z is the distance from 

the neutral plane of the plate. Considering the yield strength of the 
lithosphere, we corrected the bending stress by the lithospheric yield 
strength envelope (YSE), to constrain the region where earthquakes 
may happen (Figure  3b,c). Combination of Coulomb-Navier failure 
criterion at shallow parts (Byerlee, 1978; Goetze & Evans, 1979) and 
two ductile flow laws at deeper parts (Hirth & Kohlstedt, 2003; Mei 
et al., 2010) were adopted in this study (The strain rate is 10–16 s−1 
as same as in Hunter & Watts, 2016) (Figure 3c). We assume that 
the oceanic plateau has different Te with surrounding normal oceanic 
plate which affects the plate curvature and the bending stress.

2.2 | Model setup

Bathymetry data show that the general scales of plateaux near 
trenches are ~160 to ~400 km (Figure S1 and S2). Meanwhile, Hunter 
and Watts (2016) point out that the short profile omits much of the 
flexural signal and suggested length of model larger than 500 km. 
Therefore, the lengths of modelled subducting plate (L) and plateau 
(Lp) are 700 and 300 km, respectively. xp represents the distance from 
the trench-ward edge of the plateau to the trench axis. (Figure 3a). 
We mainly focused on the effects of xp and Te of oceanic plate on 
the deflection and bending stress. The bending moment (M0) and 
shear force (V0) are set to 2 × 1016 Nm and 1 × 1012 N, respectively, 
which are usual values at the trench axis (Hunter & Watts,  2016; 
Zhang et al., 2020). The σm means maximum bending stress and the 
dy means the maximum depth of the yield zone (Figure 3d). The xtm 
and the xpm represent the distance between the location of σm with 
trench axis and plateau, respectively.

In order to test the influence of an approaching plateau on plate 
bending, the Te of the plateau is set to be larger than, equal to and 
smaller than that of normal oceanic plate, respectively (Figure S3). 
We find that if the Te of plateau is smaller than that of normal sub-
ducting plate, the height of plate forebulge increases (Green line in 
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Statement of significance

Subduction of oceanic plateaux is quite common. However, 
the effect of plateau subduction on lithospheric deforma-
tion and seismicity at subduction zones is unclear. In this 
study, we use 2-D plate bending model to tackle two is-
sues. First, we quantify the plateau subduction effect on 
lithospheric deformation. Second, we investigate the influ-
ence of a subducting plateau on seismicity at subduction 
zones. Our results show that subducting plateau can cause 
concentration of bending stress and may enhance intra-
plate seismicity.
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Figure  S3a) and the plate curvature reaches maximum at the pla-
teau (Green dashed line in Figure  S3b). In contrast, if the plateau 
has a larger Te, the height of plate forebulge plate decreases (Red 
line in Figure S3a), and the plate curvature reaches a maximum in 
front of the plateau (Red dashed line in Figure  S3b). By consider-
ing the dependence of Te on the square root of plate age (Hunter 
& Watts, 2006) and the fact that the plateau is no older than the 
oceanic lithosphere (Calmant et al., 1990), the Te of plateau should 
be smaller than that of oceanic plate. However, highly fractured 

zone observed in front of the subducting plateau (Figure 2b) and the 
fact that fewer bending-related faults and earthquakes (Mochizuki 
et al., 2008) were found within the subducting plateau larger than 
about 40 km (Fryer & Smoot, 1985) seem to suggest that the plateau 
has higher Te than normal oceanic plate. Therefore, the Te of plateau 
is set to 10 km thicker than that of normal oceanic plate. Here we 
did not consider the influence of plateau on the plate bending to-
pography and so we did not try to separate the swell topography of 
plateau from the outer rise like Contreras-Reyes et al. (2021).

F I G U R E  1   Subducting plateaus near 
different trenches (red areas). (a) Plateaus 
near the Izu-Bonin, the Mariana, the 
Philippine and the Ryukyu Trenches (red 
areas). The magenta line (profile a) is a 
seismic profile from Arai et al. (2017) 
displayed in the Figure 2a. (b) The Roo 
Rise Plateau near the Java Trench. The 
magenta line (profile b) is a seismic profile 
from Shulgin et al. (2011) displayed in 
Figure 2b
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F I G U R E  2   Geological structures 
along the profile a (Figure 1a) crossing 
the Ryukyu Trench (from Arai et al., 2017) 
and the profile b (Figure 1b) crossing the 
Java Trench (from Shulgin et al., 2011). 
The red dots represent the relocated 
aftershocks of the 1995 events occurred 
in the Java trench (Arai et al., 2017). The 
black dots are earthquakes occurred 
in subducting plate since 1990 (within 
a 10-km-wide box on both sides along 
the profile for hypocenter projection) 
(from the International Seismological 
Centre)

F I G U R E  3   (a) Model setup. The 
bending moment -M0 and the vertical 
shear force -V0 are loadings applied at 
trench axis. The far end is fixed. L and Lp 
are the lengths of modeled subducting 
plate and plateau, respectively. xp 
represents the distance between the 
plateau and the trench axis. Dark and 
light gray areas show subducting plate 
with and without plateau, respectively. 
(b) Schematic of extension (pink area) and 
compression (pale blue area) at the upper 
and lower plate caused by plate bending. 
Dashed line represents the neutral plane 
of the plate. z is the distance from the 
neutral plane of plate. (c) Yield strength 
envelop of plate. The blue and red curves 
represent the yield strength envelope 
(YSE) and the gray line shows the slope of 
the elastic core. Combination of Coulomb-
Navier failure criterion at shallow part 
(Byerlee, 1978; Goetze & Evans, 1979) 
and two ductile flow laws at deeper part 
(Hirth & Kohlstedt, 2003; Mei et al., 2010) 
is adopted in this study. (d) Bending 
stress distribution in a subducting plate. 
Pink area is the location of plateau. 
Black dashed line marks the calculated 
yield zone. dy means the depth of yield 
zone. sm means the maximum bending 
stress. xtm and xpm are the distance of the 
location of sm from trench and plateau, 
respectively. The black dashed, red solid 
and black dotted lines are the 350, 450 
and 600°C isotherms, respectively, based 
on the semi-infinite half-space cooling 
model
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F I G U R E  4   (a–f) Plate deflection with the distance between plateau and trench is 150–0 km, respectively. Pink area marks the location 
of plateau. Red solid and black dashed lines are the plate deflection with and without plateau under the same loadings, respectively. (g–l) 
Plate bending stress with the distance between plateau and trench is 150–0 km, respectively. (m–r) Example slopes of plate elastic core for 
locations of 50 km (the green arrow in the panel g) and 100 km (the blue arrow in the panel g) from the trench axis. The black dashed, red 
solid and black dotted lines are the 350, 450 and 600°C isotherms, respectively, based on the semi-infinite half-space cooling model
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3  | RESULTS

Firstly, we conducted a test model with constant boundary loading 
and Te. The independent variable is xp (Figure 4). We find that under 
the fix boundary loading and Te (Te = 20 km in Figure 4), the plate 
deformation was strongly controlled by the distance between the 
plateau and the trench axis. When the plateau is far away from the 
trench axis (xp = 120–150 km in Figure 4a,b), it has little influence on 
plate deflection; when the plateau is close to the trench, the bulge 
of plate become gentle and the bending deformation of plate is con-
centrated in front of the plateau (xp = 70–90 km in Figure 4c,d). With 
further decrease of xp, the plate deflection becomes smaller than 
that of normal oceanic plate (Figure 4e,f), the stress distribution be-
comes more concentrated (Figure 4j–l) and the yield zone becomes 
narrower and shallower (Dashed lines in Figure 4j–l and Figure 4q,r). 
The neutral plane follows the 450°C isotherms roughly (Carrasco 
et al., 2019; Ruiz & Contreras-Reyes, 2015; Seno & Yamanaka, 1996) 
(Figures 3d and 4).

Secondly, hundreds of models were carried out to study the 
effects of plateau subduction on plate bending and stress distri-
bution under variable xp changes from 300 to 36 km (The distance 
similar to Shulgin et al., 2011), as well as the normal oceanic plate 
Te of 20, 30, 40 and 50 km, respectively (Table S2 and Figure 5). 
It shows that the xtm increases with Te under the same boundary 

loading (Figure 5a). The impact of xp on xtm also depends on the 
Te. When Te is 50 km, the influence of plateau on the xtm becomes 
apparent when the xp decreases to ~120 km. However, if the Te is 
20 km, the influence of plateau starts to become obvious when xp 
is ~70 km (Figure 5a). The xpm is also related to the xp. When the 
plateau is far away from the trench, the xp and the xpm are linearly 
correlated. However, when the plateau is a certain distance from 
the trench, i.e., xp decreases to ~120 km (Te = 50 km) or ~70 km 
(Te = 20 km), the xpm is no longer correlated to the xp and keeps in 
15–25 km (Figure 5b).

The magnitude of σm first increases and then decreases with 
the decrease of xp (Figure 5d), and the dy shows the similar trend 
(Figure 5c). The increase and decrease in dy are 2%–3% and 5%–
14%, respectively. The increase and decrease in σm are 10% and 
5%–25%, respectively. Please note that both σm and dy are nor-
malized by the original values that are not influenced by plateau 
(σmo and dyo).

4  | DISCUSSION

Our models suggest that when the plateau approaches the 
trench axis, the yield zone would highly concentrate on the front 
of plateau, which fits the observations well. Using wide-angle 

F I G U R E  5   The correlations of the distance between the plateau and trench xp and location of maximum bending stress (sm) and yield 
zone depth (dy) with different Te. (a) The relationship between xp and the distance between the location of σm and the trench axis (xtm). It 
shows that xtm first increase and then decrease with the decrease of xp. The maximum value of xtm increases with Te which means that the 
influence range of plateaus on strong plate is larger than that of weak plate. (b) The relationship between xp and the distance between the 
location of σm and the plateau (xpm). It shows that xpm is linearly correlated with xp when the plateau is far away from the trench axis and 
keeps in 15–25 km when the plateau closes to trench axis. (c) The relationship between xp and dy. (d) The relationship between xp and the 
magnitude of σm. All models are under the same boundary loadings (M0 = 2 × 1016 Nm and V0 = 1 × 1012 N)
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seismic data, Shulgin et  al.  (2011) investigated the structural 
architecture of the Roo Rise oceanic plateau at the Java sub-
duction zone. They found a highly fractured zone developed in 
the front the plateau, whereas only few faults were observed 
with the plateau itself (Figure  2b). It means that the strength 
heterogeneity of the subducting plate may make the deforma-
tion concentrate in the front of plateau and increase the depths 
of yield zone and bending-related earthquakes. The swell of 
oceanic plateau also plays a crucial role on intraplate seismicity. 
Contreras-Reyes and Carrizo (2011) proposed that subducting 
plateau plays double roles in earthquake rupture: acting as bar-
riers or asperities. It mainly depends on the interplay between 
the yield shear stress near the subducting high feature and the 
energy carried by the rupture front. Also at Java trench, the 
subducting Roo Rise plateau may lead to locally locked patches 
on an otherwise decoupled, aseismic slipping subduction zone, 

causing the 1994 Java tsunami earthquake (Abercrombie 
et al., 2001).

When plateaux reach the trench axis or just start to subduct, 
the buoyancy begins to play a major role on plate deformation and 
intraplate earthquakes. Seismic studies in the Ryukyu Trench (Arai 
et al., 2017) showed high-angle normal faults and along-fault-plane 
earthquakes in front of a subducting seamount (Figure  2a). Arai 
et al. (2017) suggested that these high-angle normal faults (dip angle 
of 70–80°) may be caused by the significant buoyancy of seamount 
or plateau rather than the bending faults of which the dip angles 
are moderate (Craig et  al.,  2014). Here, we propose another pos-
sible mechanism for these high-angle normal-fault events. These 
high-angle normal faults may be inherited by bending faults that had 
formed before and be reactivated by the tensional stress coming 
from the differential buoyancy between the plateau and the deeper 
slab. We infer that the extreme high plate curvature concentrated in 

F I G U R E  6   Illustration of effects of 
plateau subduction on plate bending, 
stress and intraplate seismicity. (a) Plate 
bending and brittle yield zone (green 
stripes) of a subducting plate with a 
plateau far away from the trench axis. (b) 
Stresses are concentrated and a highly 
fracture zone (blue stripes) is formed 
on the front of plateau when it is close 
to the outer rise. (c) When the plateau 
reaches the trench axis, the subducting 
plate is associated with shallower yield 
zone, fewer and smaller normal faults (red 
stripes). The subducted normal faults are 
re-activated (blue dashed lines)
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the front of plateau (corresponding to the high fracture zone) may 
be related to the formation of high-angle normal faults. Besides, 
the distance between the high-angle normal faults and seamount is 
~20 km (Figure S2a) which is coincident with the distance between 
plateau and σm. We therefore speculate that these high-angles 
were caused by plate bending in the highly fractured zone ahead of 
seamount/plateau. Intraplate earthquakes are also observed to be 
concentrated beneath the subduction front of the seamount in the 
Japan Trench (Mochizuki et al., 2008). It is therefore a widespread 
phenomenon. Furthermore, Chesley et al. (2020) reported a prom-
inent, sub-vertical low resistivity zone in front of a subducting sea-
mount at the northern Hikurangi Margin. The low resistivity zone 
corresponds to a normal fault, indicating that the fault is probably a 
porous conduit for fluid flow. We infer that the low resistivity zone 
may reflect the enhanced hydration of subducting plate caused by 
plateau subduction.

Based on the above discussion, we propose a model to illus-
trate the effects of plateau subduction on plate bending, stress and 
seismicity (Figure  6). Subduction of oceanic plateau would induce 
different geological phenomena at different stages. When the pla-
teau is far away from the trench, it has little influence on plate bend-
ing, the brittle yield zone and the bending-related normal faulting 
(Figure 6a). As the plateau approaching the trench, it plays a major 
role in plate deflection. The heterogeneity of subduction plate can 
cause the concentrated flexure deformation, as well as the highly 
fractured zone, at the front of the plateau (Figure 6b). When the pla-
teau finally reaches the trench, the lateral variation in slab buoyancy 
between the shallower seamounts/plateaus and the deeper slab may 
cause different force and reactivation of pre-existing bending faults 
(Figure 6c).

Both plateaux and trenches have very complicated geometry. 
This would bring three dimensional effects which may affect dra-
matically the plate stress state. We infer that the incoming pla-
teau would cause the lateral flexure along the strike of the trench 
(Contreras-Reyes et al., 2021; Zhang, Sun, et al., 2018).

5  | CONCLUSIONS

Bending deformation concentrates in front of plateaux at the 
outer rise which may cause highly fractured zone. The impacts 
of plateau subduction on plate deformation, bending stress 
and yield zone depth mainly rely on the distance between 
the plateau and the trench axis and the rigidity of subduct-
ing plate. The influences begin to appear when the plateau is 
~70 km (on a weak plate) to ~120 km (on a strong plate) away 
from the trench axis. At this stage, the concentrated flexure 
deformation and the highly fractured zone develop in front of 
plateau with the maximum bending stress 15–25 km ahead of 
the plateau. With the plateau a close to the trench axis, both 
bending stress and yield zone depth first increase and then de-
crease. After the plateau enters the subduction zone, the bend-
ing faults may be reactivated by the extensional stress from 

differential buoyancies between the plateau and deeper slab. 
Thus, intraplate earthquakes may be concentrated in front of 
the subducting plateau.
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