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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Systematic progression of complex deformation near transform faults is revealed

- Progressive complex broad deformation is an inherent feature of oceanic transform faults

- TTFs on transform wall and off-transform rifting formed in response to plate rotation

- Off-transform rift zones can develop into new transform plate boundaries
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Table 1. Topographic featuresof transtensional faults and earthquake focalmechanisms

Heezen Tharp Pitman

Length (km) 390 464 80

Age offset (Ma) 12 16 3

Width (km)

Valleys 10.1–16.2 8.1–28.9 6.0–6.7

Uplifts 13.4–16.3 7.9–22.7 11.6–11.9

Depth (km)

Valleys 1.1–2.4 0.4–2.3 0.6–0.7

Uplifts 0.2–2.2 0.3–2.5 0.7–0.8

Area (km2)

Valleys 8.2–19.5 1.5–29.2 2.0–2.5

Uplifts 1.5–17.6 1.2–21.4 4.2–4.7

Mean strike (�)

Strike slip 160.1 156.3

Normal 98.4 95.5

Mean dip (�)

Strike slip 75.5 75.6

Normal 46.9 46.5

Number

Strike slip 93 137

Normal 8 6

Magnitude

Strike slip 4.8–6.4 4.8–6.6

Normal 5.0–6.7 5.1–6.1

Moment (dyne cm)

Strike slip 5.45 3 1026 5.63 3 1026

Normal 1.61 3 1026 2.66 3 1025
Oceanic transform faults (TFs) are commonly viewed as single, narrow strike-
slip seismic faults that offset two mid-ocean ridge segments. However,
broad zones of complex deformation are ubiquitous at TFs. Here, we propose
a new conceptual model for the progressive deformation within broad zones
at oceanic TFs through detailedmorphological, seismic, and stress analyses.
We argue that, under across-transform extension due to a change in platemo-
tion, plate deformation occurs first along high-angle transtensional faults
(TTFs) within the transform valleys. Off-transform normal faults (ONFs)
formwhen across-transform deviatoric extensional stresses exceed the yield
strength of the adjacent oceanic lithosphere. With further extension, these
normal faults can develop into off-transform rift zones (ORZs), someof which
can further develop into transform plate boundaries. We illustrate that such
progressive complex deformation is an inherent feature of oceanic TFs.
The new conceptual model provides a unifying theory to explain the observed
broad deformation at global transform systems.

INTRODUCTION
In a simplified steady-state view, a single, narrow strike-slip fault would be suf-

ficient to accommodate the differential motion between the two adjacent mid-
ocean ridge segments. In reality, spreading centers frequently experience minor
changes in plate motion, changes that can lead to extension or compression
along transform plate boundaries.1–6 These ubiquitous changes in relative plate
motion and their induced deformation along and around transform faults (TFs)
should be considered to be fundamental processes along ridge-transform
systems.

Striking examples of broad transform zones are seen along the Pacific-Antarc-
tic Ridge (PAR), which separates the Pacific and Antarctic plates (Figure 1), which
formed �68 mya.7 The spreading direction along the PAR has been gradually
changing in a clockwise rotation since�12 Ma, with an abrupt change occurring
at �5.9 Ma.8 The significant changes in the direction of plate motion, diverse
spreading rates, and diverse transform offset lengths along the PAR make it an
ideal laboratory to study transform dynamics. The Heezen, Tharp, and Pitman
TFs, located at �54�S, 56�S, and 65�S along the PAR, have full slip rates of
78.9, 79.0, and 54.0 mm/year,9–11 and mega to moderate transform offset
lengths of 390, 460, and 80 km (Figure 1), respectively. Since these three trans-
form systems are located close to the Euler pole for relative motion between
the Pacific and the Antarctic plates, their morphology is especially sensitive to
small changes in relative plate motion.12,13

In comparison to most transform systems,14,15 the Heezen and Tharp TFs are
associated with unusually deep transform valleys. The depth difference between
the crest of the transformwall uplift and the bottomof the transform valley locally
reaches more than 5 km within an across-transform distance of only �20 km
(Figures 1 and S1–S3). Prominent narrow uplifts are found to extend hundreds
of kilometers parallel to the strike of the TFs. Furthermore, off-transform rift zones
(ORZs) are observed at distances of �30–40 km sub-parallel to the active TFs
(Figure 1). The shorter Pitman TF shows a morphological anomaly similar to
those of the Heezen and Tharp TFs, but with smaller amplitudes (Figures 1,
S2, and S3A). Previous studies have proposed multiple mechanisms for the
observed uplift and the exceptionally deep transform valleys7 in the Heezen
and Tharp systems: (1) thermal and viscodynamic forces near the ridge-trans-
form intersection, (2) combination of a flexural response to the negative load
ll
of the adjacent valleys, (3) mantle serpentinization, (4) heating by mid-transform
spreading axes, or (5) extension or compression across the TF.16–19However, the
mechanism for the formation and evolution of their neighboring intraplate off-
transform normal faults (ONFs) and ORZs, as well as their relationship with the
deformation within the transform valley, remain elusive.
Here, we use the morphology, vertical deformation, and seismicity of the Hee-

zen, Tharp, and Pitman transform systems to illustrate the specific mechanisms
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Figure 1. Topography and earthquakes at Pitman, Heezen, and Tharp transform faults (A–C) Topography of the Pitman (A), Heezen (B), and Tharp (C) transform faults (TFs). P., H.,
and T. represent the Pitman, Heezen, and Tharp transform faults, respectively. TTF-P, TTF-H, TTF-T1, and TTF-T2 are transform-transtensional faults (TTFs) observed at the Pitman,
Heezen, and Tharp transform fault segments 1 and 2, respectively. ORZ-P, ORZ-H, and ORZ-T are off-transform rift zones (ORZs) observed at the Pitman, Heezen, and Tharp transform
faults, respectively. Focal mechanisms of relocated earthquakes along the Heezen and Tharp TFs are from Sykes and Ekstrom (2012).27
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that underlie the complex tectonics of their adjacent zones with widespread
deformation. We show that the initiation of these ONFs and the ORZs appears
to take placewhen across-transform extensive stresses exceed the level required
to break their adjacent oceanic lithosphere. We further propose that some ORZs
develop into future new TFs oblique to the original transform. Through additional
2 The Innovation 3(1): 100193, January 25, 2022
discussion of deformation at exemplar TFs along the fast-, slow-, and ultra-slow-
spreading East Pacific Rise (EPR), Mid-Atlantic Ridge (MAR), Southwest Indian
Ridge (SWIR), and Southeast Indian Ridge (SEIR), we demonstrate that this
mode of deformationwithin a broad zone is an inherent feature of near-transform
oceanic crust.
www.cell.com/the-innovation
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Figure 2. Stress analysis of the formation of transform-transtensional fault, off-transform normal fault, and off-transform rift zone.Dsf is the horizontal extensional stress caused
by plate rotation. (A) Cross section and stress of a steady-state TF. (B) Formation of a TTFwith a high dip angle. (C) ONF formswhen extension continues, which co-exists with the TTF.
(D) When extension further increases, an ORZ forms when a pair of conjugate ONFs cuts through the entire plate.
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RESULTS
Deformation and earthquake focal mechanisms of TTF versus ORZ

The Heezen and Tharp TFs share similar abnormal morphological features
(Figures 1B, 1C, and S1–S3) that include prominent transform-parallel uplifts
and deep TF valleys (see details in supplemental information). The transform
valleys and transform uplifts of the Heezen and Tharp systems are similar
in their depths, widths, and cross-sectional areas, with differences of only
ll
8%–29% (Table 1). Analytical modeling suggests that these observed similar-
ities in their morphological features are more consistent with these transten-
sional faults (TTFs) being produced by deformation along a single high-angle
extensional normal fault as opposed to compressional thrust faulting, for which
the amplitude of uplift would be predicted to be significantly greater than the
amplitude of valley.20 The observed surface fault throws (Dyt) at TTF-H along
the Heezen, TTF-T1 and TTF-T2 along the Tharp, and TTF-P along the Pitman
The Innovation 3(1): 100193, January 25, 2022 3



Figure 3. Calculated extensional stress and
maximum faulting depth as a function of plate age
(A) Required deviatoric extensional stress for gener-
ating a TTF, ONF, and ORZ as a function of plate age.
As deviatoric extensional stress increases, a TTF first
appears, an ONF forms next, then a TTF cuts the
whole plate at the TF, and finally, the ORZ-bounding
faults cut through the entire off-transform plate. (B)
Calculated maximum faulting depth of TTF and ORZ
as a function of plate age.
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are measured to be 3.7 ± 1.2, 2.8 ± 1.1, 3.4 ± 1.0, and 1.4 ± 0.4 km, respectively
(Figures S2 and S3), significantly larger than the global average of the depth dif-
ference between a transform valley and its adjacent crust for intermediate
spreading systems.14,15 These features imply the presence of “excess” vertical
tectonic deformation. The accumulated surface fault heaves (Dxt) (see details
in supplemental information, Figure S1) of TTF-H, TTF-T1, TTF-T2, and TTF-P
are estimated to be 9.6 ± 2.5, 8.5 ± 1.9, 11.2± 2.8, and 4.2 ± 1.4 km, respectively
(Figure S3). We interpret these result to mean that the TTFs form at high-angle
TFs that otherwise experience predominantly strike-slip motion.21–23

Transform-sub-parallel ORZ-H and ORZ-T are observed at distances of
30–40 km from the Heezen and Tharp TFs, whereas ORT-P is observed at dis-
tances of 0–10 km from the Pitman TF. The accumulated surface throws (Dyr)
along ORZ-H, ORZ-T, and ORZ-P are 1.2 ± 0.4, 0.7 ± 0.4, and 0.4 ± 0.3 km, respec-
tively (Figure S4). The accumulated surface heaves (Dxr) (see details in supple-
mental information, Figure S1) of ORZ-H, ORZ-T, and ORZ-P are 11.2 ± 2.0,
11.7 ± 5.7, and 5.1 ± 1.2 km, respectively (Figure S1). Although the surface fault
throw of each TTF is about three to four times that of its corresponding ORZ, the
surface fault heaves of the TTFs are similar to those of the ORZs (Figure S3), indi-
cating that the extensional strains released by the TTFs and ORZs are of the
same order of magnitude. We infer that across-transform extensional strains
are linked to the recent clockwise plate rotation along the PAR system.24,25

The transtensional strains indicated by these morphological features are
further supported by focal mechanism solutions of relocated earthquakes along
the Heezen and Tharp systems.25,26 For magnitude R 4.8 relocated earth-
quakes within the Heezen and Tharp systems from 1976 to 2020,26,27 the accu-
mulated seismic moment of the normal component is 1.88 3 1026 dyne cm,
which is �17% of the strike-slip moment (11.08 3 1026 dyne cm; Table 1).
This indicates that transform shearing remains the dominant mode of strain
release within these systems. The average dip angles of the transtensional
earthquakes (�45� < rake < 0�) at the Heezen and Tharp TFs are 75.5� ±

14.3� and 75.6� ± 12.1�, respectively (black beachballs in Figures 1B and 1C
and Table 1). In contrast, focal mechanism solutions show that only predomi-
nantly normal fault earthquakes (�135� < rake < �45�) occurred at the ORZs
of the Heezen and Tharp systems from 1976 to 202026,27 (red beachballs in Fig-
ures 1B and 1C and Table 1), indicating that the ORZs are undergoing active
extensional deformation. The average dip angles of the normal faulting earth-
quakes in the ORZs of the Heezen and Tharp systems are 46.9� ± 15.2� and
46.5� ± 9.4� , respectively (Table 1). Strikes of the normal faulting events in the
4 The Innovation 3(1): 100193, January 25, 2022
Heezen and Tharp ORZs are also consistent
with the overall strikes of the predominant sea-
floor abyssal fabrics in these ORZs.

Mechanisms of sequential plate
deformation in response to plate rotation
A mechanical analysis reveals that the exten-

sional strain in response to a local change in plate
rotation should be initially accommodated by
normal faulting along steeply dipping faults
within the transform valley28 (stage 1; Figure 2B).
However, if local deviatoric extensional stresses
continue to rise, then ONFs can start to form in
adjacent crust when local stresses exceed the
local rock cohesion (stage 2; Figure 2C). We hy-
pothesize that some of the ONFs cut through
the entire lithospheric plate to become ORZ-
bounding faults with moderate dip angles (stage
3; Figure 2D). The maximum faulting depth of
both TTF and ORZ increases with plate age, whereas the modeled depth for
TTF is slightly greater than that for ORZ (Figure 3B). The partition of deformation
between a TTF and its neighboring ORZ depends on the apparent friction coeffi-
cient along the TTF plane. If the friction on the TTF is relatively small,28–30 i.e., mt
z 0.1, the following could occur in response to increasing deviatoric extensional
stresses: (1) the TTF deforms initially; (2) deformation then occurs along both the
TTF and the ONF; and finally, (3) the ORZ forms (Figure 3A). The observed co-ex-
istence of deformation along both the TTF and its adjacent ORZ (Figures S2B and
S2D) support the above mechanistic model.
In summary, the tectonic events occur progressively from the oceanic TF valley

to off-transform faulting and rifting (Figure 4). A local change in the direction of
plate motion induces deviatoric extensional stresses across the TF. At first, the
lithosphere adjacent to the TF undergoes near-vertical deformation on its pre-ex-
isting steeply dipping TTF (stage 1; Figures 2B and 4B). As local deviatoric exten-
sional stresses increase in response to the local change in plate motion, they
eventually exceed the rock’s cohesive strength. At this point, the adjacent plate
breaks to form newONFs (stage 2; Figures 2C and 4C). SomeONFswill continue
to deform, evolving into an ORZ of the rift-bounding faults with low to moderate
dip angles (stage 3; Figure 4D). Evidence from seafloor morphology and active
earthquake focal mechanisms shows that the TTFs and ONF/ORZs can remain
simultaneously active.

DISCUSSION
The ubiquitous broad deformation zones of global transform systems
Complex deformation within a broad plate deformation zone appears to

be an inherent feature of many oceanic TFs. This is further illustrated by
the following additional distinctive examples1,4,5,12,18,31–36 (Figure 5): (1)
TTFs and ORZs on both sides of the Udintsev TF on the PAR12 (Figure 5A);
(2) a TTF and normal faults that cut a dome-shaped uplift zone along the
Atlantis II TF on the MAR29 (Figure 5B); (3) formation of a TTF and reacti-
vation of the adjacent fracture zone at the Vema TF on the MAR1,32–34 (Fig-
ure 5C); (4) development of intratransform spreading centers (ITSCs) at the
Siqueiros TF on the EPR35 (Figure 5D); (5) formation of En-echelon faults in
a transform relay zone of overlapping basins at the Andrew Bain TF on the
SWIR36 (Figure 5E); (6) mantle uplift and exhumation at the St. Paul TF on
the MAR4 (Figure 5F); (7) TTF and ONF at �128�E on the SEIR (Figures
S3B–S3E); and (8) formation of Easter, Juan Fernandez, and Galapagos mi-
croplates on the EPR.37–40
www.cell.com/the-innovation
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Figure 4. Tectonic responses of a mega TF to a change in relative plate motion that induces local plate rotation s1 is the maximum principal stress of the ONF/ORZ. s1
t and s3

t are
the maximum and minimum principal stress of the TF before rotation, while s1

t’ and s3
t’ are the maximum and minimum principal stress of the TF after plate rotation. Dsf is the

horizontal extensional stress caused by plate rotation. (A) A steady-state ridge-transform system before the local plate rotation. (B) Formation of a TTF along the TF after an increment
of plate rotation. Gray dashed double line marks the old ridge axis. (C) Formation of ONFs sub-parallel to the TF. (D) When the deviatoric extensional stress becomes large enough to
break the entire plate, a pair of conjugate ONFs develops into an ORZ. (E) Finally, the ORZ develops into a new TF to accommodate the new spreading direction. The old transform fault
becomes inactive (dashed lines), and a new ORZ can form.
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Figure 5. Several distinctive examples1,4,5,12,18,31–36 of complex deformation on broad zones (light yellow areas) along global oceanic transform faults (A) Udintsev. (B) Atlantis II.
(C) Vema. (D) Siqueiros. (E) Andrew Bain. (F) St. Paul. (G) Romanche.
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An ORZ may evolve into a new transform plate boundary
An ORZ is also observed along the Romanche ridge-transform system at

the slow-spreading MAR, which is more complex (Figure 5G) than the
previous examples discussed. In it, two transform valleys, three elongated
uplift ridges, and an ORZ are all observed. The TF migrated from north to
south at �8–10 Ma, while the southern valley has remained active.41 The
ORZ south of the active transform boundary ceased activity at �8 Ma.28

The Romanche principal transform boundary also migrated from the north-
ern to the southern valley.41,42 Comparing this behavior with that of the
Tharp system, in which an ORZ cuts through the whole length of the TF
(Figure 1), we speculate that the active transform valley at the Romanche
system could have previously been an ORZ (Figure 5G). We further propose
that when mega TFs are too cold and thick to easily rotate in response to a
change in the relative plate motion, an ORZ of sufficiently great length may
become the new site where a future neighboring TF could be initiated to
accommodate the new spreading direction (stage 4; Figure 4E). This
may also be the mechanism that has led to the replacement of one or
two large-offset transforms with a local system of transforms with the
same-sense but smaller offset within the Mendocino and Murray fracture
zones, a well-known event that occurred between �53 and 49 Ma during
the evolution of the Northeast Pacific-Farallon Ridge.43

MATERIAL AND METHODS
Across-transform deformation and earthquake analysis

The calculated non-Airy-isostatic topography (see supplemental information)

should reflect local stress-supported topography.44 We extracted a series of profiles

showing the topography and non-Airy-isostatic topography perpendicular to the

Heezen and Tharp TFs (Figure S2). The spacing between two adjacent profiles is

5 km, and the length of each profile is 120 km. Every 10 profiles were grouped as

a section, yielding a total of 9, 11, and 2 sections for the Heezen, Tharp, and

Pitman TFs, respectively (Figure S2). Using these, we measured the accumulated

width and height of the transform uplift, as well as the width and depth of the trans-

form valley, from which we calculated the fault heave (Dxt) and throw (Dyt) of each

TTF. We also measured the accumulated fault heave (Dxr) and throw (Dyr) of each

ORZ at the Heezen, Tharp, and Pitman systems. Furthermore, we analyzed the focal

mechanisms of Mw R 4.8 earthquakes from 1976 to 2020 using the global CMT

database (globalcmt.org), and calculated the average strike, rake, and dip as well

as the accumulated seismic moment of the earthquakes along the Heezen and Tharp

systems.
Calculation of stresses required for TTF, ONF, and ORZ
The deviatoric extensional stress (Dsxx) required to deform a normal fault is given

by Dsxx = 2mðrc�rwÞgy + t0
sin2q+mð1+ cos2qÞ),

45 where m is the coefficient of static friction, rc is the rock

density of 2,900 kg/m3, rw is the water density of 1,000 kg/m3, g is the gravity accel-

eration of 9.8 m/s2, y is the depth, t0 is the rock cohesion, and q is the complementary

angle to the fault dip angle b. We assume a high dip angle for a TTF (bt = 75�) and a

moderate dip angle for an ONF/ORZ (bo = 45�), a low friction coefficient of mt = 0.1 for

a TTF21,22 and a normal friction coefficient of mo = 0.6 for an ONF/ORZ, t0 = 0 MPa for

a TTF, and t0 = 20 MPa for an ONF/ORZ. As plate extension initiates, the TTF will

break first due to its negligible cohesion (Figure 2B). When the deviatoric extensional

stress rises to become larger than the local rock cohesion, the ONF will start to break,

while the TTF will continue to extend (Figure 2C). When deviatoric extensional

stresses are large enough, the plate will become totally broken and form an ORZ

(Figure 2D).
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