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Interseismic locking models derived from geodetic data describe slip deficit accumulation on faults, hence 
indicating the likelihood of future earthquakes. In recent years, locking models have been used to develop 
dynamic scenarios for potential large earthquakes. However, whether those scenarios are effective in 
representing the rupture process and ground motion intensity in future earthquakes remains unclear. 
In this study, we examine the ground motion predictions in locking-based dynamic rupture scenarios by 
comparing them with the predictions from ground motion models (GMMs) and the observations in a real 
earthquake. We utilize two locking models as constraints on the stress heterogeneity and obtain synthetic 
ground motion measures, including the peak ground velocity (PGV) and the peak ground displacement 
(PGD), through conducting dynamic rupture simulations for M7 earthquakes on the Nicoya megathrust. 
The predictions are generally consistent with GMMs with some differences in attenuation rate and 
amplitude in the near field (< 30 km). However, the spatial patterns differ a lot from GMM-based 
predictions, mainly due to the rupture directivity effect. By comparing with scenarios under homogenous 
stress conditions, we observe the dependency of earthquake magnitude and rupture directivity on stress 
heterogeneity. The coseismic slip appears to negatively correlate with stress roughness. Furthermore, the 
predictions from one locking model capture most of the measurements on the local network during 
the 2012 Nicoya Mw 7.6 earthquake. Our results underline the necessity of involving rupture dynamics 
and stress heterogeneities in prescribing the earthquake source and highlight the potential application of 
locking models in seismic hazard assessment.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Recent advances in geodetic monitoring have enabled interseis-
mic locking models to be developed that reveal the distribution of 
the slip deficit build-up rate on faults. These models have signifi-
cantly advanced our understanding of future earthquake potential. 
In general, highly locked regions are anticipated to hold significant 
coseismic slip in future earthquakes, and this intuition has been 
vindicated in several cases, including the 2010 Mw 8.8 Maule, the 
2012 Mw 7.6 Nicoya, the 2015 Mw 7.8 Gorkha, and the 2022 Mw 
6.6 Menyuan earthquakes (Satake and Atwater, 2007; Moreno et 
al., 2010; Métois et al., 2013; Perfettini et al., 2010; Protti et al., 
2014; Avouac et al., 2015; Yang et al., 2022). Some studies suggest 
using slip deficit as an approximation of coseismic slip in future 
earthquakes (e.g. Baranes et al., 2018). However, the uncertainty 
can be considerable, partly due to the difficulty in precisely quan-
tifying the slip deficit prior to an earthquake considering temporal 
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changes in locking depth (Bruhat and Segall, 2017), the build-up 
and release rate of slip deficit (Yang et al., 2019b), and the uncer-
tainty caused by the elastic-earth assumption (Wang et al., 2021). 
Moreover, locking models usually suggest heterogeneous stress ac-
cumulation patterns with multiple segments. The observed rupture 
segmentation, such as along the locked Chile margin, as well as the 
results of numerical rupture simulations, indicates high complex-
ities in the final extent of earthquakes and rupture propagation 
processes that cannot be solely constrained by static locking mod-
els (Hok et al., 2011; Ader et al., 2012; Chlieh et al., 2011; Yu et al., 
2018; Yang et al., 2019a). There is still some doubt, therefore, on 
how to derive reliable information for seismic hazard assessment 
from interseismic locking models.

One approach to evaluating potential rupture process and 
extent for future earthquakes from locking models is deriving 
dynamic scenarios through spontaneous rupture simulations, in 
which the locking models are utilized to constrain the stress build-
up patterns on faults. Given reasonable inputs for fault geometry, 
material properties, and friction properties, such dynamic scenar-
ios can provide physically plausible rupture process, and have been 
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conducted in certain regions such as the Nankai Trough (Hok et al., 
2011), the Cascadia subduction zone (Yang et al., 2012a; Ramos 
et al., 2021; Chan et al., 2022), the Nicoya megathrust (Yang et 
al., 2019b), and the Anninghe strike-slip fault in southwest China 
(Yao and Yang, 2022). However, it has not been possible to val-
idate the scenarios with real earthquakes for most cases, due to 
the lack of instrumental records for large earthquakes except for 
the Nicoya megathrust. By nucleating ruptures from the hypocen-
ter of the 2012 Mw 7.6 event, Yang et al. (2019b) have generated 
locking-based dynamic rupture scenarios that hold similar final 
slip distribution, moment rate function, and moment magnitude 
with finite fault rupture models of the 2012 Mw 7.6 event, which 
highlights the potential effectiveness of locking-based dynamic 
rupture scenarios as a tool in earthquake potential assessment.

In addition to the earthquake source process, quantitative seis-
mic hazard assessment further demands accurate ground motion 
predictions, which are mostly conveyed through empirical ground 
motion models (GMMs) (Atkinson and Boore, 1995; Boore and 
Atkinson, 2008; Bindi et al., 2011). In these models, ground motion 
intensity measures (IM) are expressed as functions of a list of pre-
dictor variables related to earthquake sources and earth structures. 
However, GMMs often suffer from poor constraints in near-fault 
regions for large earthquakes due to inadequate data. In the past 
two decades, physics-based simulators (PBS), such as dynamic rup-
ture simulators, have been applied to model rupture propagation 
and ground motions. The obtained predictions are comparable to 
(Olsen et al., 2006; Ripperger et al., 2008; Bydlon et al., 2019; 
Zhang et al., 2017), or even superior than, those from GMMs 
(Bradley et al., 2017; Bradley, 2019). Compared to GMMs, PBSs 
feature advantages in reflecting the impacts of complex physical 
processes in source and wave propagation such as the rupture di-
rectivity effect and the amplification in sediment basins (Bradley, 
2019; Xin and Zhang, 2021).

The predictions from PBSs are well-known to highly depend on 
model inputs including the fault geometry, the material property, 
the frictional property, and the stress condition on faults (Har-
ris, 2004). How to tune those parameters becomes critical. Due to 
the lack of direct measurements, the distribution of initial stress 
is poorly constrained and has often been assumed to be uniform, 
depth-dependent, stochastic, or dependent on the fault geometry 
(Olsen et al., 2006; Ripperger et al., 2008; Bydlon et al., 2019; 
Zhang et al., 2017). In addition, the rupture process itself is in-
deterministic, which poses uncertainties in ground motions. For 
instance, given the same initial condition, earthquakes with differ-
ent hypocenters can result in diverse rupture directivities, rupture 
extents, and final magnitudes (Yang et al., 2019a; Yao and Yang, 
2022; Xin and Zhang, 2021). Without sufficient prior knowledge of 
the hypocenter location, considering all potential nucleation sites 
is a viable way to quantify the uncertainties introduced by rupture 
indeterminism (Yang et al., 2019a; Yao and Yang, 2022).

Our study region is the Nicoya megathrust in Costa Rica. In 
Sep 2012, a Mw 7.6 earthquake occurred on the Nicoya megath-
rust (Protti et al., 2014). There are two locking models (Xue et al., 
2015; Feng et al., 2012) derived based on geodetic data before the 
2012 event (Fig. 1). This study aims to understand and validate the 
contribution of involving locking models and dynamic rupture sim-
ulations in ground motion predictions. To do so, we utilize locking 
models to constrain the stress state and obtain dynamic scenarios 
and synthetic ground motions for M7 earthquakes in the Nicoya 
region. By testing different nucleation sites, we quantify the un-
certainties in ground motions due to the indeterminism in rupture 
process. Then we compare our predictions with those from GMMs 
and scenarios based on two hypothesized homogeneous locking 
models. Moreover, we check the performance of predictions by 
comparing them with the observations during the 2012 Nicoya Mw 
7.6 earthquake.
2

Fig. 1. A map of the Nicoya Peninsula with two interseismic locking models (locking 
degree > 0.6) (Feng et al., 2012; Xue et al., 2015) and the rupture extent (slip >
1m) of the 2012 Mw 7.6 earthquake (Yue et al., 2013). The yellow star denotes 
the hypocenter of the 2012 Mw 7.6 event (Yue et al., 2013). Areas with slow slip 
events are shown in yellow polygons, which represent 1 m of accumulative slip 
during the interseismic period (Dixon et al., 2014). Triangles indicate the locations 
of continuous GPS (black) and strong-motion (purple) stations. Dashed lines denote 
slab top depths of 10 km, 20 km, and 30 km. EPR: East Pacific Rise; CNS: Cocos-
Nazca spreading center. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

2. Method and model setup

2.1. Finite element model setup

We conduct dynamic rupture simulations on a 3-D cuboid elas-
tic model for the Nicoya megathrust, which extends 180 km along 
strike, 170 km perpendicular to strike, and 80 km at depth. The ge-
ographical reference point is at (−85.40, 8.91) and rotated N45◦W. 
We adopt a 2-D curved geometry for the embedded megathrust, 
the same fault geometry that was used to invert interseismic lock-
ing models (Feng et al., 2012; Xue et al., 2015). A 1-D depth-
dependent layered velocity model based on the results of seismic 
receiver function and tomographic images is adopted (Table S1) 
(Audet and Schwartz, 2013; DeShon et al., 2006).

To meet the numerical requirements to resolve the rupture pro-
cess, the grid sizes on the fault and the ground surface are set to 
be 150 m and increase from 150 m near the trench to 3 km on the 
boundaries. The time step �t is set as 0.005 s (Madariaga, 1976). 
The resolution tests in detail can be found in the supplementary 
file (Fig. S1 & S2). An open-source finite-element package, PyLith, 
is utilized to solve the dynamic rupture process and ground mo-
tions (Aagaard et al., 2013).

2.2. Derive initial stress from the locking models

We estimate initial stress (τi ) from interseismic locking models 
following the approach described in Yang et al. (2019a,b) (Fig. 2a 
& 2d). In Nicoya, the Cocos plate subducts beneath the Caribbean 
plate with a long-term convergence rate of 82 mm/yr (DeMets et 
al., 2010), and is characterized by M7.5+ megathrust earthquakes 
with time intervals of 50 – 60 yrs (Protti et al., 2001). We compute 
the stress accumulation by assuming a constant slip deficit build-
up rate during the interseismic period of 62 yrs, from the last M 
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Fig. 2. Dynamic rupture scenarios derived from two locking models. (a) & (d): initial stress patterns derived from models F2012 (a) and X2015 (d). The red stars denote the 
hypocenter in the 2012 Nicoya Mw 7.6 earthquake (Yue et al., 2013). The blue triangles indicate the locations of GPS and strong-motion stations that provide data to validate 
predictions. The solid and dashed contours demote areas with locking degrees of 0.5 and 0.75, respectively. (b) & (e): contours for final slip of 1 m in dynamic scenarios 
(lightblue and lighterd) and in a finite fault model for the 2012 Mw 7.6 event (black dashed, Yue et al., 2013). The circles indicate the nucleation sites that are in the same 
colors with respective slip contours. (c) & (f): moment rate functions in dynamic scenarios (lightblue and lightred) and from the inversion results for the 2012 Mw 7.6 event 
(blue: Ye et al., 2013; black: Quintero et al., 2014).
7.5+ event in 1950 to 2012. The linear accumulation assumption 
is reasonable in Nicoya because the perturbations from other slip 
events during the interseismic period on the locked megathrust are 
minor, as discussed in detail in Yang et al. (2019a,b) (Fig. 1). More-
over, the Nicoya megathrust was recently reported to be relocked 
with a similar locking pattern prior to the 2012 Mw 7.6 event, in-
dicating a relatively stable locking state across earthquake cycles 
in Nicoya (Xie et al., 2020). The stress calculations are conducted 
using PyLith. The initial stress (τ0) is estimated as the summation 
of the stress accumulation and a constant dynamic stress (τd) of 
10 MPa. Considering the near-lithostatic pore pressure along the 
Nicoya megathrust (Audet and Schwartz, 2013; Saffer and Tobin, 
2011; Yao and Yang, 2020), we assume a constant effective normal 
stress (σn) of 50 MPa on the fault plane.

There are two locking models for the Nicoya megathrust be-
fore the 2012 Nicoya earthquake (Feng et al., 2012; Xue et al., 
2015, hereafter termed F2012 and X2015, respectively). Both these 
models use GPS data from 1996 to 2010, while Xue et al. (2015)
add InSAR data from 2007 to 2010 into the inversion, which im-
proves the resolution beneath the Nicoya Peninsula. The total slip 
deficit rates over the Nicoya megathrust in the two locking mod-
els are nearly the same. The onshore locked patches in the two 
models largely overlap. However, both models suffer from limited 
resolutions offshore due to the lack of data. The major difference 
between the two locking models resides in the transition between 
the onshore and offshore patches. We estimate the initial stress 
distribution from the two locking models separately.
3

2.3. Friction law and nucleation

We assume that the megathrust is governed by a linear slip-
weakening law (Ida, 1972), which has been widely applied in dy-
namic rupture simulations. The linear slip-weakening law is char-
acterized by the yield stress (τs), the dynamic stress (τd), and 
the critical weakening distance (D0), over which the strength de-
creases linearly from τs to τd . Due to the lack of prior knowledge 
of frictional properties on faults before the occurrences of earth-
quakes, we assume that frictional parameters are uniform on the 
fault. The yield stress (τs) on the fault is set to be 20.5 MPa, 
slightly higher than the maximum of the estimated initial stress, 
giving a static friction coefficient of ∼0.4. The dynamic stress (τd) 
is 10 MPa along the megathrust. The rupture propagation is con-
trolled by the strength excess (τs − τ0), the strength drop (τs − τd), 
and D0. In our models, the first two factors are controlled by the 
interseismic locking model. Therefore, the absolute value of the dy-
namic stress does not matter. Previous studies have suggested that 
D0 should scale with the final slip. However, the final slip in an 
earthquake is unknown before its occurrence. Moreover, a recent 
study argues that such scaling may come from the effects of the 
finite seismogenic width and the fault zone structure (Chen and 
Yang, 2020). In addition, dynamic simulations suggest that mod-
els with a uniform average D0 or heterogeneous D0 can result in 
similar rupture processes and ground motions (Weng and Yang, 
2018; Yao and Yang, 2020). Therefore, the critical weakening dis-
tance (D0) is prescribed to be uniform for simplicity (i.e. 0.4 m), a 
commonly used value in dynamic rupture simulations (e.g. Harris 
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Fig. 3. Ground motion patterns in different dynamic rupture scenarios derived from two locking models. Panels (a) - (d) are PGD distribution and (e) – (h) are PGV patterns. 
The red stars indicate the hypocenter locations. The black contours are for final slip with intervals of 1 m. The scenarios in (a, b, e, & f) are derived from model F2012, while 
scenarios in (c, d, g, & h) are derived from model X2015.
et al., 2009). The influence of D0 on model results will be dis-
cussed later in the Discussion section.

We artificially nucleate ruptures by decreasing the yield stress 
to 0.01 MPa below the initial stress within the nucleation zones 
(See details in Supplementary file). We consider a radius of 5 km 
as the upper limit for the nucleation size of M7 earthquakes to 
minimize artificial effects on the modeled moment magnitudes. By 
comparing models with 5-km-radius and 3-km-radius nucleation, 
we find that ruptures with the same nucleation location but dif-
ferent nucleation sizes have nearly identical rupture processes and 
ground motions (Fig. S3), indicating a minor impact of nucleation 
size on model results.

3. Dynamic scenarios and ground motions derived from two 
locking models

We nucleate earthquakes at 72 potential nucleation sites in the 
locked region and conduct spontaneous rupture simulations based 
on the initial stress derived from F2012 (Fig. 2a). 29 of the 72 
ruptures eventually break the locked region with Mw of 7.5-7.6 
(Fig. 2b). Ruptures propagate smoothly over the onshore and off-
shore patches with rupture speeds of ∼3 km/s (Fig. S4). The rup-
ture extents in these breakaway scenarios are nearly identical with 
small differences on the offshore patch (Fig. 2b). The rupture dura-
tions are 30-40 s, comparable to the duration of the 2012 Mw 7.6 
Nicoya earthquake (Fig. 2c) (Ye et al., 2013; Quintero et al., 2014). 
The maximum slip is 3-4 m (Fig. S4). Besides the 29 cases, other 
rupture models spontaneously stop before reaching the edges of 
the locked patch and are almost confined in the nucleation zones, 
forming self-arresting ruptures with Mw of 5-6.

We follow the same procedure to explore possible rupture sce-
narios using another locking model (X2015). The low-stress gap 
between the offshore and onshore patch (Fig. 2d) suppresses the 
rupture propagation along the dip direction, forming rupture seg-
mentation. Therefore, we obtain 22 ruptures that are confined in 
the offshore patch or in the onshore patch with Mw of ∼ 7.2 
(lightred cluster Fig. 2e). In addition, 7 ruptures initiated offshore 
(lightblue cluster in Fig. 2e) trigger secondary nucleation on the 
down-dip high-stress region and eventually break the entire locked 
zone with Mw of ∼7.5. Due to the low-stress gap, scenarios from 
4

X2015 are dominated by along-strike propagation. The rupture du-
rations are ∼40 s and ∼20 s for the Mw∼7.5 and Mw ∼7.2 sce-
narios respectively (Fig. 2f). The maximum slip in scenarios is also 
3-4 m (Fig. S5). In this study, we intend to investigate the poten-
tial large earthquakes, therefore self-arresting cases are ignored in 
the following analyses.

We output the synthetic ground motions (Fig. S6 & S7) and cal-
culate ground motion intensities, including peak ground velocity 
(PGV), as a standard intensity measure in seismic hazard assess-
ment, and peak ground displacement (PGD) for all dynamic sce-
narios. PGD is a low-frequency ground motion feature and hence is 
less affected by the shallow velocity structure. Instead, it is sensi-
tive to low-frequency rupture characteristics such as rupture prop-
agation (Goldberg et al., 2021; Ruhl et al., 2019). Nowadays PGDs 
are usually measured from the Global Navigation Satellite System 
(GNSS). Since the displacement signals always diminish quickly in 
GNSS data for small earthquakes due to the high noise level of 
several centimeters, the utility of PGD usually focuses on large 
earthquakes (Goldberg et al., 2021; Ruhl et al., 2019). Considering 
the large magnitudes (M >7) of our scenarios, we adopt PGD as 
a ground motion feature here. We do not involve the acceleration 
predictions in our current study since our synthetics do not cover 
the frequency band where the energy in ground accelerations con-
centrates (Fig. S8).

We observe diverse ground motion patterns among models 
with different rupture directivities or different rupture extents 
(Fig. 3). For instance, ruptures initiated onshore usually result in 
higher ground motions (PGD ∼ 2 m; PGV ∼ 0.8 m/s) on the 
seafloor (Fig. 3b & 3f), nearly twice of those in scenarios nucleated 
offshore (Fig. 3a & 3e). The directivity effect is not that signifi-
cant on the Nicoya Peninsula due to the relatively larger distances 
to the fault plane (Fig. 3a & 3e). In scenarios from X2015, the di-
rectivity amplification effect concentrates on the southeast bounds 
of the locking patches due to the along-strike rupture propaga-
tion. In addition, the motions on the seafloor in the onshore seg-
mented scenarios are minor compared to those on the offshore 
patch (Fig. 3 & S5).

We treat each model equally to generate the distributions of 
predicted ground motion measures and standard deviations on the 
ground surface (Fig. 4 and S9). Scenarios from X2015 are divided 
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Fig. 4. Synthetic ground motion intensities in Mw ∼7.5 dynamic scenarios from F2012 (a-d) and X2015 (e-h), including the average values and standard deviations for PGD 
(a, b, e, & f) and PGV (c, d, g, & h). The dashed black contour represents the locking degree of 60%.
into two magnitude bins, one for Mw ∼7.2 and another for Mw 
∼7.5. The results indicate higher ground motion intensities off-
shore compared to the onshore region due to the relatively short 
hypocentral distance. In Mw∼7.5 scenarios, regions with high PGD 
overlap with the high-locking regions (Fig. 4a and 4e). The PGDs 
offshore are comparable in magnitude and pattern in scenarios 
from the two locking models (Fig. 4a and 4e), while the PGVs show 
different spatial patterns (Fig. 4c and 4g). The PGV pattern from 
F2012 smears offshore significantly due to the along-dip rupture 
directivity (Fig. 4c). The PGV from X2015 for Mw∼7.5 is similar to 
the locking pattern with slight smearing along strike (Fig. 4g), at-
tributed to the dominant along-strike rupture directivity. The stan-
dard deviation is ∼ 30% of the mean values (Fig. 4b, 4d, 4f, & 4h) 
except the PGD predictions from X2015, in which the standard de-
viation is <20% due to the relatively consistent rupture process 
among all scenarios given all hypocenters offshore (Fig. 2e). The 
predictions from Mw ∼7.2 scenarios are 50% lower compared to 
Mw ∼ 7.5 scenarios due to the difference in the total moment 
(Fig. S9). In addition, the standard deviations are larger in Mw 7.2 
events due to the diverse rupture extents as shown in Fig. 2e.

4. Comparison with GMMs and kinematic slip deficit models

We compare the dynamic scenarios with two recent GMMs for 
PGV (Montalva et al., 2021) and PGD (Goldberg et al., 2021), re-
spectively. The PGV model is based on the records in the Chile 
subduction zone, while the PGD GMM uses a global catalog. In 
the PGV model, the nearest distance to the rupture plane is used 
to describe the source-to-site distance (Rrup). Here, we define the 
rupture plane to be the area with slip over 1 m. While in the PGD 
model, Goldberg et al. (2021) claimed that a weighting function of 
fault slip can be added to the function to calculate the effective 
distance to the source (Ref f ) (eq. (1)).

Ref f =
(

i=n∑
i=1

(wi R−4.5
i )

)−1/4.5

; w j = slip j/

(
n∑

i=1

slipi

)
(1)

where wi and Ri are the weight and the distance to the site of 
the ith patch. The wi is proportional to the slip on the ith sub-
patch and is normalized to sum to one. In our calculation for Ref f , 
5

the rupture plane is divided into sub-patches with an interval of 
1 km. We keep consistent with GMM models in the calculation of 
the source-to-site distance, respectively, which results in a slight 
difference in the source-to-site distance distribution (between Rrup

and Reff) (Fig. 5).
We sample with intervals of 3 km on the surface to gener-

ate the synthetic ground motion datasets from our scenarios. The 
synthetics generally follow the decay trend of GMMs (Fig. 5). The 
mean values with standard deviations almost reside in the range 
predicted by GMMs (Fig. 5). Such consistency reveals the relia-
bility of our scenario predictions. In addition, the PGD and PGV 
patterns commonly feature higher mean values than GMMs when 
Rrup (Ref f ) is smaller than 30 km. In addition to the amplitude, 
the decay rate of PGD in the near field (<30 km) is higher in 
dynamic scenarios compared to GMMs (Fig. 5). To check the ori-
gin of the discrepancies, we calculate the difference between the 
dynamic-model predictions and the predictions from GMMs (Fig. 
S10). Since the final slip patterns are generally similar to the slip 
deficit distribution (Fig. S4 & S5), we adopt the slip deficit models 
(Fig. 6) to calculate the slip-weight function. To make a fair com-
parison, we adopt a moment magnitude of 7.5 in GMMs.
The difference between the dynamic models and the GMM predic-
tions reveals the contributions from the source characteristics in-
cluding the slip distribution on the fault and the rupture directivity 
(Fig. S10). Compared to the GMM-based predictions, dynamic mod-
els produce higher ground motions inside the area where fault slip 
concentrates and the differences generally decay with Rrup (Ref f ). 
The difference in PGD becomes nearly zero on average along the 
contour of 50 km (Fig. S10). Such near-field high values result in 
the high attenuation rate of PGD with Rrup (Ref f ) in dynamic pre-
dictions (Fig. 5). In addition, the difference in PGV is significantly 
modulated by the rupture directivity effect. The difference may re-
sult from the poor representation of the near-field ground motions 
in GMMs as the available samples within 50 km are very sparse. 
Such differences in attenuation trend have been observed in large 
earthquakes such as the 2016 Mw 7.8 Kaikoura earthquake in 
New Zealand (Bradley et al., 2017) and other physics-based ground 
motion simulations (Bradley et al., 2017; Bradley, 2019; Xin and 
Zhang, 2021), which are generally attributed to the local velocity 
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Fig. 5. Synthetic ground motion intensities (gray dots) and ground motion models (GMMs). The synthetics in (a) and (d) are from Mw ∼7.5 scenarios from F2012. Synthetics 
in (b) and (e) are from Mw ∼7.5 scenarios from X2015. While synthetics in (c) and (f) are from Mw∼7.2 scenarios from X2015. The red dots with error bars indicate the 
mean values and standard deviations of synthetics. The dashed blue lines indicate the range of GMM predictions with considering standard deviations. The GMMs for PGD 
and PGV are extracted from Goldberg et al. (2021) and Montalva et al. (2021), respectively.

Fig. 6. Kinematic scenarios assuming complete slip deficit release. Panels (a) and (d) are the slip deficit accumulation (62 yrs) in F2012 and X2015, respectively. Panel (b) 
and (c) are the PGD and PGV predicted based on the scenario in (a) and GMMs (Montalva et al., 2021; Goldberg et al., 2021). Panels (e) and (f) are predictions based on the 
scenario in panel (d).
structure or the source heterogeneities, including complex fault ge-
ometry, heterogeneous slip, and the directivity effect.

We present ground motion predictions using the two GMMs 
mentioned above and two kinematic models assuming complete 
slip deficit release as the source models (Fig. 6a & 6d). The fi-
nal slip in kinematic models is similar to dynamic scenarios but 
with higher amplitudes (Mw 7.8) (Fig. 6, S4, & S5). Generally, the 
ground motion patterns (Fig. 6) are spatially smoother compared 
to dynamic scenarios (Fig. 4). Although with higher moment mag-
nitudes, the kinematic models predict offshore PGDs (Fig. 6b & 6e) 
6

slightly smaller than those in dynamic scenarios (Fig. 4a & 4e). Dif-
ferent from the permanent seafloor deformation which is nearly 
solely determined by the final slip on faults, the PGDs are sensi-
tive to both fault slip and rupture propagation. The higher PGDs 
in dynamic scenarios reveal the contribution of the rupture pro-
cess. The PGV predictions from the two kinematic models differ 
significantly from dynamic scenarios in both amplitude and spatial 
pattern (Fig. 4 & 6), mainly due to the lack of rupture directivity 
effect in kinematic scenarios. The peak PGVs in dynamic models 
are nearly twice those in kinematic models.
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Fig. 7. Scenarios derived from two hypothesized locking models (HP1 and HP2). Panels (a) and (e) represent the accumulated slip deficit (62 yrs) in models HP1 and HP2, 
respectively. Panels (b) and (f) denote the stress accumulation in the two models. The white circles represent the tested hypocenter locations. Panels (c) and (g) show final 
slip in two scenarios. The black contours are rupture fronts of every 3 s. Panels (d) and (h) show the moment rate functions in dynamic scenarios, compared with inversion 
results for the 2012 Nicoya Mw 7.6 earthquake (blue: Ye et al., 2013; black: Quintero et al., 2014).
5. Scenarios derived from homogenous stress distribution

To further illustrate the impact of stress heterogeneity, we test 
extreme cases under homogeneous stress conditions. First, we as-
sume a circular locking patch (Fig. 7a), where the locking degree is 
1 at the center and gradually decreases with the distance from the 
center (eq. (2)):

D(r) = D0

√
1 −

(
r

R

)2

(2)

where D is the slip deficit, as a function of the distance from the 
center (r); D0 is the slip deficit at the center; and R is the ra-
dius of the patch (i.e. 40 km). The stress pattern is smooth inside 
the patch (Fig. 7b). Due to the moderate stress level, ruptures nu-
cleated by decreasing the yield stress to 0.01 MPa lower than the 
initial stress mostly become self-arresting. Therefore, we change 
the nucleation strategy by increasing the initial stress to a level 
of 0.1 MPa higher than the yield stress. We first set the total slip 
deficit to be equal to the total amount in the major locking zone 
in the two interseismic locking models. This hypothesized locking 
model is termed HP1 hereafter. The moment magnitudes of dy-
namic rupture scenarios from HP1 are ∼7.8 (Fig. 7c), close to the 
value estimated by assuming a complete slip deficit release. The 
durations of ruptures are ∼30-35 s (Fig. 7d). We further decrease 
the slip deficit by 60% inside the homogeneous patch (hereafter 
termed as locking model HP2) (Fig. 7e & 7f) and yield Mw 7.53 
∼ 7.61 scenarios with durations ∼20 s (Fig. 7g & 7h). The average 
rupture speeds in those scenarios are ∼3-3.5 km/s.

We follow the same procedure to generate ground motion 
predictions from both dynamic and kinematic scenarios (through 
GMMs) for HP1 and HP2, respectively. The ground motion ampli-
tudes in kinematic models are proportional to the total slip deficit 
as indicated by the comparison between HP1 and HP2 models 
(Fig. 8). Given the same total slip deficit, the kinematic models, 
including X2015, F2012, and HP1, result in similar predictions in 
both amplitude and spatial extent (Fig. 6 and Fig. 8). Differently, 
7

the ground motions in dynamic scenarios under the homogeneous 
condition (HP1) are much severer compared to those in heteroge-
neous models (X2015 and F2012) (Fig. 4). The peak PGD is ∼4 m 
in dynamic scenarios from HP1 (Fig. 8a), much higher than the 
dynamic predictions from X2015 and F2012 (i.e. ∼1.6 m, Fig. 4). 
Similar amplification has been observed in PGV offshore (Fig. 8b).

Given similar rupture extent and moment magnitude among 
dynamic scenarios from F2012, X2015, and HP2, the ground mo-
tions in HP2 scenarios are more intense than X2015 and F2012 
with peak PGD and PGV of 2.5 m and 0.7 m/s, respectively (Fig. 8e 
and 8f). The major cause is the faster moment release in homo-
geneous models. The rupture fronts expand as nearly circles in 
homogeneous models (Fig. 7). While the rupture fronts are con-
fined and reshaped by the stress heterogeneities in X2015 and 
F2012 models (Fig. S4 & S5). Consequently, dynamic models from 
HP2 (Fig. 7h) feature higher peak moment rates and shorter du-
rations compared to X2015 and F2012 (Fig. 2), which enhances 
near-field ground motions.

6. Compare predictions with observations during the 2012 
Mw7.6 earthquake

We compare the ground motion predictions with observations 
during the 2012 Nicoya Mw 7.6 earthquake. We collect data on 
6 high-rate GPS stations (5 Hz) and 3 strong-motion stations 
(200 Hz) with Rrup (Reff) of 20-60 km. PGVs are picked in the fre-
quency band of < 0.5 Hz. PGDs are compared at 6 high-rate GPS 
stations without any filter. The 3 strong-motion stations are ex-
cluded in the PGD validation due to the baseline shift in converting 
acceleration into displacement (Fig. S11 & S12). The displacement 
obtained by double integration of the ground acceleration data 
often shows large drift, for reasons that include the ground tilt, 
inelastic ground deformation, and hysteresis in the instruments 
(Bock et al., 2011). The PGDs and PGVs reside in the ranges of 
0.4-0.8 m and 0.10-0.25 m/s, respectively.

We first introduce the predictions with standard deviations 
based on dynamic scenarios from X2015 and F2012 for PGV and 
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Fig. 8. Ground motion predictions based on the models HP1 and HP2. The predictions from dynamic scenarios are plotted in panels (a, b, e, and f). The predictions through 
GMMs using kinematic models assuming complete slip deficit release are plotted in panels (c, d, g, and h).
PGD on each station (Fig. 9). Most individual PGV measures and 
half of PGD measures are captured with errors smaller than one 
standard deviation in predictions from F2012 (Fig. 9a & 9b). Pre-
dictions from X2015 largely underpredict the ground motions on 
three landward stations: GNYA, PUJE, and CABA. The underpre-
dictions can be attributed to the shallow down-dip bounds com-
pared to the 2012 Mw 7.6 earthquake (Fig. 2e). In addition, the 
2012 Mw 7.6 earthquake propagated towards down-dip, while the 
downward propagation is largely slowed down by the low-stress 
gap in scenarios from X2015. In addition, the rupture patches are 
more elongated along the strike direction in scenarios from X2015, 
which enhances the rupture directivity effects along strike, leading 
to overpredictions on stations SAJU, QSEC, and HATI. The predic-
tions from the F2012 do a better job of capturing the observa-
tions, mostly due to the larger overlap in rupture extent with the 
2012 Mw 7.6 event (Fig. 2b) and the smooth rupture propagation 
along the dip direction. Besides, the dynamic scenarios from HP1 
and HP2 generally overpredict ground motions, especially in PGD 
(Fig. 9c & 9d). The average PGD prediction is ∼2-3 times of obser-
vations. In addition, we generate predictions from the two GMMs 
by using a finite fault slip model for the 2012 Mw 7.6 earthquake 
(Yue et al., 2013) as the source model (Fig. 9 a-d). The GMM-
based predictions capture all data within one standard deviation 
and overall fit observed PGDs (Fig. 9a). However, they underpre-
dict the PGV amplitudes (Fig. 9a & 9b). Noted that the standard 
deviations in GMMs are obviously larger than the scenario predic-
tions.

To quantify the errors, we define the residual as the natural log 
of the ratio between the observation and the prediction (Fig. 9e & 
9f). The average of the absolute residuals (|ln(data/predictions)|) for 
PGD for dynamic predictions in X2015, F2012, HY1, HY2, and the 
GMM are 0.18, 0.33, 1.11, 0.58, and 0.22, respectively. The average 
residuals for PGV are 0.47, 0.17, 0.32, 0.29, and 0.72, respectively. 
Note that the predictions from the GMM feature good performance 
in PGD predictions partly because we use the source model in 
Yue et al. (2013) for the 2012 Mw 7.6 earthquake that was con-
strained from observations. However, the slip distribution before 
an earthquake is unknown and thus it is unfair to conclude a supe-
rior performance of GMM. Dynamic scenarios from X2015 provide 
comparable performance in predicting PGDs. Overall, the scenar-
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ios from F2012 provide the best fitting on the PGV measurements. 
The GMM largely underpredicts PGVs. However, comparison in PGV 
may bear uncertainties due to the lack of detailed information of 
the shallow structure.

We further calculate the spectra for synthetic and observed ve-
locity waveforms (Fig. S13-S18). The spectra of data indicate that 
the energy of the ground velocity during the 2012 Mw 7.6 earth-
quake concentrates in the frequency band of 0.02–0.2 Hz. Predic-
tions in scenarios from F2012 capture more characteristics of the 
shape and the amplitude of observations (Fig. S13 & S14). The 
predicted velocity spectra from F2012 exhibit remarkable consis-
tency with data in the frequency band of 0.05–0.5 Hz for most 
stations and drop drastically over 0.5 Hz (Fig. S13 & S14). The high-
frequency energy (>0.5 Hz) is largely underpredicted in the hor-
izontal components, which is the reason to apply a lowpass filter 
of 0.5 Hz before picking PGVs. While the underprediction is mi-
nor in the vertical component. This may be attributed to the more 
complex S-wave velocity structure than the P-wave velocity struc-
ture. As detailed shallow structure is lacking in our models, we 
adopt the reference velocity VS30 (i.e. 0.75 km/s) in the PGV GMM. 
Although such simplification potentially leads to bias when com-
paring with GMMs in PGV amplitude, the trend of decay should be 
similar. The amplitudes of velocity spectra in low frequency repre-
sent the coseismic static offsets which are mostly determined by 
the final slip distribution on fault. Therefore, the discrepancies in 
the low-frequency limit are attributed to the differences in the fi-
nal slip between scenarios and the 2012 Mw 7.6 event (Fig. 2b).

7. Discussion

7.1. Potential contribution to seismic hazard analysis

One potential contribution from the dynamic scenarios is the 
prediction of rupture directivity and ground motion spatial pat-
terns. Our model results suggest that the spatial patterns largely 
depend on the location of the slip patch and the rupture direc-
tivity. The locking models can help identify the location and the 
spatial extent of asperities. Rupture dynamic simulation can con-
tribute by identifying potential rupture directivity given the ini-
tial stress condition on faults. Besides the stress condition, other 
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Fig. 9. Predictions and residuals of PGD (a, c, & e) and PGV (b, d, & f) on near-field GPS and strong-motion stations. The predictions from dynamic rupture scenarios based 
on the locking models F2012, X2015 (Mw ∼7.5 scenarios), HP1, and HP2 are plotted in black, blue, purple, and green, respectively. The red stars are observations during the 
2012 Mw 7.6 earthquake. The gray solid and dash lines are predictions with standard deviations from PGD (Goldberg et al., 2021) and PGV (Montalva et al., 2021) GMMs by 
using a finite fault slip model (Yue et al., 2013) as the source. The panel (e) and (f) show the residuals of the individual prediction colored respectively.

Fig. 10. Coseismic vertical deformation in dynamic rupture scenarios. Positive values stand for surface uplift. The red stars indicate the hypocenter locations. The black 
contours represent fault slip with intervals of 1 m.
factors that impact rupture directivity such as material contrast 
across faults (Andrews and Ben-Zion, 1997), variation in seismo-
genic depth (Chen, 2021), and shallow low-velocity zones (Weng 
et al., 2016) can also be included in dynamic modeling. Although 
there have been studies on directivity rectification in GMMs (Spu-
dich and Chiou, 2008; Spudich et al., 2014), which usually assume 
the amplification factor to decay with hypocentral distance or in-
crease with the rupture extent, those explicit functions might still 
be too basic to capture ground motion characteristics, especially in 
the near field for large earthquakes with high complexities (Xin 
and Zhang, 2021). In addition to the ground motions, the coseis-
mic seafloor uplift is important in subduction zone regions as it 
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determines the tsunami potential. Similar to the ground motion 
patterns, the seafloor uplift pattern in our scenarios also varies 
with hypocenter location and locking model (Fig. 10). The synthetic 
seafloor deformation can be further applied as input for tsunami 
modeling.

Besides dynamic scenarios, there have been other efforts to in-
volve the constraints from interseismic geodetic data or locking 
models to constrain the source models in ground motion predic-
tions and further hazard analysis. Usually, geodetic data are used 
to constrain kinematic behaviors on faults, e.g. the fault slip. For 
instance, the surface velocity fields have been applied to constrain 
the long-term slip rates (moment budgets) of particular faults or 
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over a spatially distributed region in generating seismicity rate 
models (Field et al., 2017). Moreover, a recent study proposed 
a new method to utilize locking models as prior information in 
earthquake stochastic modeling and probabilistic tsunami hazard 
assessment for the Cascadia subduction zone (Small and Melgar, 
2021; Melgar et al., 2022). As we mentioned in the introduction, 
the slip deficit is not a mirror image of coseismic slip considering 
the uncertainties in estimating slip deficit. Our models further sug-
gest that the coseismic slip can be only ∼40% of the accumulated 
slip deficit due to the incomplete stress release, especially near 
the boundaries of asperities. Such discrepancy is also observed in 
dynamic scenarios for the Anninghe fault (Yao and Yang, 2022) 
and the energy-based scenarios for the Nankai trough (Noda et al., 
2021). The fraction of coseismic slip to slip deficit negatively corre-
lates with stress roughness. This study, as well as other studies on 
locking-based scenarios, can provide references for coseismic slip 
in source modeling in seismic hazard assessment.

Currently, ground motion predictions are dominantly conveyed 
through GMMs, which are proven to be effective and have been 
widely applied for engineering use. Although some recent studies 
have suggested that the PBSs are more effective in solving ground 
motions in cases with complex sources such as multi-segment rup-
tures (Bradley et al., 2017; Xin and Zhang, 2021), the application of 
PBSs still faces many challenges such as how to explicitly quantify 
the uncertainties (Bradley, 2019). Our simulations suggest a stan-
dard deviation of ∼ 30% purely due to the rupture indeterminism 
(Fig. 4), which should be considered an important source of uncer-
tainty.

7.2. Uncertainties from assumptions and further improvement

Our modeling results indicate that rupture extent, rupture di-
rectivity, and surface response in earthquakes are highly dependent 
on the stress pattern, underlining the importance of considering 
stress heterogeneity in source modeling. The stress patterns de-
rived from locking models are sensitive to the spatial gradient of 
the locking degree. Therefore, a precise locking distribution is crit-
ical. However, due to the lack of offshore geodetic observations, 
locking models for megathrusts usually suffer from low resolu-
tions, especially for the portions near trenches (Li et al., 2018). In 
Nicoya, the station coverage is excellent among subduction zones 
because the Nicoya Peninsula protrudes seaward and the distance 
from the coast to the trench is only ∼40 km. The locking mod-
els in Nicoya capture the heterogeneities in the scale of 10-20 km 
(Feng et al., 2012; Xue et al., 2015). The lack of resolution in 
smaller scales limits the frequency of ground motions derived from 
locking models. Therefore, we expect a better performance of this 
approach with good geodetic data coverage, which can capture 
smaller-scale heterogeneities.

In addition, the assumption of a linear stress accumulation dur-
ing the interseismic period may lead to uncertainties in estimating 
the initial stress. Geodetic observations and numerical models sug-
gest that the locking state on faults can evolve with time (Bruhat 
and Segall, 2017; Noda and Lapusta, 2013). Although the assump-
tion seems to be reasonable for the Nicoya case as discussed in 
session 2.2, it needs to be considered carefully for other regions. 
Moreover, we assume uniform background stress and ignore the 
contribution of previous seismicity on the stress pattern. Although 
ruptures to some degree can smooth the stress mostly inside the 
rupture area, they additionally introduce stress concentration near 
the rupture bounds, as another important source of stress hetero-
geneities. Dynamic simulations suggest that such heterogeneities 
introduced by previous seismicity can modulate rupture propa-
gation. The consequent abrupt changes in rupture speed when 
encountering barriers or asperities can largely enhance the high-
frequency radiation and the ground motion (Oral et al., 2022; 
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Madariaga, 1983). Moreover, with the nonuniform residual stress, 
the stress pattern evolves and can result in various rupture extents 
and magnitudes over earthquake cycles (Kaneko et al., 2010; Yang 
et al., 2012b; Luo and Ampuero, 2018; Noda and Lapusta, 2013), 
forming super-cycle behaviors. It is our future work to involve such 
long-term factors.

In our models, we simply assume the D0 to be 0.4 m. This 
value resides in the range constrained by dynamic inversion for 
the 2012 Nicoya Mw 7.6 earthquake on the major down-dip slip 
patch (Yao and Yang, 2020). However, the estimates from obser-
vations for D0 bear considerable uncertainties due to the intrinsic 
trade-off with strength drop (Guatteri and Spudich, 2000). Here 
we provide a synthetic test on the sensitivity of our models to D0. 
Models with different D0 values (i.e., 0.6 m and 0.8 m) are con-
ducted (Fig. S19). The comparison indicates that increasing D0 can 
obviously slow down the rupture. The decrease in rupture speed 
weakens the directivity effect and PGV, although the patterns re-
main similar. In comparison, there is no obvious change in the final 
slip distribution. The change in PGD is also minor as it represents a 
lower-frequency feature compared to PGV. The dependence of sce-
narios on D0 highlights the necessity of incorporating independent 
constraints on frictional parameters in future work.

Besides the initial stress, other model inputs of off-fault struc-
tures and material properties also play critical roles in control-
ling the rupture process (Dunham, 2007; Weng and Yang, 2018). 
Our approach can be further developed by involving more het-
erogeneities. For instance, we have ignored variations in frictional 
properties on faults in models, making the ruptures confined in the 
locked region (Fig. 2). However, ruptures may extend outside the 
locked regions and break aseismic portions, depending on the con-
trast in frictional properties between locked and aseismic regions 
(Kaneko et al., 2010; Ramos and Huang, 2019). In addition, ma-
terial properties, especially the seismic velocity and anelastic at-
tenuation, along the source-to-site paths can also largely influence 
ground motion amplitudes and have been considered in ground 
motion models (GMM) in regional-specific probabilistic seismic 
hazard assessment (PSHA) either via the values of the material 
properties themselves (Sahakian et al., 2019) or empirically based 
spatially varying coefficients (Lanzano et al., 2021; Sgobba et al., 
2021). To improve the synthetic ground motions, especially in high 
frequencies, finer material properties with detailed shallow sedi-
ment structures should be incorporated (Olsen, 2000; Pitilakis et 
al., 2013).

8. Conclusion

We obtain rupture scenarios and synthetic ground motions 
through dynamic rupture simulations with constraints from two 
interseismic locking models in the Nicoya Peninsula (X2015 and 
F2012). The synthetic ground motions are generally consistent with 
GMMs in attenuation trend. We further generate synthetic ground 
motion patterns using the kinematic slip deficit models and GMMs. 
However, the spatial patterns in dynamic scenarios differ a lot 
from those in kinematic scenarios. Such differences are mainly 
attributed to the rupture directivity effects. In addition, we test 
models with homogeneous stress conditions. The results indicate 
that the stress heterogeneities tend to cause incomplete stress re-
lease and therefore smaller earthquake magnitudes. Moreover, we 
observe different rupture directivity in scenarios from different 
locking models, revealing the dependency of rupture directivity on 
the stress pattern. Furthermore, the predictions from F2012 show 
great consistency with the observations during the 2012 Mw 7.6 
Nicoya earthquakes. Our results highlight the importance of involv-
ing stress heterogeneities in dynamic scenarios and the potential 
contribution of locking models in source modeling for seismic haz-
ard assessment.
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