#### Experiment 4 Synthesis of ferrate(VI) ions

# **Experiment 4**

# Synthesis of Ferrate(VI) Ions

### **Student Handout**

#### Purposes

- 1. To prepare ferrate(VI) ions.
- 2. To study the environmental applications of ferrate(VI) ions.

#### Background

Ferrate(VI) (FeO<sub>4</sub><sup>2–</sup>) consists of iron in the +6 oxidation state. It is an environmentalfriendly but powerful oxidising and disinfecting agent. It can oxidise harmful organic and inorganic species such as phenol, hydrazine, cyanide, ammonia, as well as bacteria and viruses. The standard potentials of the Fe(VI)/Fe(III) couple in acidic and basic media are shown below:

| $\operatorname{FeO_4}^{2-}(\operatorname{aq}) + 8 \operatorname{H^+}(\operatorname{aq}) + 3 \operatorname{e^-} \rightleftharpoons \operatorname{Fe}^{3+}(\operatorname{aq}) + 4 \operatorname{H_2O}(1)$ | $E^{e} = +2.20V$       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| $\operatorname{FeO_4^{2-}(aq)} + 4 \operatorname{H_2O}(1) + 3e^- \rightleftharpoons \operatorname{Fe}(OH)_3(s) + 5 \operatorname{OH}^-(aq)$                                                             | $E^{\bullet} = +0.72V$ |

In this experiment, you will prepare  $\text{FeO}_4^{2-}$  ions with  $\text{OCl}^-$  ions and perform simple tests to study their environmental applications.

#### Safety

Handle all chemicals with great care. Avoid direct contact of chemicals with skin. Dispose of chemical waste, broken glassware and excess materials according to your teacher's instruction. Safety information on the chemicals used in the investigation can be found in the Material Safety Data Sheet (MSDS). Consult your teacher for details.



MUST BE WORN

Pay special attention when handling concentrated base and oxidising agents.

# Materials and Apparatus Available

NaOH powder



2 M H<sub>2</sub>SO<sub>4</sub> solution



Co-produced by The Chinese University of Hong Kong, Education and Manpower Bureau and Hong Kong Examinations and Assessment Authority

 $0.3 \text{ M FeCl}_3$  solution



Ethanol



Bleaching water Test tubes 100-cm<sup>3</sup> Beakers Droppers Cotton wool

# **Experimental Procedure**

Photos of the experiment are available at <u>http://www.chem.cuhk.edu.hk/ssc.htm</u>.

Part A: Preparation of  $FeO_4^{2-}$ 

- 1. Add 10 cm<sup>3</sup> of bleaching water in a 100-cm<sup>3</sup> beaker.
- 2. Grind NaOH pellets into powder and add 3 g of it to the beaker with stirring.
- 3. When most of the NaOH powder dissolves and the mixture remains hot, add 5 drops of 0.3 M FeCl<sub>3</sub> solution with stirring for a few seconds.
- 4. Add 2 g of NaOH powder into the reaction mixture.
- 5. Allow the reaction mixture to cool down.
- 6. Place a small amount of cotton wool into a dropper. Filter the reaction mixture through the dropper with cotton wool. Salt of  $\text{FeO}_4^{2-}$  synthesised shows purple colour in the filtrate.

# Part B: Oxidation of organic and inorganic pollutants

- Test 1: Add ~2 cm<sup>3</sup> of absolute or normal ethanol to a test tube containing 2 cm<sup>3</sup> of the filtrate collected in Part A. Record your observations.
- Test 2: Add a few drops of the filtrate collected in Part A to a test tube containing 2 cm<sup>3</sup> of 2 M H<sub>2</sub>SO<sub>4</sub> solution. Record your observations.

# **Questions for Further Thought**

- 1. Write out the chemical reaction to explain why  $\text{FeO}_4^{2-}$  is unstable in acidic solution.
- 2. Write out the chemical equations for the reactions taking place in the following steps.
  - (a) Addition of ethanol to  $\text{FeO}_4^{2-}$  solution.
  - (b) Addition of  $\text{FeO}_4^{2-}$  solution to 2 M H<sub>2</sub>SO<sub>4</sub> solution.

#### Experiment 4 Synthesis of ferrate(VI) ions

#### Reference

J. G. Ibanez, M. Tellez-Giron, D. Alvarez and E. Garcia-Pintor, J. Chem. Educ., 2004, 81, 251.

Co-produced by The Chinese University of Hong Kong, Education and Manpower Bureau and Hong Kong Examinations and Assessment Authority