
UGFN1000 In Dialogue with Nature 與自然對話

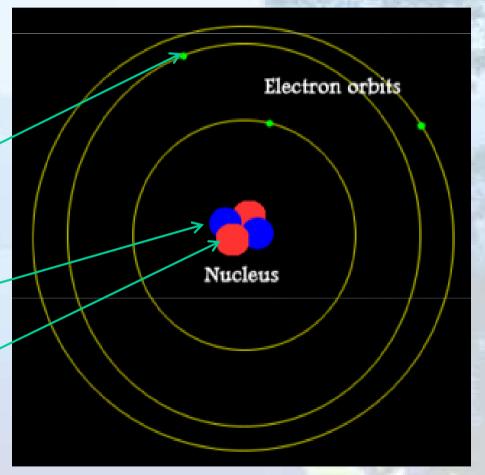
Supplementary lecture on Chemistry

Atomic theory (原子理論)

- What are matters made of?
 - Most people in the past (such as
 Aristotle) believed that matters are
 continuums i.e., there are no gap,
 just as what we see.
 - But in the 20th century, experiments have shown that physical objects are made of atoms which are extremely tiny and mostly empty!

1 Å = 100,000 fm

http://en.wikipedia.org/wiki/Atomic_theory

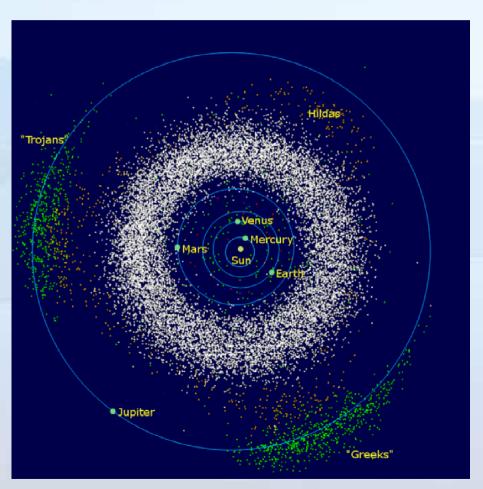

Neutron, Proton and Electron (中子, 質子,電子)

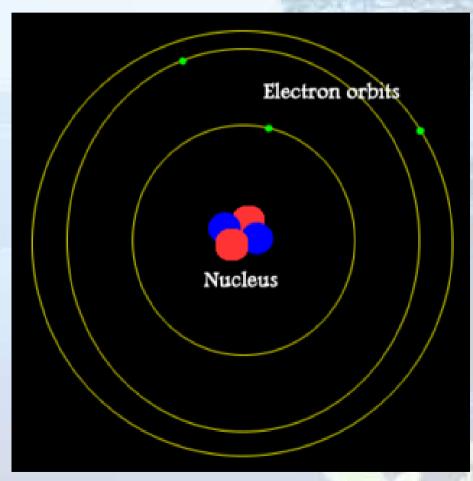
 Atoms is composed of subatomic particles: Protons, Neutrons and Electrons.

Electrons (-ve)

Protons (+ve)

Neutrons

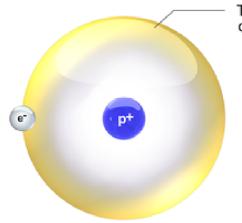


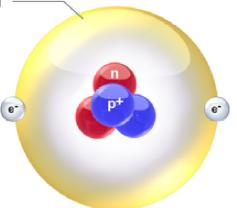

http://reich-chemistry.wikispaces.com/Fall.2010.MMA.Neil.atomictimeline

- If we shoot some atoms at a very thin foil (with thickness of only a few atoms) What would happen?
 - a) Most of the atoms will bounce back
 - b) Most of the atoms will penetrate through the foil
 - c) Most of the atoms will be absorbed.

- Where else do we have a similar model like the atomic model?
 - a) Cells
 - b) Organisms
 - c) Ecosystems
 - d) Planets

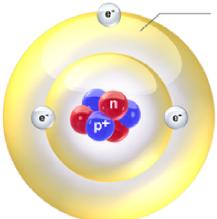
Regular patterns in the extremely large and extremely small



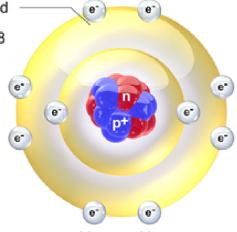

http://en.wikipedia.org/wiki/Solar_System

http://reich-chemistry.wikispaces.com/Fall.2010.MMA.Neil.atomictimeline

Different number of subatomic particles



The first energy level can hold a maximum of two electrons.



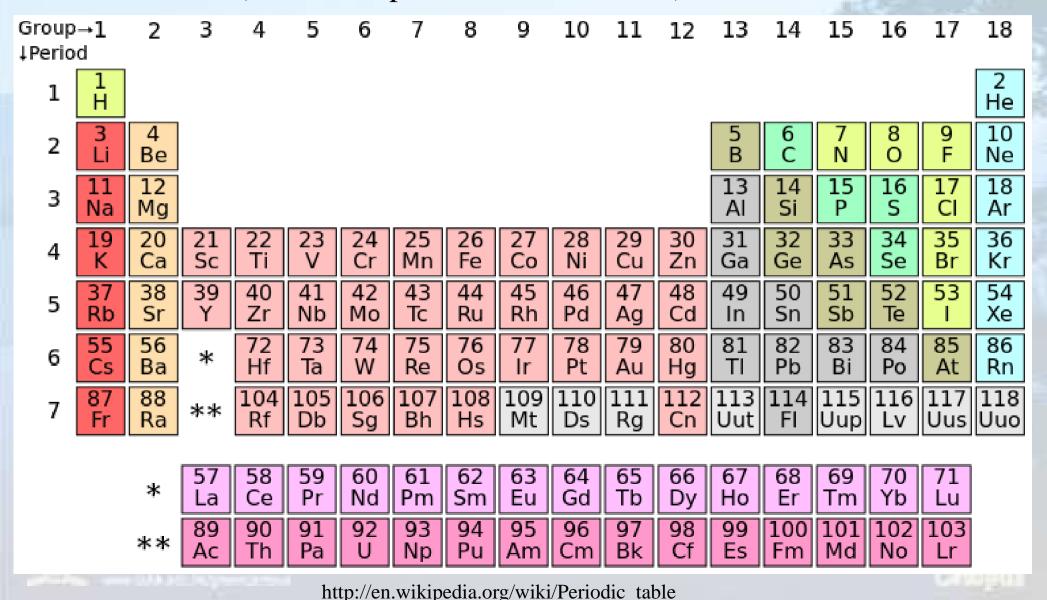
Hydrogen, H Atomic number: 1 Mass number: 1 1 electron

Helium, He
Atomic number: 2
Mass number: 4
(2 protons + 2 neutrons)
2 electrons

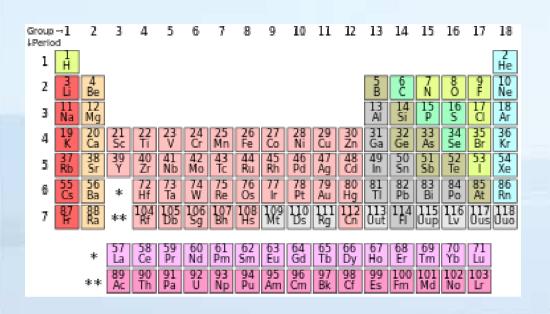
The second and third energy levels can each contain up to 8 electrons.

Lithium, Li
Atomic number: 3
Mass number: 6
(3 protons + 3 neutrons)
3 electrons

Neon, Ne
Atomic number: 10
Mass number: 20
(10 protons + 10 neutrons)
10 electrons


The number of **protons** determines what element this atom is.

The number of **neutrons** usually increases as the number of protons increase.


The number of **electrons** also usually increases as the number of protons increase. But electrons adds **in layers**.

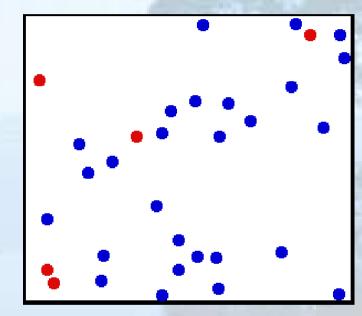
Periodic Table (元素週期表)

Periodic Table is a list of all kinds of elements organized on the basis of their atomic number (number of protons in the nucleus).

Electron configuration

• The rows and columns are roughly arranged according to layers that the last electron will be added to.

• The colours represent some basic properties of the element. (Not to discuss in here).


- How can you change an atom from one element to another?
 - a) Adding/removing some protons
 - b) Adding/removing some electrons
 - c) Adding/removing some neutrons

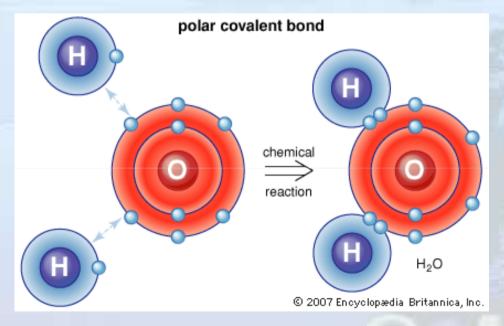
Phases

- The commonly known phases (states of matter) include:
 - Solid
 - Liquid
 - Gas
- Changing phase is a kind of physical change. i.e., it's chemical composition hasn't changed (e.g. water is still water, although changed from ice to liquid water).
- Change in temperature and/or pressure can change the phase of a substance. i.e. substance change phase from liquid to gas (the boiling point) and from solid to liquid (the melting point).

Kinetic theory of gas

- How does atoms interact?
- When atoms are in the gas state, they can move **freely**.
- The kinetic theory of gases describes a gas as a large number of particles, all of which are in constant, random motion.

http://en.wikipedia.org/wiki/Kinetic_theory


• Kinetic theory explains properties such as pressure, temperature, by considering the motion of particles.

- Water boils at 100°C? Is this always the case?
 - a) Yes
 - b) No

Molecule (分子)

 Atoms very often, doesn't exists alone. They are bonded to form a molecule.

- Examples:
 - Water H₂O
 - Carbon dioxide CO₂

http://blogs.britannica.com/2012/06/molecular-nature-water/

Chemical bonds

 Molecules are formed by bonding atoms together. Bonds are really an electrical force linking electrons and protons between varies atoms.

• There are varies types of chemical bonds:

Covalent bond

Ionic bond

Metallic bond

Hydrogen bond

Van der Waals forces

Strong bonds

Weak bonds

We won't discuss here the differences between the types of bonds.

Nuclear reactions

- Nuclear reactions is a reaction that involves the change of nucleus (i.e. adding or reducing the number of protons in an atom).
- Nuclear reaction changes the type of element it is.

- Guess which type of change involves most energy?
 - a) physical change
 - i.e. changing phase
 - b) chemical change
 - i.e. changing chemical bondings
 - c) nuclear change
 - i.e. changing the elements

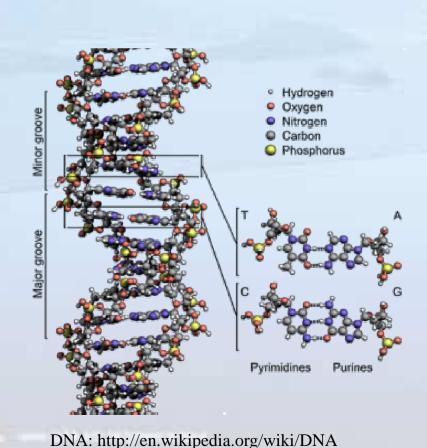

Physical, Chemical and Nuclear change

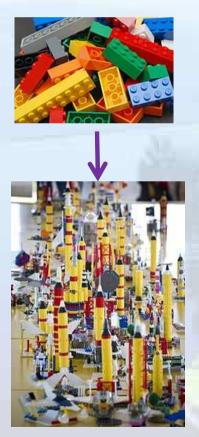
- A physical change change between solid, liquid and gas.
 - Example: ice (solid H₂O) melts to liquid water (liquid H₂O).
- A chemical change involves a reaction in which the products changed their chemical bonds. Significantly more energy needed than a physical change.
 - Example: Hydrogen (H) + Oxygen (O) becomes Water (H₂O).
- A nuclear change involves changes of a nucleus of an atom. This involves about 1,000,000 times as much energy as a chemical change.
 - Example, Hydrogen (H) + Hydrogen (H) becomes Helium (He).

Acid (酸)

- An acid is a substance consists of molecules that are able to donate a proton (i.e., an hydrogen ions H⁺).
- E.g.
 - Hydrochloric acid
 - Amino acid
 - Deoxyribonucleic acid (DNA)

Hydrochloric Acid (HCl, consists of only two elements H and Cl)

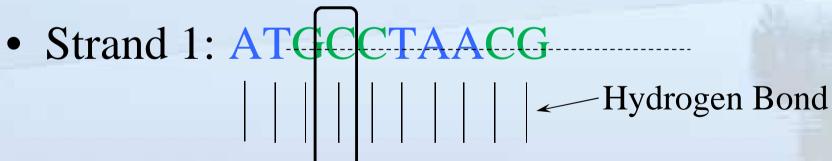



Organic compounds

- The modern meaning of **organic compound** is any substances that contains molecules with a significant amount of **carbon**.
- Historically, organic compounds are thought to be consists of **vital force**. since things with life should be different to things without, right?
- However, with Watson's finding, organic compounds follows exactly the same chemistry and physics laws as inorganic substances.

Deoxyribonucleic acid (DNA, 脱氧核糖核酸)

- A giant molecule that carries the genetic code.
- Contains 4 chemical bases: Adenine, Thymine, Guanine, Cytosine, the building blocks of DNA.



Lego: http://en.wikipedia.org/wiki/Lego

21

What is DNA?

- One DNA has 2 strands, each carrying a series of bases
- The 2 strands are bound together through A-T and G-C base pairing.
- The strands are said to be complementary.

• Strand 2: TACGGATTGC

Base-pair

What does DNA code for?

• DNA carries the genetic code but requires something else to decode the stored information.

DNA ...ATGGCTTCCAAATGGTTC...

Decoding Machinery

Protein 蛋白質...Met-Ala-Ser-Lys-Trp-Phe...

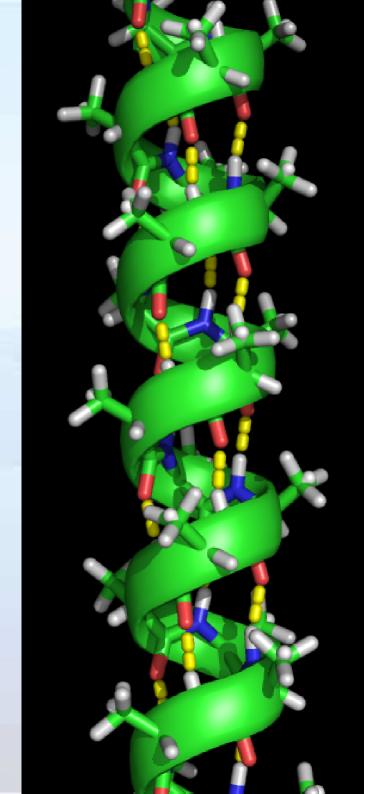
Protein is made up of long sequence of amino acid 氨基酸

It is the protein, not the DNA, that help us to function our body.

Analogy

App written by an engineer

Convert and download


The installed app on your iPhone.

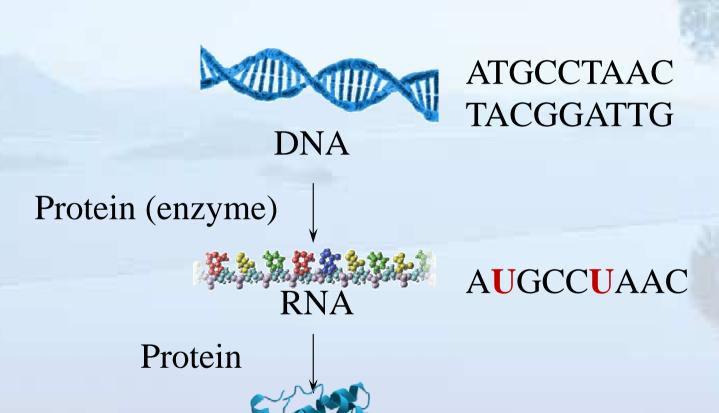
It is the app on your iPhone, not the app written by an engineer, that functions

- Suppose Susan was taking a photo of a beautiful scenery with a camera. Use this as an analogy, which of the following resemble the role of DNA?
 - a) Susan
 - b) The beautiful scenery
 - c) The camera
 - d) The photo

Protein (蛋白質) and Amino acid (氨基酸)

- There are 20 standard types of amino acid in a protein molecule.
- A common structure found inside a Protein is α-helix form – discovered by Linus Pauling.

"Alpha helix" by Zsolt Bikadi Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Alpha_helix.png#mediaviewer/File:Alpha_helix.png

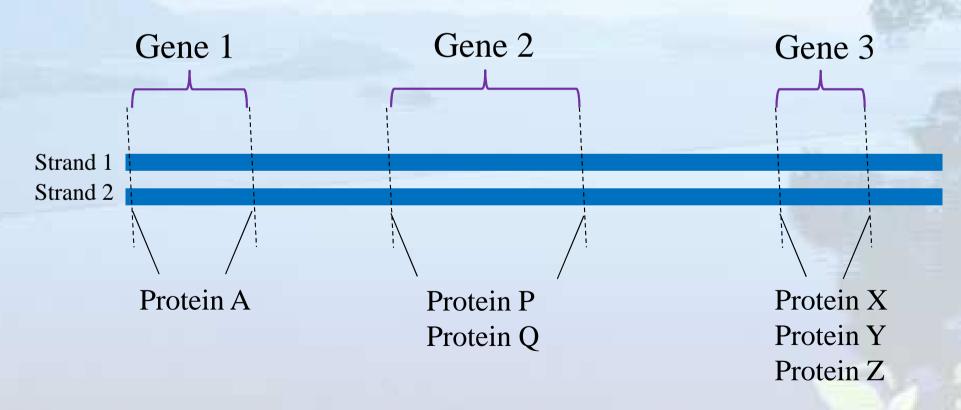

- Guess which sequence has a larger combination?
 - a) A sequence with 4 units, each can be of 20 choices.
 - b) A sequence with 20 units, each can be of 4 choices.

Enzyme

- Many vital processes inside the body are performed by a group of proteins, called Enzyme.
- For example: energy production, DNA replication, food digestion, detoxification...etc.
- Examples of enzyme:
 - DNA polymerase (can replicate DNA)
 - DNase (can destroy DNA)
 - RNase (can destroy RNA)
 - Trypsin, chymotrypsin (can destroy proteins)

How is DNA decoded?

• The central dogma of life 生命的中心法則


Protein

http://www.publicdomainpictures.net/http://en.wikipedia.org/wiki/RNAhttp://en.wikipedia.org/wiki/Protein

Met-Pro-Asn

What is the relationship between Gene 基因 and Protein?

- Each protein is encoded by a stretch of DNA, called gene.
- A single gene can codes for one to several proteins.

• In human, ~30,000 genes code for ~100,000 proteins

• DNA sequence is the footprint of our identity.

What about Protein sequence? Can the whole set of Protein sequence be possible to use as the footprint of our identity?

- a) Yes
- b) No