

IMMERSIVE LEARNING BRIEFING SESSION

Content

- ① Introduction
- Five aspects of each immersive learning experience
 - Characteristics
 - Examples
 - Strengths
 - Constraints
 - Development Process
- ③ Summary
 - Final Output Comparison
 - Development Cost Comparison

Introduction

"Immersion is a psychological state characterized by perceiving oneself to be enveloped by, included in, and interacting with an environment that provides a continuous stream of stimuli and experiences."^[1] - Witmer & Singer

Introduction [continued]

- There are different emerging technologies for creating immersive learning experiences to engage students
- Two technological variables contributing to high level of immersion *Dengel*:
 - Vividness^[2] (生動/栩栩如生, Representational richness of the environment in both breadth and depth)
 - Interactivity^[2] (Speed, range and mapping of interaction)
- Nowadays, sensory fidelity or tangibility could further enhance level of immersion via different devices and technologies (e.g., Real-time realistic 3D rendering engine, haptic device, smell generator or spatial sound effect, etc.)
- However, it is important to understand different types of current immersive learning experience and how to make use of them to improve our students' learning efficiency and effectiveness

Introduction [continued]

- Five Aspects:
 - (A) Characteristics | (B) Examples | (C) Strengths | (D) Constraints | (E) Development Process

FIVE ASPECTS OF @IMMERSIVE LEARNING EXPERIENCE

Characteristics, strengths, constraints, examples and development process

Immersive Video (aka 360-degree video)

Characteristics

- Viewers can view the video in different angle with an immersive feeling
- Interactive content and embedded media (texts, images, videos) can be added
- Suitable for virtual site-visit and demonstration
 - Facilities or location visit
 - Heritage or tourist attractions tour
 - 1st / 3rd person prospective video

Immersive Video [continued]

Example: Virtual site visit at the inpatient pharmacy in Queen Mary Hospital

Vividness |

Immersive Video [continued]

Strengths

- Much reasonable cost
- ✓ Able to capture real environment or situations
- Easy to delivery in different device/ OS
- ✓ High accessibility

Constraints

- Highly depend on availability of target venue or location (i.e. need more preparation time)
- Limited Interaction compares to other emerging technologies
- X Unable to change position around inside the video although able to change the viewing angle
- \times Unable to interact with objects in video
- \times Linear content delivery in a fixed sequence or paths

Immersive Video [continued]

Development process

Process	Pre-production	Production	Post-production	Delivery
	→ Planning	Video shooting	→ Video editing	
	→ Storyboarding		→ Audio editing & mixing	· • • •
	Location scouting		Adding interactive elements	
Hardware		(A) 360-degree camera	(B) High-end computer	(C) VR headsets (prepared by learners: web browser, phone, tablet)
Software			Premiere Pro, After Effects, Marzipano, etc.	

Augmented Reality App

What is augmented reality (AR)?

"Computer-generated imagery overlaid on the real environment"^[3]

Characteristics

- Usually deployed on mobile, tablet, laptop and desktop
- Virtual elements overlay in the physical object or surroundings
- Suitable for 3D visualization, e.g.
 - Interior or fashion design
 - Exhibition/ Museum Guided Tour
 - Human anatomy

Example: KidneyAR

AR game [continued]

Example: Cranial AR Teaching

Vividness | 🖈

AR App [continued]

Strengths

- ✓ High mobility
- Easy to delivery in different device
- High accessibility
- Custom game rules (e.g. levels, missions, scores)
- Generally, only small space is needed (e.g., a surface of table)

Constraints

- X Games are not interconnected
- X Limited interaction
- X Long development time

Development process

Process	Pre-production	Production	Post-production	Delivery
	-> Planning	→ 3D asset modeling		
	→ Storyboarding	-> Animation		
	> Prototyping	→ Audio recording	Deployment	
	3D asset and environment design	UI design		
Hardware		(A) High-end computer	(A) High-end computer, (B) phone/tablet	(Prepared by learners: laptop, phone, tablet)
Software		Blender, Substance Painter, Mixamo, etc.	Unity, Unreal Engine, Visual Studio, etc.	

Virtual Reality App

What is virtual reality (VR)?

"An immersive experience in a completely computergenerated environment"^[3]

Characteristics

- VR headset (aka Head Mounted Display | HMD) required
 - App base (IOS/ Android)
 - System base (Local)
 - Single player vs multi players
- Fully immersive experience by placing user in a specific virtual environment
- Suitable for procedural task training involving specific setting and physical interaction, e.g.
 - Medical procedures
 - Machine operation
 - Fire escape

App base (IOS/ Android)

Example: Animal handling game

Strengths

- Highly customizable 3D graphics
- Wide range of interactions possible
- High Interaction
- Custom game play (e.g. levels, missions, scores)

Constraints

- \times Low flexibility in terms of device and platform
- × Very long development time
- X Lots of programming tasks and testing are involved
- \times Need sufficient space

Development process

Mixed Reality App

What is mixed reality (MR)?

"Computer-generated imagery merged with the real environment that the user can **interact** with"^[3]

Characteristics

- Mixed reality headset like HoloLens required
- Interaction possible between user, virtual elements and real-world elements
- Suitable for procedural training requiring real-world environment, e.g.
 - Real machine operation with virtual instructions
 - Lab procedures
 - Graffiti

Example : Mixed reality laboratory

Strengths

- ✓ High interactivity compared to AR game
- ✓ Blended with realistic environment
- Custom game rules (e.g. levels, missions, scores)

Constraints

- \times High hardware cost
- \times Low flexibility in terms of device and platform
- X Long development time
- × Lots of programming tasks and testing are involved
- Need sufficient space or specific location (sometimes)

Development process

Process	Pre-production	Production	Post-production	Delivery
	-> Planning	→ 3D asset modeling	→ Integration	•
	-> Storyboarding	-> Animation	-> Coding	
	-> Prototyping	-> Audio recording	Deployment	• • • •
	3D asset and environment design	-> UI design		
Hardware		(A) High-end computer	(A) High-end computer, (B) MR headsets	(B) MR headsets
Software		Blender, Substance Painter, Mixamo, etc.	Unity, Unreal Engine, Visual Studio, etc.	

XR (Cross/ Extended Reality)

- Crisscrossing realities with vibrant, high-resolution XR passthrough.
- Using your hands Navigate, click, drag, scroll, and type with natural hand and finger movements.
- Glasses-free.
- Battery Hot-swappable and replaceable.

Virtual Space (aka Metaverse)

What is the metaverse?

- A concept with diverse, ambiguous definitions
- "A three-dimensional virtual world inhabited by avatars of real people" ^[5]
- Current state of metaverse: social platforms containing user-created virtual environments

Virtual Space

- Collection of virtual environments
- Interactions and device compatibility: depend on platform

XR App

- Independent experiences
- Interactions and device compatibility: customizable

Characteristics

- Focuses on Peer-to-Peer interaction
- Common built-in features
 - Avatars
 - Voice chat
 - Face camera
 - Emotes
 - Screen sharing
 - Media sharing (images, videos)
 - File sharing (Word, Excel, PPT, PDF)

Spatial

Rec Room

Horizon Worlds

Characteristics

- Suitable for hosting online events with large number of participants
 - Exhibition
 - Seminar/lecture
 - Discussion
 - Social gathering

Example : Floor plan design exhibition on Spatial

Vividness | 🗲

Virtual Space [continued]

Strengths

- ✓ Highly flexible in terms of device and platform
- ✓ Fast and Easy delivery
- ✓ High accessibility
- Short development time
 (e.g. use 3D Environment template)
- Different communication channels in the platform (e.g., text chat, voice, emoji, ... etc.)
- ✓ Support large group of learners simultaneously

Constraints

- X Limited and non-customizable interaction with virtual objects or game rules
- X No custom UI

Development process

Summary

Immersive video

AR app

VR app

MR app

Virtual space

Summary [continued]

Final Output Comparison

	Vividness	Interactivity	Delivery/ Accessibility	Ease of use for learners
Immersive Video ζ_{P}^{36}	**	**	****	****
AR App	***	***	***	****
VR System-based	。 ★★★★	****	*	***
VR App-based	****	****	***	****
MR App	****	****	*	**
Virtual Space	o ★★★★	***	****	****

Summary [continued]

Development Cost Comparison

	Time	Hardware cost	Software cost
Immersive Video (360)	Medium	Medium	Vary*
AR App AR	High	Medium	Vary*
VR Systembase	High	High or Vary*	Vary*
VR App base	High	Low	Vary*
MR App	Very High	Very High	Vary*
Virtual Space	Medium	Low	Vary*

* The software & hardware cost may depend on different factors like specific required features and the timeline of the project. However, there are numerous free tools on the market.

Summary

- Currently, there is no perfect solution for immersive learning
- Each type of experience has its characteristics, strengths and constraints
- The type of learning experience should be picked based on the learning objectives, so we can
 - Enhance the efficiency and effectiveness of learning and teaching
 - Meet the learning style or needs of students
 - Improve user-accessibility and time flexibility to engage learners
- Feel free to tell us your ideas. We are here to help!

CUHK 2025 | Education Strategic Plan "Meeting the Challenges of Tomorrow"

THANK YOU

References

- Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. *Presence: Teleoperators and Virtual Environments*, 7(3), 225– 240. <u>https://doi.org/10.1162/105474698565686</u>
- 2. Dengel, A., & Mägdefrau, J. (2019). Presence is the key to understanding immersive learning. *Communications in Computer and Information Science*, 1044, 185–198. <u>https://doi.org/10.1007/978-3-030-23089-0_14</u>
- 3. Holt, S. (2023). Virtual reality, augmented reality and mixed reality: For astronaut mental health; and space tourism, education and outreach. *Acta Astronautica*, 203, 436–446. <u>https://doi.org/10.1016/j.actaastro.2022.12.016</u>
- 4. Santugini, M. (2023). KEEP Reshaping Education with Metaverse Technologies Learn in the Metaverse. <u>https://keep.edu.hk/wp-content/uploads/2023/02/KEEP-Intro-to-Learning-in-the-Metaverse.pdf</u>
- 5. Kim, J. (2021). Advertising in the Metaverse: Research Agenda. *Journal of Interactive Advertising*, 21(3), 141-144. https://doi.org/10.1080/15252019.2021.2001273