ORGANIZATION

Organizers:
Central South China University
The Chinese University of Hong Kong

Co-organizers:
Epithelial Cell Biology Research Center, The Chinese University of Hong Kong
Xiang-Ya School of Medicine, Central South University
— Cancer Research Institute of Xiang-Ya School of Medicine, Central South University
— Department of Physiology of Xiang-Ya School of Medicine, Central South University

Venues:
Central South, China

Scientific Advisors:
Lin Fang Wang Academician of Chinese Academy of Engineering, Peking Union Medical College
Yi Xun Liu Academician of Chinese Academy of Science, Institute of Zoology Chinese Academy of Sciences
Yong Lian Zhang Academician of Chinese Academy of Science, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biology Sciences
Zu Ze Wu Academician of Chinese Academy of Science, Academy of Military Medical Sciences
Wei Feng Chen Academician of Chinese Academy of Science, Beijing Medical University
Yue Ting Gong Academician of Chinese Academy of Science, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biology Sciences
Bai Ge Zhao Vice Chair, State Family Planning Commission
Zhong He Zhai Academician of Chinese Academy of Science, College of Life Sciences at Peking University
Qi Shui Lin Academician of Chinese Academy of Science, Institute of Biochemistry and Cell Biology, SIBB, CAS
Yu Mei Wen Academician of Chinese Academy of Engineering, Fudan University
Da Long Ma Human Disease Genomics Center, Peking University
Bo Yun Huang Academician of Chinese Academy of Engineering, Central South University
Presidium:

Chairpersons:

Yong Quan Tian Central South University
Hsiao Chang Chan The Chinese University of Hong Kong

Members:

Ya Cao Central-South University
Xiao Song Gu Nantong University
Ying Xing Zheng Zhou University
Jun Xia Xie Qing Dao University
Ting Yu Li Chongqing University of Medical Sciences
Jie Ying Gao Academy of Military Medical Sciences
Yun Fei Xia Sun Yat-Sen University
Jin Xia Zhu Capital University of Medical Science, Beijing
Wei Zou Liaoning Normal University
Tak Wah Wong Cheng Kung University, Taiwan
Jun Ping Liu Monash University, Australia
Fang Ping Chen The First Affiliated Hospital of Xiang-Ya Medical School
Bang Liang Yin The Second Affiliated Hospital of Xiang-Ya Medical School
Hong Sun The Third Affiliated Hospital of Xiang-Ya Medical School
Yuan Jian Li The Pharmacy College of Central South University
Xiao Qun Qin The Basic Medical College of Central South University

Executive Committee President:

Yong Quan Tian Central South University

Organizing Committee Director:

Ya Cao Central South University

Academic Committee Director:

Xiao Qun Qin Central South University

Secretariat:

Bai Yi Central South University
AWARD JUDGING PANEL:

Jie Ying Gao Academy of Military Medical Sciences
Wei Xin Hu Central South University
Ting Yu Li Chongqing University of Medical Sciences
Jun Ping Liu Monash University, Australia
Hong Yang Wang International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute /Hospital, Shanghai
Lin Fang Wang Institute of Basic Medical Sciences Chinese Academy of Medical Sciences
Xiao Fei Wang College of Marine Life Science, Ocean University of China
Tak Wah Wong National Cheng Kung University
Yun Fei Xia Sun Yat-sen University
Jun Xia Xie Qing Dao University
Ying Xing Basic Medical College of Zhengzhou University
Yong Lian Zhang Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
Wen Liang Zhou Sun Yat-sen University
Jin Xia Zhu Capital Medical University
Wei Zou Liaoning Normal University

SUPPORT ACKNOWLEDGEMENT:
Changsha Post Office (长沙邮政局)
National Natural Science Foundation of China (国家自然科学基金委)
The Chinese University of Hong Kong – Office of Academic Link (China)
香港中文大學 - 學術交流處 (國內事務)
PROGRAM AT A GLANCE: (日程安排）

| Wednesday
| April 16, 2008
| 星期三
| (Molihua International Hotel)
| 茉莉花国际酒店） |
| Thursday
| April 17, 2008
| 星期四
| (Multi-functional conference Hall,
| 1st floor of Library,
| XiangYa Shool of Medicine)
| 湘雅医学院图书馆一楼
| 多功能会议厅 |
| Friday
| April 18, 2008
| 星期五
| (Multi-functional conference Hall,
| 1st floor of Library,
| XiangYa Shool of Medicine)
| 湘雅医学院图书馆一楼
| 多功能会议厅 |

<table>
<thead>
<tr>
<th>Time</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 – 09:00</td>
<td>Opening Ceremony 开幕式</td>
</tr>
<tr>
<td>09:00 – 09:20</td>
<td>Group Photo 照相</td>
</tr>
<tr>
<td>09:20 – 10:20</td>
<td>Plenary Lecture 大会报告</td>
</tr>
<tr>
<td>10:20 – 10:40</td>
<td>Coffee or Tea Break & Poster Viewing 茶歇及壁报展览</td>
</tr>
<tr>
<td>10:40 – 12:00</td>
<td>Key Lectures 主题演讲</td>
</tr>
<tr>
<td>12:00 – 14:00</td>
<td>Lunch 午餐</td>
</tr>
<tr>
<td>14:00 – 15:20</td>
<td>Key Lectures 主题演讲</td>
</tr>
<tr>
<td>14:00 – 15:40</td>
<td>Coffee or Tea Break & Poster Viewing 茶歇及壁报展览</td>
</tr>
<tr>
<td>15:40 – 18:00</td>
<td>Young Scientist Competition 青年优秀论文评选</td>
</tr>
<tr>
<td>16:50 – 17:30</td>
<td>Closing and Award Ceremony 闭幕及颁奖</td>
</tr>
<tr>
<td>08:00 – 20:00</td>
<td>Registration 报到</td>
</tr>
<tr>
<td>12:30 – 14:00</td>
<td>Lunch 午餐</td>
</tr>
<tr>
<td>14:00 – 15:15</td>
<td>Special Topics 专题讨论</td>
</tr>
<tr>
<td>15:15 – 15:35</td>
<td>Coffee or Tea Break 茶歇</td>
</tr>
<tr>
<td>18:00 – 20:00</td>
<td>Dinner 晚餐</td>
</tr>
<tr>
<td>17:30 – 20:00</td>
<td>Dinner 晚餐</td>
</tr>
</tbody>
</table>
2008.4.17

08:30 – 09:00 Opening (开幕式)
09:00 – 09:20 Photograph (照相)

Plenary Lecture (大会报告)

Chairs: (主席):

Prof. Yong Quan Tian, Vice-Chancellor, Central South University

田勇泉教授，中南大学副校长

09:20 – 10:20
Erwin Neher, 1991 Nobel Laureate in Physiology or Medicine; Professor, Director and Professor, Director of the Membrane Biophysics Dept. Max-Planck-Institut für Biophysikalische Chemie

Erwin Neher 教授，1991年诺贝尔生理医学奖获得者，德国马克斯·普朗克生物物理化学研究所膜生物物理系主任

A biophysical dissection of neurotransmitter release at a glutamatergic synapse
单个谷氨酸能突触神经递质释放的生物物理学研究

10:20 – 10:40 Coffee and Tea Break & Poster viewing (茶歇及壁报展览)

Key Lectures (主题演讲)

Chairs: (主席):

Prof. Ying Xing, Basic Medical College of Zhengzhou University;

邢莹教授，郑州大学基础医学院

Prof. Xiao Qun Qin, The Basic Medical Central South University

秦晓群教授，中南大学基础医学院

10:40 – 11:20
Pierre Tiollais, Professor, Nuclear Organization and Oncogenesis Unit, INSERM U579, Institut Pasteur, France; Member of the French Academy of Science and Member of the Chinese Academy of Engineering

Pierre Tiollais 教授，法国巴斯德研究所，法国科学院院士，中国工程院院士

Hepatitis B virus from cloning to vaccine
乙型肝炎病毒从克隆到疫苗研究

11:20 – 12:00
Levon M. Khachigian, Professor, Senior Principal Research Fellow NH&MRC, Centre for Vascular Research, School of Medical Sciences, The University of New South Wales, Sydney, Australia

Levon M. Khachigian 教授澳洲新南威尔士大学，血管研究中心

Immediate-Early Genes as Master Switches in Disease
早期基因作为疾病发生的主要诱因

12:00 – 14:00 Lunch & Poster viewing (午餐及壁报展览)
Key Lectures (主题演讲)

Chairs: (主席：)

Prof. Ya Cao, Xiang-Ya School of Medicine, Central South University;
曹亚教授 中南大学湘雅医学院

Prof. Jun Xia Xie, Qingdao University Medical College
谢俊霞教授，青岛大学医学院

14:00 – 14:40

Yong Lian Zhang, Professor, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Academician, Chinese Academy of Sciences
张永莲教授 中科院生物化学和细胞研究所 中国科学院院士

Small RNAs in Epididymis
附睾的 siRNA

14:40 – 15:20

Hong Yang Wang, Professor & Director, International Cooperation Laboratory, on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, Academician, the Chinese Academy of Engineering
王红阳教授 上海东方肝胆外科医院/研究所 信号转导国际合作实验室主任 中国工程院院士

Negative regulation of signal regulatory protein on cancer signaling
肿瘤信号通路中信号调节蛋白的负性调节

15:20 – 15:40

Coffee and Tea Break & Poster viewing (茶歇及壁报展览)

Young Investigator Competition (青年学术论文评选)

Session A (A 组)

Venue: Multi-functional Conference Hall, 1st floor of Library
(湘雅医学院图书馆一楼多功能会议厅)

Chair: Prof. Wei Zou, Liaoning Normal University (邹伟教授 辽宁师范大学)

Session B (B 组)

Venue: Meeting Room, 4th floor of Library（图书馆四楼会议厅）

Chair: Prof. Jie Ying Gao, Academy of Military Medical Sciences (高洁英教授 军事医学科学院)

Session C (C 组)

Venue: Multi-functional Conference Hall, 4th floor of Teaching Building（教学楼四楼多功能会议厅）

Chair: Prof. Jun Ping Liu, Monash University, Australia(刘俊平教授 澳大利亚Monash 大学)
Session D (D 组)
Venue: No. 2 Meeting Room, 8th floor of Office Building (办公楼八楼二会议室)
Chair: Prof. Ting Yu Li, Chongqing University of Medical Sciences (李廷玉教授 重庆医科大学)

18:00 – 20:00 Dinner (晚餐)
2008.4.18 (简短汇报)

Short Talk (分会场报告)

Session A (A组)

Venue: Multi-functional Conference Hall, 1st floor of Library (湘雅医学院图书馆一楼多功能会议厅)

Chairs:

- Prof. Ying Xing, Basic Medical College of Zhengzhou University; 邢莹教授, 郑州大学基础医学院
- Prof. Cha Xiang Guan, Xiang-Ya School of Medicine, Central South University; 管茶香教授, 中南大学湘雅医学院

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 – 10:30</td>
<td>Session B (B组)</td>
</tr>
<tr>
<td>Venue:</td>
<td>Meeting Room, 4th floor of Library</td>
</tr>
<tr>
<td></td>
<td>(图书馆四楼会议厅)</td>
</tr>
<tr>
<td></td>
<td>Chairs:</td>
</tr>
</tbody>
</table>
| | Prof. Dong Qing Cai, Joint Laboratory for Regenerative Medicine; 蔡冬青教授, 再生医学联合实验室
| | Prof. Yun Fei Xia, Sun Yat-sen University |
| | 夏云飞教授, 中山大学 |

Session C (C组)

Venue: Multi-functional Conference Hall, 4th floor of Teaching Building (教学楼四楼多功能会议厅)

Chairs:

- Prof. Wen Liang Zhou, Sun Yat-sen University; 周文良教授 中山大学
- Prof. Xiao Fei Wang, College of Marine Life Science, Ocean University of China; 王晓飞教授 中国海洋大学海洋生命学院

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30 – 12:30</td>
<td>Coffee and Tea Break & Poster viewing</td>
</tr>
<tr>
<td></td>
<td>(茶歇及壁报展览)</td>
</tr>
<tr>
<td>10:30 – 12:30</td>
<td>Young Investigator Competition (Final)</td>
</tr>
<tr>
<td></td>
<td>(青年学术论文决赛)</td>
</tr>
<tr>
<td>12:30 – 14:00</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td>(午宴)</td>
</tr>
<tr>
<td></td>
<td>Special Topics</td>
</tr>
<tr>
<td></td>
<td>(专题报告)</td>
</tr>
</tbody>
</table>
Chairs: (主席)

Prof. Lin Fang Wang, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences;
王琳芳教授，中国工程院院士 中国医学科学院基础医学研究所

Prof. Wei Zou, Liaoning Normal University
邹伟教授 辽宁师范大学

14:00 – 14:25
Yu Hong Fan, Assistant Professor, School of Biology and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, USA
范玉红教授，美国乔治亚理工学院生物工程和生命科学学院

Epigenetic regulation of gene expression by linker Histone H1
连接组蛋白 H1 的基因表达的表观遗传学调控

14:25 – 14:50
Ming Li, Assistant Professor, Epithelial Cell Biology Research Center, The Chinese University of Hong Kong
李明教授，香港中文大学上皮细胞生物学研究中心

Increased cardiogenic differentiation efficiency and significant myocardial regeneration
心脏发生分化效率的提高和有意义的心肌再生

14:50 – 15:15
Jun Ping Liu, Associate Professor, Head, Molecular Singnaling Lab, Department of Immunology, Faculty of Medicine, Nursing and Health Sciences, Australia
刘俊平教授，澳大利亚 Monash 大学

Maintenance of telomeres and cell proliferation signaling from hormones and growth factors to telomeres
端粒的维持和从激素及生长因子到端粒的细胞增殖信号

15:15 – 15:35
Coffee and Tea Break (茶歇)

Chairs: (主席)

Prof. Jin Xia Zhu, Capital Medical University
朱进霞教授，首都医科大学

Prof. Zi Qiang Luo, Xiang-Ya School of Medicine, Central South University;
罗自强教授，中南大学湘雅医学院

15:35 – 16:00
Xiao Qun Qin, Professor and Dean, The Basic Medical College of Central South University
秦晓群教授，中南大学基础医学院

The role of bronchial epithelial cells in airway hyperresponsiveness
支气管上皮细胞在气道高反应中的作用
<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker 1</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00</td>
<td>Qian Tao, Associate Professor</td>
<td>Integrative cancer epigenetics identifies novel tumor suppressor genes for common Asian tumors</td>
</tr>
<tr>
<td></td>
<td>Department of Clinical Oncology, The Chinese University of Hong Kong</td>
<td>陶谦副教授 香港中文大学临床肿瘤学系</td>
</tr>
<tr>
<td>16:25</td>
<td>Lian Yue Yang, Sub-Dean</td>
<td>Basic and clinical research on liver cancer</td>
</tr>
<tr>
<td></td>
<td>Xiang-Ya School of Medicine, Central South University</td>
<td>杨连粤 中南大学湘雅医院 副院长</td>
</tr>
<tr>
<td>16:50</td>
<td>Closing and Award Ceremony</td>
<td>(闭幕及颁奖)</td>
</tr>
<tr>
<td></td>
<td>Chairs:</td>
<td>Prof. Ya Cao, Sub-Dean, Xiang-Ya School of Medicine, Central South University; 曹亚教授，中南大学湘雅医学院副院长</td>
</tr>
<tr>
<td>17:30</td>
<td>Dinner</td>
<td>(晚餐)</td>
</tr>
<tr>
<td>Time</td>
<td>Speaker</td>
<td>Institution</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>08:30 – 08:40</td>
<td>Ya Li</td>
<td>Qufu Normal University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:40 – 08:50</td>
<td>Ai Hua Pan</td>
<td>Central South University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:50 – 09:00</td>
<td>Hong Mei Shen</td>
<td>Nantong University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00 – 09:10</td>
<td>Yu Ting Bai</td>
<td>Xianning Medical College of Xianning University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:10 – 09:20</td>
<td>Lei Cheng</td>
<td>The Chinese University of Hong Kong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:20 – 09:30</td>
<td>Yong Zhen Gong</td>
<td>Central South University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
09:30 – 09:40 **Xue Qun Lin,** Medical College of Nanchang University

林雪群 南昌大学医学院

Changes of endothelin-1 expression in cerebral basilar artery of scald rats

烫伤大鼠的脑基底动脉内皮素-1 的表达变化

09:40 – 09:50 **Chao Ke Tang,** University of South China

唐朝克 南华大学

Liver X receptor agonists up-regulate Niemann-pick type C1 and Niemann-pick type C2 expression in APOE -/- Mice

肝 X 受体激活剂上调 APOE -/- 小鼠中 Niemann-pickC1 和 C2 型的表达

09:50 – 10:00 **Guang Hui Yi,** University of South China

易光辉 南华大学

Effects of probucol on paraoxonase 1 expression and oxidative stress in hyperlipidemic mice

普罗布考对对氧磷酶 1 的表达和高脂血症小鼠氧化应激的影响

10:00 – 10:10 **Chun Lin Xia,** Soochow University

夏春林 苏州大学

Effect of EPO-activated astrocyte conditioned medium on differentiation of neural stem cell and its protective effect on differentiated neural stem cells after injury in vitro

促红细胞生成素活化的星形胶质细胞条件培养基对神经干细胞分化的影响及其对体外损伤后分化的神经干细胞的保护效应的研究

10:10 – 10:20 **Ying Xing,** Zhengzhou University

邢莹 郑州大学

The effect of Notch1 signal to the expression and phosphorylation of tau during the differentiation of embryonic stem cells into neurons

Notch1 信号在胚胎干细胞分化为神经元过程中对 tau 的表达和磷酸化的影响
Short talk - Session B (简短汇报 - B 组)

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Institution</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Yan Xu</td>
<td>Zhengzhou University</td>
<td>The effect on Smad pathway is implicated in cleft palate induced by all-trans retinoic acid</td>
</tr>
<tr>
<td>08:40</td>
<td>Hong Yuan</td>
<td>Central South University</td>
<td>Inhibitors of DNA methyltransferase and histone deacetylase regulate the expression of β1-adrenoceptor gene in myocardial cells</td>
</tr>
<tr>
<td>08:50</td>
<td>Dong Chen</td>
<td>Stomatology College of Harbin Medical University</td>
<td>The expression and study of Midkine, CD105 and D2-40 in oral mucosa carcinoma</td>
</tr>
<tr>
<td>09:00</td>
<td>Zhao Qian Liu</td>
<td>Central South University Xiang-Ya School of Medicine</td>
<td>Association of eIF3 p170 expression with chemotherapy response of lung cancer and its effects on cisplatin sensitivity in lung carcinoma cells</td>
</tr>
<tr>
<td>09:10</td>
<td>Jing Bo Wu</td>
<td>Affiliated Hospital of Luzhou Medical College</td>
<td>Inhibitory effect of cardiac muscle cell conditioned medium on S-180 mice-transplanted tumor in vivo</td>
</tr>
<tr>
<td>09:20</td>
<td>Jian Hua Zhou</td>
<td>Central South University</td>
<td>Expression of Notch1, HIF-1, VEGF and Notch1 mRNA in human non-small cell lung cancer and its significance</td>
</tr>
</tbody>
</table>
人非小细胞癌中 Notch1, HIF-1, VEGF and Notch1 mRNA 的表达及其研究意义

09:30 – 09:40 Yan Hong Zhou, Central South University
周艳宏, 中南大学
Identification of candidate molecular markers of nasopharyngeal carcinoma by microarray analysis of subtracted cDNA libraries constructed by suppression subtractive hybridization
通过抑制消减杂交构建消减 cDNA 文库分析鼻咽癌微阵列确定候选分子标记

09:40 – 09:50 Jia Qian Fei, Zhejiang University
费佳谦, 浙江大学
A comparison study on the responses of umbilical arteries and thoracic aortas to the adrenergic receptor agonists
脐动脉与胸主动脉对肾上腺素受体激动剂反应的比较研究

09:50 – 10:00 Bi Hu, University of South China
胡弼, 南华大学
Effects of sinomenine on CO/NO-cGMP signaling cascade in the cerebellum and spinal cord of morphine-dependent and withdrawal mice
青藤碱对小脑和脊髓吗啡依赖戒断小鼠中 CO/NO-cGMP 信号级联反应的影响

10:00 – 10:10 Fang Ting Zhang, Peking University Shenzhen Hospital
张方婷, 北京大学深圳医院
Therapeutic effect of human umbilical cord blood cells on diabetic mice
人脐血细胞对糖尿病小鼠的治疗效应

10:10 – 10:20 Mo Yang, The University of Hong Kong, Hong Kong
杨默, 香港大学
The molecular control of haematopoietic stem cells into platelets
造血干细胞分化成血小板的分子研究
Short talk - Session C (简短汇报 - C 组)

Chairs: Prof. Wen Liang Zhou, Sun Yat-sen University; Prof. Xiao Fei Wang, College of Marine Life Science, Ocean University of China

08:30 – 08:40
Hong Bo Bai, Central South University
白洪波，中南大学
Effect of calcitonin gene-related peptide on E-cadherin expression in human bronchial epithelial cells
降钙素基因相关肽对人类支气管上皮细胞中 E-钙粘蛋白表达的影响

08:40 – 08:50
Jie Chen, Chongqing Medical University
陈洁，重庆医科大学
JunD represses importin-a1 transcription through its proximal promoter region and regulates subcellular localization of RNA-binding protein HuR in intestinal epithelial cells
JunD 通过近端启动子区抑制核转运蛋白-a1 转录并调节 RNA-结合蛋白 HuR 在肠上皮细胞的亚细胞定位

08:50 – 09:00
Cha Xiang Guan, Central South University
管茶香，中南大学
The role of cAMP response element binding protein in the process of wound repair of bronchial epithelium induced by vasoctive intestinal peptide
cAMP 应答元结合蛋白在血管活性肠肽诱导的支气管上皮细胞伤口修复中的作用

09:00 – 09:10
Ye Chun Ruan, The Chinese University of Hong Kong
阮晔纯，香港中文大学
Epithelium-released PGE2 in mediating the ATP-induced inhibitory effect on vas deferens smooth muscle contraction in rats
上皮细胞释放 PGE2 介导 ATP 引起的对输精管平滑肌收缩的抑制作用

09:10 – 09:20
Zhen Zhou, The Chinese University of Hong Kong
周震，香港中文大学
Two herbal compounds as potentiators for cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels
两种中草药化合物作为囊性纤维化跨膜转运调节因子（CFTR）Cl- 通道的增效剂的研究

09:20 – 09:30
Guang Xiang He, Third Xiangya Hospital of Central South University
贺广湘，中南大学湘雅三医院
Differential proteomics analysis for human nasal polyps and polyposis tissue
人类鼻息肉和鼻息肉组织的微蛋白质组分析

09:30 – 09:40 Wei Ji, Children’s Hospital Affiliated to Soochow University
季伟, 苏州大学附属儿童医院
Therapeutic effects of anti-B7-1 antibody on murine asthmatic models induced by ovalbumin
抗 B7-1 抗体对卵清蛋白诱导的小鼠哮喘模型的治疗效应研究

09:40 – 09:50 Shan Cai, The Second Xiangya Hospital of Central South University
蔡珊, 中南大学湘雅二医院
Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septa apoptosis in smoking-induced COPD rats
口服 N-乙酰半胱氨酸减轻吸烟诱导 COPD 大鼠肺气肿及肺泡膈凋亡

09:50 – 10:00 Li Sha Han, Bao Tou Medical College
韩丽莎, 包头医学院
Protect action of puerarin to intestine and extraintestinal organ in intestinal ischemia-reperfusion injury
葛根素对肠内缺血再灌注损伤中肠及肠外器官的保护作用

10:00 – 10:10 Lei Lei, Harbin Medical University
雷蕾, 哈尔滨医科大学
Development potential studies of hexaploid embryos produced by blastomeres fusion of diploid and tetraploid embryos at 2-cell stage
二细胞期卵裂球融合二倍体和四倍体产生的六倍体胚胎的发育潜力研究

10:10 – 10:20 Ting Yu Li, Chongqing Medical University
李廷玉, 重庆医科大学
Postnatal vitamin A supplement cannot fully repair offsprings’ learning and memory impairment caused by marginal vitamin A deficiency in pregnancy
产后维生素 A 的补充难以完全修复工期维生素 A 的缺乏引起的后代学习和记忆损伤
Erwin Neher
1991 Nobel Laureate in Physiology or Medicine;
Director, Membrane Biophysics Department,
Max Planck Institute for Biophysical Chemistry,
Goettingen, Germany

Erwin Neher serves as Director of the Membrane Biophysics Department at the Max-Planck-Institut für Biophysikalische Chemie in Göttingen, Germany. He received his Ph.D. in Physics from the Institute of Technology in Munich. His research interests have focused on studies of ion channels in nervous signaling and exocytosis. For his development of the patch clamp technique for recording ion channel activity, he received the 1991 Nobel Prize in Physiology or Medicine (together with Bert Sakmann) as well as several other national and international awards. More recently Erwin Neher has been working on neurotransmitter release and on the mechanisms responsible for short-term synaptic plasticity. He is a Foreign Associate member of the National Academy of Sciences (USA), and of the Royal Society (London). He co-chairs the Board of the European Neuroscience Institute, Göttingen.

Abstract

A Biophysical Dissection of Neurotransmitter Release at a Glutamatergic Synapse

The unique capabilities of our brain as an information processor are critically dependent on the correct function of some 10 billions of neurons, each of which is connected to about 10,000 other neurons by way of synapses. Unlike in electronic computers these connections are not rigid but adapt their coupling strengths in response to the information flow in the system – a phenomenon called synaptic plasticity. A dissection of the process of synaptic transmission as well as of the mechanisms underlying plasticity is essential for understanding some of the major neurological diseases. It has been known since the early fifties, that synaptic transmission is initiated by the release of a signalling substance, the neurotransmitter, from the presynaptic neuron. This, in turn, is triggered by an influx of Calcium ions (Ca++) into the nerve terminal. The neurotransmitter, once liberated, induces an increase in the conductance of the postsynaptic membrane. When synaptic strength changes during ‘plasticity’ this can be a consequence of changes in any of the steps of this complicated process. Unfortunately, most nerve terminals are very small and not readily accessible to detailed investigation, such that usually it is very difficult to assign a given change to one of these molecular mechanisms. Quite recently, however, it was discovered that a specialized synapse in the auditory pathway, the ‘Calyx of Held’, has presynaptic terminals, which are large enough that quantitative biophysical techniques can be applied. Particularly, the postsynaptic current can be measured precisely, while the presynaptic calcium concentration ([Ca++]) can be increased or decreased – either by opening and closing of Ca++ channels or by releasing Ca++ from a chemically caged form by photolysis.
Furthermore, \([\text{Ca}^{++}]\) can be measured by introducing fluorescent \(\text{Ca}^{++}\) indicators into the terminal. Using these experimental possibilities, we have studied the role of \(\text{Ca}^{++}\) and other second messengers in short-term changes of synaptic strength. We found that there are two steps, which are strongly modulated: i) action potential waveform and \(\text{Ca}^{++}\) influx is modulated in multiple ways by second messengers ii) during ongoing activity new synaptic vesicles have to be recruited, to replace those that have undergone exocytosis. This step of recruitment is also modulated strongly by \([\text{Ca}^{++}]\), cAMP and other second messengers. The release process itself – although steeply dependent on \([\text{Ca}^{++}]\) – is relatively immune to other forms of modulation.
Pierre Tiollais
Professor, Nuclear Organization and Oncogenesis Unit,
INSERM U579, Institut Pasteur, France

Professor Pierre Tiollais received his Doctor of Medicine in 1968 in Paris. He is Professor of Biochemistry at the Faculty of Medicine Lariboisière-Saint-Louis (University of Paris VII) and Professor at the Institut Pasteur in Paris. He also serves as the Director of an INSERM research Unit at the Institut Pasteur. Professor Pierre Tiollais has played a major role in the introduction of the recombinant DNA technology into the hepatitis B field. He was the first to clone and sequence the HBV genome. This permitted to describe the complete genetic organization of the virus. The model proposed by Pierre Tiollais is now universally admitted as a reference. Pierre Tiollais demonstrated for the first time the presence of HBV integrated sequences in liver cancer. This initial observation was a strong argument for the relationship between HBV and liver cancer. The integrated sequences were cloned and insertional mutagenesis of HBV was demonstrated: activation of c-myc and N-myc genes in woodchuck tumors and activation of the receptor to retinoic acid in human. Pierre Tiollais and his colleagues published the first report of HBV gene expression in animal cells. This result provided the basis of production of recombinant DNA vaccine. Large scale of production of hepatitis B surface antigen particles was obtained for vaccine purpose. This vaccine is now available and represents the final accomplishment of the initial molecular biology developed by Pierre Tiollais. In recognition of his distinguish achievement, Professor Pierre Tiollais has been awarded many honors including Doctor Honoris Causa University of Uppsala (1989), Member of the French Academy of Science (1991), Member of the French National Academy of Medicine (1996), Member of the Chinese Academy of Engineering (1998), EMBO Member, and Honorary Professor of the Shanghai Institute of Biochemistry, Chinese Academy of Sciences (1999).

Abstract
The Hepatitis B virus from Cloning to Vaccine
Hepatitis B is a world wide very important public health problem. In China 10% of the population are chronic carriers of the virus (HBV). Chronic carriers can develop cirrhosis or liver cancer. It is therefore necessary to have an efficient vaccine to prevent HBV infection. Virus particles are present in large amount in the serum. After DNA extraction we have cloned and sequenced the genome. The genome is a very small double strand DNA (3.2 Kb). It contains only four genes. These genes code respectively for the envelope proteins, the capsid protein, the DNA polymerase and a regulatory protein. HBV replication has the particularity to have retro-transcription step from RNA to DNA. That could be comparable to retroviruses, but integration of the HBV genome is not required for HBV replication. Epidemiologic studies have clearly demonstrated that HBV infection can be at the origin of liver cancer. Using the woodchuck virus (WHV) as a model we have observed that WHV DNA integration in an oncogene
(cMyc or Nmyc) could be at the origin of liver cancer. Comparable studies were performed in human tumors leading to important new findings. HBV integrations were found in the genes encoding for retinoic acid receptor, cyclin D1, or telomerase. In parallel we analysed chromosome alterations and found strong genomic instability in Chinese liver cancer. Concerning the vaccine, HBV cannot be propagated in cell culture. Therefore we have constructed a recombinant DNA vaccine. After integration of the S gene in eucaryotic cells (animal cells or yeast cells) we obtained viral particles absolutely identical to the non infectious empty envelope particles of the serum. This vaccine is actually used widely in the world. It is the first recombinant vaccine. In individuals with chronic HBV infection, viral persistence has been associated with a defect in the development of HBV-specific cell mediated immunity. Therapeutic vaccination to boost or to broaden the weak virus-specific T cell response of patients with chronic hepatitis B is proposed as means of terminating this persistent infection.
Levon M. Khachigian
Professor, Senior Principal Research Fellow NH&MRC,
Centre for Vascular Research, School of Medical Sciences,
The University of New South Wales, Sydney, Australia

Professor Levon Khachigian (PhD, DSc) is a NHMRC Senior Principal Research Fellow and Professor of Pathology at the Centre for Vascular Research, The University of New South Wales, Sydney. His research has manifestly increased our understanding of the fundamental transcriptional mechanisms that lead to the inappropriate expression of harmful genes in cells of our blood vessels. He has pioneered the development of novel strategies targeting these key regulatory genes in the context of a myriad of vascular proliferative disorders such as arterial thickening, vascular leakage, inflammation, neovascularisation and tumour angiogenesis. He has published over 130 journal articles and book chapters, including key papers in Science, Nature Biotechnology, Nature Protocols, 2 in J Natl Cancer Inst, 3 in Nature Medicine and 21 in Journal of Biological Chemistry. He is sole editor of two books globally distributed through CRC Press (Florida, USA), including one on cardiovascular disease and another on DNAzymes and related small molecule nucleic acid technologies, and has written authoritative reviews and commentaries in journals of the calibre of Nature Medicine and Circulation Research. He has given >100 invited talks at international and national scientific conferences, university and hospital departments, and companies in the last 5 years. His career research has attracted substantive peer-reviewed and commercial national and international grant support. His innovative research has been recognised by a number of awards including the Commonwealth Health Minister's Award for Excellence in Health and Medical Research, GlaxoSmithKline Australia Award for Research Excellence, Gottschalk Award from the Australian Academy of Science, Eureka Prize for Scientific Research and Eureka Prize for Medical Research from the Australian Museum, and First Prize in the UNESCO-sponsored Khwarizmi International Award for Science and Technology, presented by President Khatami of Iran. Professor Khachigian received his BSc with first class honours in biochemistry and PhD in cell and molecular biology from the University of New South Wales, then studied transcriptional control at Brigham and Women’s Hospital, Harvard Medical School. In 2004, at age 40 he was appointed Full Professor and was awarded a DSc in cardiovascular pathobiology and translational research (by thesis) from the University of New South Wales.

Abstract
Immediate-Early Genes as Master Switches in Disease
Immediate early genes are genes that share the characteristic of having their expression rapidly and transiently induced upon stimulation without dependence on de novo protein synthesis. Our studies over recent years have demonstrated that restenosis, angiogenesis and inflammation can be suppressed using novel "anti-gene therapeutic" strategies targeting certain immediate-early genes. We targeted the
basic-region leucine zipper protein, c-Jun with a catalytic DNA molecule, Dz13, a 34-bp oligonucleotide capable of cleaving both murine and human c-Jun transcripts at position G967 or G1311 respectively. Since both angiogenesis and inflammation depend on vascular permeability, we investigated whether the DNAzyme, Dz13, could suppress retinal neovascularisation in a murine model of proliferative retinopathy (ROP). We demonstrated that knockdown of c-Jun by Dz13, inhibited retinal neovascularisation. The control DNAzyme, Dz13scr, a size-matched molecule retaining the catalytic core, but with scrambled hybridizing arms was unable to influence neovascularisation. This led us to investigate whether Dz13 could influence a number of inflammatory processes. Dz13 suppressed vascular permeability and transendothelial emigration of leukocytes in murine models of vascular permeability, acute inflammation and collagen antibody induced arthritis (CAIA), whereas its scrambled counterpart, Dz13scr had no influence over these processes. Treatment with Dz13 reduced vascular permeability due to cutaneous anaphylactic challenge or VEGF administration in mice. Dz13 also abrogated monocyte endothelial cell adhesion in vitro and abolished leukocyte rolling, adhesion and extravasation in a rat model of inflammation. Dz13 attenuated neutrophil infiltration in the lungs of mice challenged with endotoxin, a model of acute inflammation. Dz13 also reduced joint swelling, inflammatory cell infiltration and bone erosion in a mouse model of rheumatoid arthritis (CAIA). FITC-conjugated DNAzyme localised within the tissue and was still catalytically-active 1hr following intradermal injection. We demonstrated a reduction in c-Jun immunoreactivity in Dz13-treated joint (CAIA), lung (sepsis) and retina (ROP). Further, we showed that Dz13 blocks cytokine-inducible endothelial c-Jun, E-selectin, ICAM-1, VCAM-1 and VE-cadherin expression but has no effect on JAM-1, PECAM-1, p-JNK-1 or c-Fos. Previous studies by our group demonstrated that Dz13-mediated inhibition of c-Jun leads to suppression of SMC proliferation and wound repair in vitro, the reduction of neointima formation following a rat carotid artery injury model, and markedly reduced intimal hyperplasia and increased lumen size in balloon-injured segments in rabbits. Our recent findings thus implicate c-Jun as a useful target for anti-inflammatory, anti-angiogenic and anti-restenotic therapies.
Yong Lian Zhang
Professor, Institute of Biochemistry and Cell Biology,
Shanghai Institutes for Biological Sciences;
Academician, Chinese Academy of Sciences

Dr. Yong-Lian Zhang was born in February 20, 1935 at Shanghai China. Since graduated from the Department of chemistry Fu-Dan University in 1957, she has been working in Shanghai Institute of Biochemistry, Chinese Academy of Sciences (CAS) which changed the name as Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS. In the first 20 years, she took part in radiobiology studies i.e. basic biological research in early diagnosis of radiation injury; selection and synthesis of drugs for preventing and curing radiation diseases. Since engaging in advanced studies in the Imperial Cancer Research Fund of London during the early 80’s, she worked on molecular mechanisms for androgen regulation of eukaryotic gene (rat prostatic steroid binding protein PSBP gene) transcription as a principle investigator for more than 10 years. In 1995, she was aligned by a lab in the North Carolina University at Chapel Hill to investigate the role of an orphan nuclear receptor (GCNF/RTR) in testis during spermatogenesis supported by Mellon Foundation of USA. This opportunity made her to directly tackle a new research area, reproduction biology and gradually fell in love with it. Thus, she shifted her research interests focusing on studying molecular mechanisms for sperm maturation in epididymis in 1998.

Abstract
Small RNAs in Epididymis
Identification, detection, and use of small RNA molecules have displayed incredible importance in the life science. Here, we showed two interrelated lines of this very research in a sperm maturation related organ-epididymis. [1] Small double-stranded RNAs (dsRNAs) called small interfering RNAs (siRNAs) have been used successfully to silence the expression of epididymis-specific genes in vivo by a pathway known as RNA interference (RNAi). [2] A serious of known and novel small regulatory RNA molecules, referred to as microRNAs (miRNAs) in rat epididymis have been identified. An epididymis-specific non-coding RNA has been identified as the precursor of a 24nt miRNA. An epididymis-specific new member of the carboxyl-estrase family has been identified as its target gene in vitro.
Hong Yang Wang
Professor & Director,
International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute /Hospital, Shanghai;
Academician, Chinese Academy of Engineering

Prof. Dr. Hongyang Wang, born in 1952, received her master’s degree from Second Military Medical University, China in 1985; doctor’s degree from University Ulm, Germany in 1992. She worked in Max-Planck Institute of Biochemistry, Germany as post Dr. and then as PI from 1992 to 1998. She became director of International Cooperation Laboratory on Signal Transduction in 1997 and director of Department of Clinical Treatment II in 1999. And in 2005, she was elected as member of Chinese Academy of Engineering. Her major interests are molecular mechanisms of tumors, especially the cell signaling of human hepatocarcinoma (HCC) and the relative clinical applications. She has screened a set of novel biomarkers and developed monoclonal antibodies for HCC; cloned several new HCC related genes and clarified their functions; reported the abnormal signaling of oncogene p28Gank and Signal Regulatory Protein (SIRP) in HCC which provided new targets for the prevention and treatment of HCC; isolated and identified new tyrosine phosphatase PCP-2 and discovered regulatory signaling pathway of PCP-2 with of β-catenin; first clarified the effect of tyrosine phosphatase on Wnt signaling. She has published more than 80 papers in the important international magazines such as J. Experiment Medicine, Gastroenterology, Hepatology, Cancer Res., Nature, Oncogene, J.B.C. etc.

Abstract

Negative Regulation of Signal Regulatory Protein on Cancer Signaling

SIRPa1 is a member of the signal regulatory protein (SIRP) family that undergoes tyrosine phosphorylation and binds SHP-2 tyrosine phosphatase in response to various mitogens. The expression levels of SIRPa1 were decreased in human HCC tissues, as compared with the matched normal tissues. Exogenous expression of wild-type SIRPa1, but not of a mutant SIRPa1 lacking the tyrosine phosphorylation sites, in SIRPa1 negative Huh7 human HCC cells resulted in suppression of tumor cell growth both in vitro and in vivo. Treatment of Huh7 transfectants with EGF or HGF induced tyrosine phosphorylation of SIRPa1 and its association with SHP-2, which were accompanied by reduced ERK1 activation. Expression of SIRPa1 significantly suppressed activation of NF-κB and also sensitized Huh7 cells to TNFα or cisplatin-induced cell death. In addition, SIRPa1-transfected Huh7 cells displayed reduced cell migration and cell spreading in a fashion that was dependent on SIRPa1/SHP-2 complex formation. In conclusion, these results suggest a negative regulatory effect of SIRPa1 on hepatocarcinogenesis through, at least in part, inhibition of ERK and NF-κB pathway. The heightened sensitivity of cells restoring SIRPa1 function could be exploited in the development of therapeutic regimens which may potentiate the antineoplastic effect of conventional cytokines or chemotherapeutic agents.