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Abstract

This paper studies the asymptotic bias of the differencing parameter estimator when data are measured with
error. The estimator is established via the partial autocorrelation function. Factors that affect the direction of bias
of the estimator are found.  1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Estimation of the fractional integrated model is currently a very active research area, see Baillie
(1996) for an extensive review of the literature. In typical formulation of the model, it is usually
assumed that the measured data conform to the variables of interest. Much less is known about the
direction of bias of the estimate for the differencing parameter when errors in variables occur.

The consequences of errors in variables have been studied by a number of authors, one of the
earliest was Adcock (1877, 1878), who considered the problem of fitting a straight line when both
variables are subject to error. If only a single independent variable is measured with error, Levi
(1973) showed that the corresponding OLS parameter estimate will be asymptotically biased towards
zero. Nelson (1995) obtained a similar result for the case where more than one independent variable is
measured with error. This phenomenon is called attenuation bias, a situation where the impact of the
regressor on the dependent variable is diluted by measurement errors. The attenuation bias is usually
linear, in the sense that the probability limit of the estimator is the true parameter multiplied by a
positive constant less than 1.
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This paper shows that the estimator for the differencing parameter in a fractionally integrated model
is usually not attenuated when the data contain observational errors. Under some special situations,
the estimator will be attenuated, but in a nonlinear fashion.

2. Estimating d via partial autocorrelation function

Consider the following model:

d *1 2 L y 5 u , t 5 1,2, . . . , T, (1)s d t t

* *where L is a lag operator such that Ly 5 y .t t21

*The process y is said to be integrated of order d if u is integrated of order zero. If d is not anh j h jt t

integer, then the process is said to be fractionally integrated (Granger and Joyeus, 1980). A
fractionally integrated process is stationary but not invertible if d # 2 0.5. When d $ 0.5, the process
is nonstationary. In this paper, we assume for ease of exposition that the process under discussion is a

*fractionally integrated white noise process, with values of d such that the process y is stationary andt
2 2invertible. Namely, we study cases where u | i.i.d. 0,s , s , ` and d [ 2 0.5,0.5 .s d s dt u u

dThe fractional difference operator 1 2 L is given bys d

`
G j 2 ds d jd ]]]]]1 2 L 5O L . (2)s d

G 2 d G j 1 1s d s dj50

The expressions for autocorrelation and partial autocorrelation functions are especially simple when
th *u is assumed to be i.i.d. In particular, the n order autocorrelation function of y is provided byt t

n d 1 i 2 1
]]]r d 5P (3)s dn i 2 di51

thwhile the j order partial autocorrelation function is given by

d
]]a d 5 . (4)s dn n 2 d

A key problem in the fractionally integrated model is the determination of the degree of integration.
In principle, we can estimate d via r d or a d . We choose the latter one as it has a unique mappings d s dn n

with d, whereas r d does not have this nice property.s dn

* * * *To obtain the sample autocorrelation function, we run a regression of y on y , y , . . . , y .t t21 t22 t2n

Let the estimated model be

n

ˆˆ * *y 5O b y , (5)t n, j t2j
j51

As stated in Brockwell and Davis (1991, page 524), by the Durbin–Levinson algorithm (Brockwell
and Davis, 1991, page 169, proposition 5.2.1),
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p G j 2 d G n 2 d 2 j 1 1s d s dnˆ ]]]]]]]]b → 2 C , j 5 1, . . . , n. (6)n, j j G 2 d G n 2 d 1 1s d s d

In particular,

p dˆ ]]b → 5 a d . (7)s dn,n nn 2 d

thThus, the n order sample partial autocorrelation can be obtained from the estimated coefficient of
* * * * *y in the regression of y on y , y , . . . , y .t2n t t21 t22 t2n

The estimator for d based on the nth order partial autocorrelation function can be constructed by

ˆnbn,nˆ ]]]d n 5 . (8)s d ˆ1 1 bn,n

ˆ3. Asymptotic bias of d ns d

T*Due to the presence of measurement errors, the true values of y are not observable. Instead,h jt t51

we observe

*y 5 y 1 ´ , t 5 1,2, . . . , T, (9t t t

Twhere ´ is the measurement error process.h jt t51

*The case where y follows an I(1) process (i.e., d 5 1) has been studied by Chong (1997). Thist
ˆpaper will focus on the direction of bias of d n for d [ 2 0.5, 0.5 . To begin with, note that the jths d s d

T( j50, 1, 2, . . . , T21) order sample autocorrelation based on the observed data y areh jt t51

unavoidably inconsistent as

T2j

] ]
2O y 2y y 2ys ds dt t1j s r 1 g gp * j j jt51ˆ ]]]]]] ]]] ]r 5 → 5 A r 1 (10)j T 2 j 2S Ds 1 g s* 0 *] 2O y 2ys dt

t51

where

2
s *

]]]A 5 , (11)2
s 1 g* 0

G 1 2 2ds d2 2* ]]]s 5Var y 5 s , (12)s d* t u 2
G 1 2 ds d

g 5 Cov ´ , ´ . (13)s dj t t1j
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gj
ˆ ]The direction of bias of r depends on the values of A and the ratio . In the case of uncorrelatedj 2

s *
ˆmeasurement error (i.e., g 5 0 for j 5 61, 62, . . . ), r will be attenuated by a factor A.j j

ˆTo study the direction of bias of d n in (8), lets d

ˆ ˆ ˆ ˆ ˆb(n) 5 (b b ? ? ? b b )9, (14)n,1 n,2 n,n21 n,n

r(n) 5 (r r ? ? ? r r )9, (15)1 2 n21 n

g(n) 5 (g g ? ? ? g g )9, (16)1 2 n21 n

g g1 n2121
] ]]A r 1 ? ? ? r 11 2 n21 2
s s* * g g1 n2221

] ]]r 1 A ? ? ? r 11 2 n22 2
s sF(n) 5 . (17)* *  ?: : ? :?

g gn21 n22 21
]] ]]r 1 r 1 ? ? ? An21 2 n22 2
s s  * *

Suppose we run a regression of y on y , y , . . . , y , the estimators converge in probability to:t t21 t22 t2n

p
22ˆ 21b n →F n r n 1 s g n . (18)s d s d s d s ds d*

3.1. ARMA 1,1 measurement errors d

For simplicity, we study the case where ´ | ARMA 1,1 , which encompasses the pure AR 1 , pures ds dt

MA 1 and the white noise processes as special cases.s d
Let

´ 5 f´ 1 m 1um , (19)t t21 t t21

2 2T T Twhere m are i.i.d. 0, s with s , `. m and u are independent. Defineh j h j h js dt t51 m m t t51 t t51

2221l n F n r n 1 s g ns d s d s d s ds d*ˆ ]]]]]]]]]]f n, d, a, u, f 5 plimd n 5 n (20)s ds d 22211 1 l n F n r n 1 s g ns d s d s d s ds d*

where

2
s m
]a 5 , (21)2
s u

l n 5 0 0 . . . 0 1 (22)s d #%%%%"!%%%%$S D
n terms
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2 2
g 5s1 1u 1 2fuds ,0 m

1 1 fu f 1us ds d
]]]]]g 5 g ,1 2 01 1u 1 2fu

g 5 fg j 5 2, 3, . . . ,j j21

G 1 2 2ds d
]]]]]]]]]]]]A 5 .2 2
G 1 2 2d 1 as1 1u 1 2fudG 1 2 ds d s d

ˆf n, d, a, u, f is a compact generalization of the probability limit of the estimator d n for differents ds d
values of n, d, a, u and f under ARMA 1, 1 measurement errors. It is a tedious function especiallys d
for n . 3 and for non-zero u and f. To give a simple illustration, consider the case where the
measurement error ´ is a white noise such that u 5 f 5 0, g 5 0 j 5 1, 2, . . . . The correspondings dt j

functions for n 5 1, 2 and 3 would be respectively

G 1 2 2ds d
]]]]]]]]]f 1, d, a, 0, 0 5 d,s d 21 2 d aG 1 2 d 1 G 1 2 2ds d s d s d

2 2s s d d2dG 1 2 2d a d 2 1 G 1 2 d 1 2d 2 1 G 1 2 2ds d s d s d s d
]]]]]]]]]]]]]]]]f 2, d, a, 0, 0 5 ,s d H0

2 3dG 1 2 2d Hs d 1
]]]]]]]]]]]]]f 3, d, a, 0, 0 5 ,s d 2s da d 2 1 G 1 2 d 1 2d 2 1 G 1 2 2d Hs d s d s d s d 2

where

2 4 22H 5 a d 2 2 d 2 1 G 1 2 d 1 2 2d 2 1 G 1 2 2ds ds d s d s d s d0

2 2s d1 a d 2 1 3d 2 5d 1 4 G 1 2 2d G 1 2 d ,s d s d s d

2 2 4 22 2s dH 5 a d 1 1 d 2 4 d 2 1 G 1 2 d 2 4 2d 2 1 G 1 2 2ds d s d s d s d s d1

2
1 4a d 1 1 d 2 2 2d 2 1 d 2 1 G 1 2 2d G 1 2 d ,s ds ds ds d s d s d

2 4 22 2H 5 a d 2 3 d 2 2 d 2 1 G 1 2 d 1 12 2d 2 1 G 1 2 2ds ds d s d s d s d s d2

2 2s d2 2a d 2 1 d 2 2 5d 2 7d 1 6 G 1 2 2d G 1 2 d .s ds d s d s d

Fig. 1 plots the shape of f 1, d, a, 0, 0 for a 5 1, 5 and 10.s d
Observe from Fig. 1 that

u f 1, d, a, 0, 0 u # du us d

and

≠
]u f 1, d, a, 0, 0 u # 0.s d
≠a
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Fig. 1. Plots of f n, d, a, u, f , n 5 1, u 5 0, f 5 0.s d

Thus for white noise measurement errors and for n 5 1, the estimator for d is biased towards zero.
As the variance of measurement error increases (the value of a increases), the estimator will bias more
towards zero.

Fig. 2 shows the effect of n on f n, d, a, 0, 0 , using a 5 1 and n 5 1, 4.s d
Note from Fig. 2 that f 1, d, 1, 0, 0 # f 4, d, 1, 0, 0 . The equality holds only when d 5 0. Generallys d s d

Table 1
Numerical values of f(1, d, 1, u, f)

d\ u, f 20.5, 20.5 0, 20.5 20.5, 0 0, 0 0.5, 0 0, 0.5 0.5, 0.5s d s d s d s d s d s d s d s d

20.49 21.3747 20.7145 20.5729 20.2248 0.0325 0.0882 0.2581
20.4 21.3261 20.6646 20.5254 20.1832 0.0624 0.1155 0.2742
20.3 21.2649 20.6070 20.4715 20.1381 0.0937 0.1439 0.2907
20.2 21.1933 20.5455 20.4151 20.0935 0.1235 0.1707 0.3058
20.1 21.1070 20.4777 20.3541 20.0480 0.1526 0.1966 0.3199

0 21.0000 20.4000 20.2857 0 0.1818 0.2222 0.3333
0.1 20.8633 20.3075 20.2054 0.0531 0.2127 0.2490 0.3468
0.2 20.6823 20.1922 20.1061 0.1157 0.2480 0.2791 0.3613
0.3 20.4328 20.0402 0.0244 0.1959 0.2931 0.3172 0.3794
0.4 20.0696 0.1733 0.2095 0.3101 0.3615 0.3755 0.4089
0.49 0.4291 0.4597 0.4636 0.4752 0.4794 0.4808 0.4819
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Fig. 2. Plots of f n, d, a, u, f , a 5 1, u 5 0, f 5 0.s d

speaking, f 1, d, a, 0, 0 serves as a lower support for f n, d, a, 0, 0 . Thus, for d . 0, using a highers d s d
order partial autocorrelation may improve the estimate of d.

Using the formula presented in (20), f n, d, a, u, f is easily evaluated on a computer. A Gausss d
program that calculates the values of f n, d, a, u, f is available from us. Tables 1 to 3 report thes d
numerical values of f n, d, a, u, f for n 5 1, 2 and 3, u 5 0, 60.5 and f 5 0, 60.5. The tables give as d

Table 2
Numerical values of f(2, d, 1, u, f)

d\ u, f 20.5, 20.5 0, 20.5 20.5, 0 0, 0 0.5, 0 0, 0.5 0.5, 0.5s d s d s d s d s d s d s d s d

20.49 20.4726 20.2087 20.4753 20.1593 20.0726 0.1602 0.1802
20.4 20.3981 20.1552 20.4213 20.1373 20.0819 0.1537 0.1514
20.3 20.3105 20.0930 20.3563 20.1107 20.0925 0.1456 0.1166
20.2 20.2163 20.0268 20.2843 20.0804 20.1020 0.1373 0.0793
20.1 20.1136 0.0451 20.2030 20.0445 20.1087 0.1299 0.0401

0 0 0.1250 20.1096 0 20.1096 0.1250 0
0.1 0.1275 0.2157 20.0003 0.0572 20.1000 0.1256 20.0390
0.2 0.2723 0.3212 0.1298 0.1332 20.0717 0.1370 20.0725
0.3 0.4386 0.4467 0.2871 0.2378 20.0093 0.1700 20.0903
0.4 0.6313 0.5990 0.4798 0.3867 0.1192 0.2498 20.0603
0.49 0.8311 0.7667 0.6920 0.5802 0.3532 0.4201 0.1297
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Table 3
Numerical values of f(3, d, 1, u, f)

d\ u, f 20.5, 20.5 0, 20.5 20.5, 0 0, 0 0.5, 0 0, 0.5 0.5, 0.5s d s d s d s d s d s d s d s d

20.49 20.5114 20.2986 20.4047 20.1209 20.0374 0.0978 0.0204
20.4 20.4336 20.2675 20.3545 20.1105 20.0346 0.0828 0.0083
20.3 20.3397 20.2271 20.2915 20.0948 20.0272 0.0680 20.0013
20.2 20.2369 20.1786 20.2191 20.0730 20.0143 0.0559 20.0064
20.1 20.1241 20.1197 20.1350 20.0425 0.0059 0.0479 20.0063

0 0 20.0476 20.0370 0 0.0361 0.0462 0
0.1 0.1362 0.0483 0.0777 0.0593 0.0808 0.0544 0.0147
0.2 0.2853 0.1493 0.2117 0.1421 0.1476 0.0797 0.0424
0.3 0.4473 0.2816 0.3673 0.2571 0.2494 0.1357 0.0944
0.4 0.6213 0.4409 0.5456 0.4154 0.4094 0.2516 0.2037
0.49 0.7866 0.6087 0.7248 0.6053 0.6368 0.4615 0.4573

feel for how the direction and magnitude of bias change with these parameters. Cases where u,s
f 5 2 0.5, 0.5 and 0.5, 2 0.5 are equivalent to the white noise case and are therefore skipped.d s d s d

Some features in Table 1 deserve attention:
i) Attenuation bias occurs only in the case where u, f 5 0, 0 .s d s d
ii) For f , f , and for any u ,u [ 2 1, 1 , f 1, d, 1, u , f # f 1, d, 1, u , f . This implies thes d s d s da b a b a a b b

Fig. 3. Plots of f n, d, a, u, f , n 5 1, a 5 1.s d
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ˆautoregressive parameter f plays a dominant role in deciding the direction of bias of d n . Note thats d
f 1, d, 1, u, f . 0 for u, f 5 0.5, 0 , 0, 0.5 , 0.5, 0.5 . Thus no matter the memory of the trues d s d s d s d s d
process is long or short, it will likely be identified as a long-memory process under these kinds of
measurement errors. On the contrary, for u, f 5 2 0.5, 2 0.5 , it will likely be identified as as d s d
short-memory process. Graphs of f 1, d, 1, 0.5, 0.5 and f 1, d, 1, 2 0.5, 2 0.5 are shown in Fig. 3.s d s d

iii) For u ,u , f 1, d, 1, u , f # f 1, d, 1, u , f , i.e., given the value of the f, a higher value of thes d s da b a b
ˆmoving average parameter yields a higher value of p lim d n .s d

iv) For d , d , f 1, d , 1, u, f # f 1, d , 1, u, f . Thus f 1, d, 1, u, f is monotonically increasings ds d s d1 2 1 2

with d. That means the higher the true value of d, the larger the probability limit of the estimator
under measurement errors. This appears to be a reasonable outcome. Interestingly, Tables 2 and 3
suggest the feature may be deprived in cases where n . 1.

Note that f 2, d, 1, 0.5, 0 , f 2, d, 1, 0, 0.5 , f 2, d, 1, 2 0.5, 0.5 , f 3, d, 1, 0, 0.5 and f 3, d, 1, 0.5,s d s d s d s d s
0.5 are all non-monotonic in d.d

Observe from Tables 1 to 3 that the values of f n, d, a, u, f increase dramatically when ds d
*approaches 0.5. This is because as d closes to 0.5, the true process y will be nearly nonstationary andt

*becomes more volatile. The stationary measurement error process ´ is therefore dominated by y ,t t

and the estimate of d based on the observed process y are generally larger than 0.5.t

A totally different conclusion on the degree of memory and the stationarity of the original process
can be produced by the existence of measurement errors. A surprising case is depicted in Fig. 4 where
n 5 2 and u, f 5 0.5, 0.5 .s d s d

Fig. 4. Plots of f n, d, a, u, f , n 5 2, a 5 1.s d
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Note that the sign of f 2, d, 1, 0.5, 0.5 is opposite to that of d, except for d near 0.5. As d
short-memory process (d , 0) with this kind of measurement error will be wrongly identified as a
long-memory one, and vice versa. When the process is nearly nonstationary (d 5 0.49), the true value
of d will be substantially underestimated ( f 2, 0.49, 1, 0.5, 0.5 5 0.1297), thus a nonstationarys d
process may be wrongly reported as a stationary one.

4. Further developments

This paper shows that the direction of bias of differencing parameter estimate of a fractionally
integrated model is drastically affected by measurement error. We obtain the conditions under which
the estimator is asymptotically biased towards zero. As a starting point, we assume that the mean of

*the original process y is zero and the innovations u are i.i.d.. Priorities for future research include:t t

*allowing for the mean of y to be non-zero; allowing for a non-i.i.d. innovation u ; using a differentt t

estimator for d; and allowing for ARFIMA measurement errors.
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