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Abstract

This paper studies the asymptotic bias of the differencing parameter estimator when data are measured with
error. The estimator is established via the partial autocorrelation function. Factors that affect the direction of bias
of the estimator are found. [0 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Estimation of the fractiona integrated model is currently a very active research area, see Baillie
(1996) for an extensive review of the literature. In typical formulation of the model, it is usually
assumed that the measured data conform to the variables of interest. Much less is known about the
direction of bias of the estimate for the differencing parameter when errors in variables occur.

The consequences of errors in variables have been studied by a number of authors, one of the
earliest was Adcock (1877, 1878), who considered the problem of fitting a straight line when both
variables are subject to error. If only a single independent variable is measured with error, Levi
(1973) showed that the corresponding OL S parameter estimate will be asymptotically biased towards
zero. Nelson (1995) obtained a similar result for the case where more than one independent variable is
measured with error. This phenomenon is called attenuation bias, a situation where the impact of the
regressor on the dependent variable is diluted by measurement errors. The attenuation bias is usualy
linear, in the sense that the probability limit of the estimator is the true parameter multiplied by a
positive constant less than 1.
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This paper shows that the estimator for the differencing parameter in a fractionally integrated model
is usually not attenuated when the data contain observational errors. Under some special situations,
the estimator will be attenuated, but in a nonlinear fashion.

2. Estimating d via partial autocorrelation function

Consider the following model:
(1—-L)%y¥ =u, t=12,...,T, (1)

where L is a lag operator such that Ly} =y ,.

The process {y;'} is said to be integrated of order d if {u} is integrated of order zero. If d is not an
integer, then the process is said to be fractionally integrated (Granger and Joyeus, 1980). A
fractionally integrated process is stationary but not invertible if d = — 0.5. When d = 0.5, the process
is nonstationary. In this paper, we assume for ease of exposition that the process under discussion is a
fractionally integrated white noise process, with values of d such that the process y; is stationary and
invertible. Namely, we study cases where u, ~ i.i.d.(0,02), o2 <% and d €( — 0.5,0.5).

The fractional difference operator (1 —L)? is given by

SN
-y ; F(j-l—l)L (2)

The expressions for autocorrelation and partial autocorrelation functions are especially ssmple when
u, is assumed to be i.i.d. In particular, the n" order autocorrelation function of y; is provided by

o d + i — 1
=114~ ®
while the | order partial autocorrelation function is given by
d
a(d) = ~—g- (4)

A key prablem in the fractionally integrated model is the determination of the degree of integration.
In principle, we can estimate d via p,(d) or «,(d). We choose the latter one as it has a unique mapping
with d, whereas p,(d) does not have this nice property.

To obtain the sample autocorrelation function, we run a regression of y¥ onyy ,, y& ,, ..., yi ..
Let the estimated model be

g’f Z_E:l Bn,jy;k—j’ (5
=

As stated in Brockwell and Davis (1991, page 524), by the Durbin—Levinson algorithm (Brockwell
and Davis, 1991, page 169, proposition 5.2.1),
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~ p W I{(-dlin—d—j+1) o

B~ Cj T—drn—-d+1) i=1...,n (6)
In particular,

- d

IBn,n i n— d = an(d)' (7)

Thus, the n™ order sample partia autocorrelation can be obtained from the estimated coefficient of
yi_, in the regression of y¥ onyy ., V¥ ., ..., Vi ..
The estimator for d based on the nth order partial autocorrelation function can be constructed by

N nAnn
d B

V1T B, ©)

3. Asymptotic bias of d(n)

Due to the presence of measurement errors, the true values of {y;17_, are not observable. Instead,
we observe

Y, =Yf+s, t=12...,T, ©

where {g}{_, is the measurement error process.

The case where y; follows an 1(1) process (i.e., d = 1) has been studied by Chong (1997). This
paper will focus on the direction of bias of d(n) for d €( — 0.5, 0.5). To begin with, note that the jth
(j=0, 1, 2,..., T—1) order sample autocorrelation based on the observed data {y}[_, are
unavoidably inconsistent as

2 VNV ) 2

+ o.p + v A
p = P Zp ”=A<pj+l;) (10)

__ 2 0-* yo (T*

2¥m )
where
A 7 11
B o+ 70, (11)
I'(1— 2d)

2 _Var(y?) = o2 o2 12

Y, = COv(gt, gtﬂ-). (13)
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N : R Y
The direction of bias of p; depends on the values of A and the ratio —%. In the case of uncorrelated

0-*
measurement error (i.e., y =0 for j==1, +2,...), p; will be attenuated by a factor A.
To study the direction of bias of d(n) in (8), let

BO) =By Bzt Bans Bun) (14)
p)=(pr P Po1 Pa) (15)
Y= % %1 W (16)
_ Y Y1 —
j ' py+ _12 Pn1t 21
0-*
N -1 Yoz
®(n) = jl = P2 2 (17)
hoat 3 par o A ]
[ (" _—
Suppose we run aregression of y, ony,_,, ¥, , - - -, Y;_, the estimators converge in probability to:
~ p _
B0 = @)~ Y(p(n) + 0. *¥n)). (18)

3.1. ARMA(1,1) measurement error

For simplicity, we study the case where ¢ ~ ARMA(1,1), which encompasses the pure AR(1), pure
MA(1) and the white noise processes as specia cases.
Let

=& 1T it Oy, (19)

where {u}7_, arei.i.d.(0, o) with o2 <o, {}T_, and {u}7_, are independent. Define

o (@n) - Hp) + o Py ()
f(n,d, a, 6, ¢) = plimd(n) =n L+ 1) -Ho(m) + o= y() (20)
where
a=—& (21)
O-U
M= 0 .. 0 1) (22)
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% =(1+ 6+ 2¢0)0>,

A+ 0+ 0)
TR PR
Y, = bYia i=2,3,...,
(1 - 2d)

A= 2 > .
I'(1—2d)+a(l+ 6%+ 2¢0'%(1 — d)

f(n, d, &, 6, ¢) is a compact generalization of the probability limit of the estimator d(n) for different
values of n, d, a, # and ¢ under ARMA(1, 1) measurement errors. It is a tedious function especially
for n>3 and for non-zero 6 and ¢. To give a simple illustration, consider the case where the
measurement error &, is a white noise such that ¢ = ¢ =0, 5 =0(j = 1, 2,...). The corresponding
functions for n=1, 2 and 3 would be respectively

I'(1- 2d)
A-dall—-d+I1-2d

f(1,d, a,0,0) =

2dT'(1 — 2d)(a(d” — )r*1 — d) +(2d — HI'(1 — 2d))
H, ’

f(2,d,a,0,0) =

— 3dI'(1— 2d)H,
(ad — D1 —d) +@2d — HI' (1 — 2d)H,’

f(3,d,a,0,0) =

where
H, =a’(d — 2)d — 1)2I"(1 — d) + 2(2d — DI'*(1 — 2d)
+ a(d — 1)(3d* — 5d + 4)I'(1 — 2d)T'*(1 — d),
H, = a’d + 1)(d* — 4)d — 1)2I"*(1 — d) — 4(2d — 1)2I"*(1 — 20)
+4ad + 1)(d — 2)(2d — 1)(d — YA — 2d) 31 - d),
H, =a’d —3)[d — 2%d — 1)2I'"(1 — d) + 12(2d — HI'*(1 — 2d)
—2a(d — 1)(d — 2)(5d* — 7d + 6)T' (1L — 2d)['4(1 — d).

Fig. 1 plots the shape of f(1, d, a, 0, 0) for a=1, 5 and 10.
Observe from Fig. 1 that

f(1,d, a 0,0)=<[d|

and

Jd
£| f(1,d, & 0,0)=0.
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Plots of f(n,d,a,0,¢), n=1, 0=0, $=0
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Fig. 1. Plots of f(n, d, @, 6, ¢), n=1, =0, ¢ =0.

Thus for white noise measurement errors and for n = 1, the estimator for d is biased towards zero.
As the variance of measurement error increases (the value of a increases), the estimator will bias more
towards zero.

Fig. 2 shows the effect of n on f(n, d, a, 0, 0), usnga=1and n=1, 4.

Note from Fig. 2 that f(1, d, 1, 0, 0) =f(4, d, 1, O, 0). The equality holds only when d = 0. Generally

Table 1

Numerical values of f(1, d, 1, 6, ¢)

d\(6, ¢) (=05, —0.5) (0, —0.5) (—=0.5,0) 0, 0) (0.5,0 (0, 0.5 (0.5,0.5)

—-0.49 —1.3747 —0.7145 —-0.5729 —0.2248 0.0325 0.0882 0.2581

-04 —1.3261 —0.6646 —-0.52%4 —0.1832 0.0624 0.1155 0.2742

-0.3 —1.2649 —0.6070 —0.4715 —0.1381 0.0937 0.1439 0.2907

-0.2 —1.1933 —0.5455 —0.4151 —0.0935 0.1235 0.1707 0.3058

-0.1 —1.1070 —0.4777 —0.3541 —0.0480 0.1526 0.1966 0.3199
0 —1.0000 —0.4000 —0.2857 0 0.1818 0.2222 0.3333
0.1 —0.8633 —0.3075 —0.204 0.0531 0.2127 0.2490 0.3468
0.2 —0.6823 —0.1922 —0.1061 0.1157 0.2480 0.2791 0.3613
0.3 —0.4328 —0.0402 0.0244 0.1959 0.2931 0.3172 0.37%4
0.4 —0.0696 0.1733 0.2095 0.3101 0.3615 0.3755 0.4089

0.49 0.4291 0.4597 0.4636 0.4752 0.4794 0.4808 0.4819
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Plots of f(n,d,0,0,¢), a=1, 0=0, =0
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Fig. 2. Plots of f(n, d, &, 6, ¢), a=1,60=0, ¢ =0.

speaking, f(1, d, a, 0, 0) serves as a lower support for f(n, d, a, 0, 0). Thus, for d > 0, using a higher
order partial autocorrelation may improve the estimate of d.

Using the formula presented in (20), f(n, d, a, 6, ¢) is easily evaluated on a computer. A Gauss
program that calculates the values of f(n, d, a, 6, ¢) is available from us. Tables 1 to 3 report the
numerical values of f(n, d, a, 6, ) forn=1,2and 3, # =0, =0.5and ¢ = 0, =0.5. The tables give a

Table 2
Numerical values of f(2, d, 1, 6, ¢)
d\(6, ¢) (=05, —0.5) (0, —0.5) (=05, 0) 0, 0) (0.5, 0) (0, 0.5) (0.5, 0.5
-0.49 —0.4726 —0.2087 —0.4753 -0.1593 —0.0726 0.1602 0.1802
-04 —0.3981 —0.1552 —0.4213 —0.1373 —0.0819 0.1537 0.1514
-0.3 —0.3105 —0.0930 —0.3563 —0.1107 —0.0925 0.1456 0.1166
-0.2 —0.2163 —0.0268 —0.2843 -0.0804 —0.1020 0.1373 0.0793
-01 —0.1136 0.0451 —0.2030 —0.0445 —0.1087 0.1299 0.0401
0 0 0.1250 —0.1096 0 —0.1096 0.1250 0
0.1 0.1275 0.2157 —0.0003 0.0572  —0.1000 0.1256 —0.0390
0.2 0.2723 0.3212 0.1298 0.1332 —-0.0717 0.1370 —0.0725
0.3 0.4386 0.4467 0.2871 0.2378 —0.0093 0.1700 —0.0903
0.4 0.6313 0.5990 0.4798 0.3867 0.1192 0.2498 —0.0603

0.49 0.8311 0.7667 0.6920 0.5802 0.3532 0.4201 0.1297
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Table 3

Numerical values of f(3, d, 1, 6, ¢)

d\(6, ¢) (=05, —0.5) (0, —0.5) (=05, 0) (0, 0) (0.5, 0) (0, 0.5 (0.5, 0.5)

—0.49 —0.5114 —0.2986 —0.4047 —0.1209 —0.0374 0.0978 0.0204

-04 —0.4336 —0.2675 —0.3545 —0.1105 —0.0346 0.0828 0.0083

-0.3 —0.3397 —-0.2271 —0.2915 —0.0948 —0.0272 0.0680 —0.0013

-0.2 —0.2369 —0.1786 —0.2191 —0.0730 —0.0143 0.0559 —0.0064

-0.1 —0.1241 —0.1197 —0.1350 —0.0425 0.0059 0.0479 —0.0063
0 0 —0.0476 —0.0370 0 0.0361 0.0462 0
0.1 0.1362 0.0483 0.0777 0.0593 0.0808 0.0544 0.0147
0.2 0.2853 0.1493 0.2117 0.1421 0.1476 0.0797 0.0424
0.3 0.4473 0.2816 0.3673 0.2571 0.2494 0.1357 0.0944
0.4 0.6213 0.4409 0.5456 0.4154 0.4094 0.2516 0.2037
0.49 0.7866 0.6087 0.7248 0.6053 0.6368 0.4615 0.4573

feel for how the direction and magnitude of bias change with these parameters. Cases where (6,
¢)=(— 0.5, 0.5) and (0.5, —0.5) are equivalent to the white noise case and are therefore skipped.
Some features in Table 1 deserve attention:
i) Attenuation bias occurs only in the case where (6, ¢)=(0, 0).
i) For ¢, < ¢, and for any 0,,6, €(—1, 1), f(1, d, 1, 6,, ¢,)=f(1, d, 1, 6,, ¢,). Thisimplies the

Plots of f(n,d,0,0,¢), n=1, a=1

Fig. 3. Plotsof f(n, d, &, 6, ¢), n=1, a=1.
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autoregressive parameter ¢ plays a dominant role in deciding the direction of bias of d(n). Note that
f(1, d, 1, 6, ¢)>0 for (6, ¢)=(0.5, 0), (0, 0.5), (0.5, 0.5). Thus no matter the memory of the true
process is long or short, it will likely be identified as a long-memory process under these kinds of
measurement errors. On the contrary, for (6, ¢)=(— 0.5, —0.5), it will likely be identified as a
short-memory process. Graphs of f(1, d, 1, 0.5, 0.5) and f(1, d, 1, — 0.5, — 0.5) are shown in Fig. 3.

iii) For 6,<4,, f(1,d,1, 6,, $)=1f(1,d, 1, 6,, ¢), i.e, givqn the value of the ¢, a higher value of the
moving average parameter yields a higher value of p lim d(n).

iv) For d, <d,, f(1,d;, 1, 6, ¢)=f(1,d,, 1, 6, ¢). Thusf(1, d, 1, 6, ¢) is monotonically increasing
with d. That means the higher the true value of d, the larger the probability limit of the estimator
under measurement errors. This appears to be a reasonable outcome. Interestingly, Tables 2 and 3
suggest the feature may be deprived in cases where n > 1.

Note that f(2, d, 1, 0.5, 0), f(2, d, 1, O, 0.5), f(2,d, 1, — 0.5, 0.5), f(3, d, 1, 0, 0.5) and f(3, d, 1, 0.5,
0.5) are al non-monotonic in d.

Observe from Tables 1 to 3 that the values of f(n, d, a, 6, ¢) increase dramatically when d
approaches 0.5. Thisis because as d closes to 0.5, the true process y;* will be nearly nonstationary and
becomes more volatile. The stationary measurement error process ¢, is therefore dominated by vy,
and the estimate of d based on the observed process y, are generally larger than 0.5.

A totally different conclusion on the degree of memory and the stationarity of the origina process
can be produced by the existence of measurement errors. A surprising case is depicted in Fig. 4 where
n=2 and (6, ¢)=(0.5, 0.5).

Plots of f(n,d,0,0,d), n=2, a=1
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Fig. 4. Plots of f(n, d, &, 6, ¢), n=2, a=1.
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Note that the sign of f(2, d, 1, 0.5, 0.5) is opposite to that of d, except for d near 0.5. A
short-memory process (d < 0) with this kind of measurement error will be wrongly identified as a
long-memory one, and vice versa. When the process is nearly nonstationary (d = 0.49), the true value
of d will be substantially underestimated (f(2, 0.49, 1, 0.5, 0.5)=0.1297), thus a nonstationary
process may be wrongly reported as a stationary one.

4. Further developments

This paper shows that the direction of bias of differencing parameter estimate of a fractionaly
integrated model is drastically affected by measurement error. We obtain the conditions under which
the estimator is asymptotically biased towards zero. As a starting point, we assume that the mean of
the original process y; is zero and the innovations u, are i.i.d.. Priorities for future research include:
alowing for the mean of y; to be non-zero; allowing for a non-i.i.d. innovation u,; using a different
estimator for d; and allowing for ARFIMA measurement errors.
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