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HANDOUT 1

PROBABILITY AND DISTRIBUTION THEORY I

Definition 1 A random experiment is an experiment satisfying the fol-

lowing three conditions:

(i) All possible distinct outcomes are known a priori;

(ii) In any particular trial the outcome is not known a priori;

(iii) It can be repeated under identical conditions.

Definition 2 The sample space Ω is defined to be the set of all possible

outcomes of the random experiment.

Example 3 When throwing a dice, the sample space is

Ω = {1 2 3 4 5 6} 

Example 4 Consider the sum of points when throwing two dices, the sample

space will be

Ω = {2 3 4 5 6 7 8 9 10 11 12}

Definition 5 An elementary event is the element of the sample space Ω.

Example 6 When throwing a dice, the element {1} is an elementary event.

Definition 7 An event  is a subset of the sample space Ω. Every subset is

an event. Thus an event may be an empty set, a proper subset of the sample

space, or the sample space itself. An elementary event is an event while an

event may not be an elementary event.
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Example 8 Consider the sum of points when throwing two dices, the event

that the sum is an even number will be

 = {2 4 6 8 10 12} 

Example 9 The event that the sum is bigger than 13 will be an empty set

, we call it a null event.

Example 10 The event that the sum is smaller than 13 will be {2 3 4 5 6 7 8 9 10 11 12},
or equal the sample space.

Definition 11 The collection = of subsets of Ω is called −algebra if it
satisfies the following properties:

() Ω ∈ =,
()  ∈ = ⇒  ∈ = (closure under complementation)

where  refers to the complement of  with respect to Ω.

()  ∈ =,  = 1 2  ⇒ ∪∞=1 ∈ = (closure under countable

union)

Example 12 Consider Ω = {1 2 3}, and let

=1 = {Ω {1}  {2}  {3}  {1 2}  {2 3}  {1 3}} ;
=2 = {Ω} ;
=3 = {Ω {1}  {2}  {1 2}  {1 3}} ;
It can be verified that =1 and =2 are −algebra but =3 is not.

Definition 13 A probability measure, denoted by  (·), is a real-valued
set function that is defined over a −algebra = and satisfies the following

properties:

()  (Ω) = 1;

()  ∈ = ⇒  () ≥ 0;
() If {} is a countable collection of disjoint sets in=, then 

¡∪=1

¢
=P

=1  () 
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Definition 14 Given a sample space Ω, a −algebra = associated with Ω,

and a probability measure  (·) defined over =, we call the triplet (Ω=  ) a
probability space.

Definition 15 The conditional probability of  occurring, given that 

has occurred is

Pr (|) =
Pr ( ∩)
Pr ()

 Pr () 6= 0;

Pr (|) = 0  Pr () = 0

The result implies that

Pr ( ∩) = Pr (|) Pr () 

Example 16 Consider a card game, let  be the event that a “Heart” ap-

pears,  be the event that an “Ace” appears.

Pr (|) = Pr ( ∩)
Pr ()

=
152

113
=
1
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Definition 17 Two events  and  are independent if and only if Pr ( ∩) =
Pr () Pr (). i.e. Pr (|) = Pr () 

Definition 18 A random variable on (Ω=  ) is a real-valued function
defined over a sample space Ω, denoted by  () for  ∈ Ω, such that for

any real number , {| ()  } ∈ =

Example 19 Consider tossing a coin, Ω = {}, the −algebra = =

{Ω {}  {}}  If we define  () = 1 and  ( ) = 2, then  is a ran-

dom variable. Consider a real number , if  = 15, then {| ()  15} =
{} ∈ =.
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A random variable is always defined relative to some specific −algebra
=. It is discrete if its range forms a discrete(countable) set of real number. It
is continuous if its range forms a continuous(uncountable) set of real numbers

and the probability of  equalling any single value in its range is zero.

Definition 20 Let  be a continuous random variable. The probability

distribution function of  is defined as  () = Pr (−∞   ≤ )  with

 (∞) = 1. The density function is  () =  ()


, with  () ≥ 0, and

 (−∞) =  (∞) = 0

Definition 21 The mean, first moment, or expectation of a random

variable , is defined as:

 () =
X


 () if  is discrete

=

Z ∞

−∞
 ()  if  is continuous

Definition 22 Themedian of a random variable , denoted by m is defined

as the value that satisfies Pr ( ≤ ) = 05

Note that median under this definition may not be unique. For example,

if  is a continuous random variable uniformly distributed in the region

[0 2] ∪ [4 6], then  is note unique, as it can be anything from 2 to 4 To

ensure uniqueness, we may redefine the median to inf∈ Pr ( ≤ ) = 05

Definition 23 The mode of a random variable  with density  () is de-

fined as ∈  ().

Note that, similar to the median, the mode may not be unique too.

Remark 1 Note that the three measures of central tendency discussed above,

the population mean, population median, and population mode are fixed con-

stants. However, in an empirical sample, the sample mean, sample median
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and sample mode are all random variables whose values vary from sample to

sample. Different measures have their own merits and shortcomings. They

are the summary statistics of the sample, i.e., by look at their values, one

should have a rough picture of what the data should be. Sometimes these

measures may not be informative. For example, the sample mean is easily

affected by outliers. In the sample {1 2 3 4 1000}, most of the number are
small, and the sample mean is 202, which is not informative. In the sample

{2 2 1000 1001 1002 1003 1004}, the sample mode equals 2, which is not
informative as most of the observations are over 1000.

Definition 24 The second moment around the mean or variance of a

random variable is

  () =
X


( − ())
2
 () if  is discrete

=

Z ∞

−∞
(− ())

2
 ()  if  is continuous

Definition 25 Let ,  be two continuous random variables. The joint

distribution function of and  is defined as  ( ) = Pr ( ≤  and  ≤ ).

Their joint density function is  ( )  The relationship between  ( )

and  ( ) is:

 ( ) =

Z 

−∞

Z 

−∞
 ( ) 

 () =

Z ∞

−∞
 ( ) 

 () =

Z ∞

−∞
 ( ) 

Further,  (−∞−∞) = 0,  (∞∞) = 1, and  ( ) ≥ 0. If  and 

are independent, then  ( ) =  () () and  ( ) =  ()  () 
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Definition 26 The covariance of two random variables  and  , is de-

fined to be:

 ( ) =  ( − ()) ( − ( )) =  ( )− () ( )

where

 ( ) =
X


 ( ) if  are discrete

=

Z ∞

−∞

Z ∞

−∞
 ( )  if  are continuous

 ( ) =  () ( ) if  and  are independent, i.e., if  and  are

independent, ( ) will be equal to zero. However, the reverse is not

necessarily true.

Definition 27 The correlation coefficient between  and  is defined

as:

 =
( )p

  ()  ( )


Theorem 28 (Chebyshev’s Inequality)

If  is any random variable with finite variance 2 and  is a finite

positive constant, then

Pr (| − | ≥ ) ≤ 1

2


Proof. (for continuous random variable)
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2 =

Z ∞

−∞
(− )

2
 () 

≥
Z −

−∞
(− )

2
 () +

Z ∞

+

(− )
2
 () 

≥
Z −

−∞
22 () +

Z ∞

+

22 () 

= 22 ( ≤ − ) + 22 ( ≥ + )

= 22 (| − | ≥ ) 

this implies

 (| − | ≥ ) ≤ 1

2


Theorem 29 (Jensen’s Inequality)

Let  :  →  be a convex function on an interval  ⊂  and let  be

a random variable such that  ( ∈ ) = 1. Then  ( ()) ≤  ( ()) 

Proof. (exercise).

Example 30 Let  () = ||. It follows from Jensen’s inequality that | ()| ≤
 || 

Example 31 Let  () = 2. It follows from Jensen’s inequality that 2 () ≤
 (2) 

More demanding materials

Theorem 32 For random sample of size  from an infinite population which

has the value  () at , the probability density of the  order statistic 

is given by

 () =
!

( − 1)! (− )!

∙Z 

−∞
 () 

¸−1
 ()

∙Z ∞



 () 

¸−
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for 1 ≤  ≤  ≤  ≤ 

Proof. Suppose we divide the real line into 3 intervals, (−∞ ], ( +]

and (+∞), then the probability that −1 of the sample values fall into
the first interval, one falls into the second interval, and  −  fall into the

last interval is

Pr (   ≤  + )

=
!

( − 1)!1! (− )!
[Pr ( ≤ )]

−1
Pr (   ≤  + ) [Pr (   + )]

−


Let → 0 and use the facts that lim→0
1


Pr (   ≤  + ) =  ()

and lim→0
1


Pr (   ≤  + ) =  (), we have

 () =
!

( − 1)! (− )!

∙Z 

−∞
 () 

¸−1
 ()

∙Z ∞



 () 

¸−


Proposition 33 (Generalized Chebyshev Inequality or Markov’s In-

equality)

Let  be a random variable such that  || ∞   0. Then for every

  0,

Pr (|| ≥ ) ≤  ||




Proof.

 Pr (|| ≥ ) = 
Z
||≥

 ()

=

Z
||≥

 ()

≤
Z
||≥

||  ()

≤
Z ∞

−∞
||  ()

=  || 
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Setting  = 2 gives the familiar Chebyshev inequality.

Theorem 34 (Hölder’s Inequality)

For any  ≥ 1,

 | | ≤ kk k k
where

 =


− 1 if   1, and  =∞ if  = 1.

kk = ( (||))1 is the −norm of .

Proof. (exercise).

Corollary 35 (Cauchy-Schwartz Inequality)

When  = 2, the Hölder’s Inequality reduced to

( ( ))
2 ≤ 

¡
2
¢

¡
 2
¢


Theorem 36 (Liapunov’s Inequality)

If     0, then

kk ≥ kk 
Proof. (exercise).

Theorem 37 (Minkowski’s Inequality)

For  ≥ 1,

k +  k ≤ kk + k k 
Proof. (exercise).

Theorem 38 (Loève’s c Inequality)
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For   0,



Ã¯̄̄̄
¯
X
=1



¯̄̄̄
¯
!
≤ 

X
=1

 (||)

where  = 1 when  ≤ 1 and  = −1 when  ≥ 1
Proof. (exercise).

Exercise 0.1 Show that = = {Ω} is a -algebra.

Exercise 0.2 Suppose the business cycle of an economy can be divided into

two states, namely, the contraction , and the expansion , so that the

sample space Ω = {}. Find the corresponding −algebra and explain
your answer.

Exercise 0.3 The Mark Six lottery is a lottery game conducted by HKJC

Lotteries Limited using the facilities of The Hong Kong Jockey Club. Since

its inception in 1975, the Mark Six has contributed over HK$24 billion to the

Hong Kong SAR Government Treasury and the Lotteries Fund, being a fund

that supports charitable causes in Hong Kong.

To win the first prize of the Mark Six, one needs to get 6 numbers correct

out of a pool of 49 numbers indexed from 1 to 49. Suppose each number has

the same chance of being drawn,

(a) Find the probability of winning the first prize of the Mark Six.

(b) Suppose you have to bet 5 dollars for the first prize of 50,000,000 dollars.

If there is only one first prize winner, find the expect gain (or loss) of your

game.

(c) Suppose Chinese people have preference over the "lucky" numbers 8, 18,

28, 38, and a large proportion of people like to put these numbers on their

Mark-Six tickets. Suppose the amount of money for the first the prize is

fixed, and has to be shared among winners. As an rational economic agent,

will you avoid these "lucky" numbers when you buy Mark Six? Explain.

Exercise 0.4 Suppose a continuous random variable  has density function

10



 (; ) = + 5 for −1    1

 (; ) = 0 otherwise.

(i) Find values of  such that  (; ) is a density function.

(ii) Find the mean and median of .

(iii) Find Pr (025 ≤  ≤ 075) 
(iv) For what value of  is the variance of  maximized.

(v) Redo (i) to (iv) if

 (; ) = 2 (1− )
3
for 0    1

 (; ) = 0 otherwise.

Exercise 0.5 Prove that for any two random variables  and  ,
¯̄

¯̄
≤ 1

Exercise 0.6 Let ,  be two independent identical discrete random vari-

able with the probability distribution as follows:

 = −1 with probability 1
2


 = 1 with probability 1
2


 = −1 with probability 1
2


 = 1 with probability 1
2


Find the distribution of  if:

a)  =  −  .

b)  =





c)  = max { } 

Exercise 0.7 If  and  are two continuous random variables, then +

must be continuous too. True or false? Explain.

Exercise 0.8 Let  be a random variable with a symmetrical distribution

about zero and a finite variance. Give a random variable  such that  and

 are uncorrelated but not independent.

Exercise 0.9 Suppose the joint density of  and  is given by:
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 ( ) = 2 for   0   0, +   1

 ( ) = 0 otherwise

Find

(i) Pr
¡
 ≤ 1

2
and  ≤ 1

2

¢


(ii) Pr
¡
 +   2

3

¢


(iii) Pr (  2 ) 

Exercise 0.10 True/False/Uncertain. Explain. Let ,  , and  be three

random variables:

a)If  () 6= 0 and  ( ) 6= 0, then  ( ) 6= 0
b)If  (2  2) = 0, then  ( ) = 0.

c)If  and  are independent and if 

µ




¶
 1, then

 ()

 ( )
 1.

Exercise 0.11 Let 1, 2 be independent  (0 1) random variables, let

 = min {1max {1 2}} 
(a) What is the distribution of ?

(b) Find  () and   ().

Exercise 0.12 Let  be a continuous random variable which takes values

in (−∞∞)  Let  = min {2}  rewrite  in terms of  .

Exercise 0.13 Let ,  , and  be three random variables. If  () 

0 and  ()  0, then  ( ) must be positive. True or false?

Explain.

Exercise 0.14 Prove that for a non-negative random variable , where

 () is the distribution function of .

i)  () =
R∞
0
(1−  ()) ,

ii)  () = 

Z ∞

0

−1 (1−  ()) ,

where  () is the distribution function of  and   0.
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Exercise 0.15 Let  be a continuous random variable which takes values

in (−∞∞)  Let  = max
½


1



¾
 rewrite  in terms of  .

Exercise 0.16 Let  () and  () be the distribution function and the den-

sity function of non-negative random variable .

a) Suppose

 ()

1−  ()
= 1 for all 

Show that  () = 1

b) Find the functional form of  () such that the ratio

 ()

1−  ()

does not depends on .

Exercise 0.17 Let {} be the order statistic of i order statistic with

{1} ≤  ≤ {} ≤  ≤ {} Find the variance of the simple average

 and the variance of the trimmed mean 1 =
1

− 1
P

=2{} and 2 =

1

− 2
P−1

=2 {} in terms of .. Intuitively, which variance will be larger?

Prove that Var
¡

¢
is smaller than the other two variances.

Exercise 0.18 Prove the Markov inequality.

Exercise 0.19 Prove the Hölder’s inequality.

Exercise 0.20 Prove the Liapunov’s inequality.

Exercise 0.21 Prove the Minkowski’ inequality.

Exercise 0.22 Prove the Loève’s  inequality.
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Prof. T.L. Chong

HANDOUT 2

PROBABILITY AND DISTRIBUTION THEORY II

Some Commonly Used Probability Distributions

Uniform distribution

 ∼  (0 1) means  is evenly distributed in the interval [0 1], its

density function is defined as:

 () = 1 for  ∈ [0 1]
 () = 0 elsewhere.

Normal distribution

The normal distribution is the most commonly used distribution, many

variables in the real world follow approximately this distribution.

We write a random variable which follows a normal distribution with

mean  and variance 2 as  ∼  ( 2). Its density function is defined as:

 () =
1


√
2
exp

Ã
−1
2

µ
− 



¶2!
 −∞   ∞

Two unique properties associated with normal random variables are that:

(i) If  and  are normal, then  +  is also normal.

(ii) If and  are normal and uncorrelated, then they are independent.

Standardized normal distribution

If  ∼  ( 2), then  =
 − 


follows  (0 1). Its density function

is defined as:

 () =
1√
2
exp

µ
−1
2
2
¶
 −∞   ∞
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The distribution function for a standardized normal random variable is

defined as

Φ () =

Z 

−∞
 () 

The Lognormal distribution

If  = ln ∼  ( 2), then  follows a lognormal distribution. Its

density function is:

 () =
1


√
2
exp

Ã
−1
2

µ
ln  − 



¶2!
 0   ∞;

 () = 0 elsewhere

Chi-square distribution

If  ∼  (0 1), then 2 follows Chi-square distribution with degree of

freedom equals 1. e.g. If  ∼  (0 1), then = 2 follows 21. Pr (−1 ≤  ≤ 1) =
Pr (0 ≤  ≤ 1) ' 067, Pr (−2 ≤  ≤ 2) = Pr (0 ≤  ≤ 4) ' 095, Pr (−3 ≤  ≤ 3) =
Pr (0 ≤  ≤ 9) ' 099. Thus a Chi-square random variable must take non-

negative values, and the distribution has a long right tail.

If 1 2   are independent (0 1), then  = 21 + 22 +  + 2

follows Chi-square distribution with  degrees of freedom, and we write it

as 2. The mean of a Chi-square distribution equals its degrees of freedom.

This is because


¡
2
¢
=   () +2 () = 1 + 0 = 1

and thus

 () = 
¡
21 + 22 + + 2

¢
= 

It density function of  is

 () =

−2
2 −2

22Γ (2)
 0   ∞;

 () = 0 elsewhere
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where Γ () = (− 1)Γ (− 1), Γ (1) = 1 and Γ
¡
1
2

¢
=
√


For large  (  30), we have the following approximation

Pr ( ≤ ) ≈ Φ
³√
2−

√
2 − 1

´


For example, when  = 70 and  = 85,

Pr ( ≤ 85) ≈ Φ
³√
170−

√
139
´
= Φ (1 249) = 8942

The true Pr ( ≤ 85) = 089409

Exponential distribution

For   0, a random variable  has an exponential distribution if and

only if its density function is given by

 () =
1


exp

³
−


´
for  ≥ 0

 () = 0 elsewhere.

The mean of the exponential distribution is  and the variance is 2.

Note that a Chi-square distribution with degrees of freedom equal 2 is

identical to an exponential distribution with  = 2.

Student’s t-distribution

If  ∼  (0 1),  has a 2 distribution with  degrees of freedom, and

 and  are independent, then:

 =
p


has a t-distribution with  degrees of freedom. The t distribution was

introduced by W. S. Gosset, who published his work under the pen name

“Student”.

Cauchy distribution
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There are many kinds of distributions, most of them have finite mean and

variance, and some higher moments also exist, but for some distributions,

their mean and variance may not even exist. e.g., Cauchy distribution.

Let 1 and 2 be independent and follow  (0 1), then the ratio
1

2
will have a Cauchy distribution. In other words, a Cauchy distribution is a

t-distribution with degrees of freedom equal one. Its density has the form:

 () =
1

 (1 + 2)
 −∞   ∞

and it can be shown that :

 = tan

µµ
 ()− 1

2

¶


¶
The second moment does not exist since


¡
2
¢
=

Z ∞

−∞
2

1

 (1 + 2)


=

Z ∞

−∞

1 + 2

 (1 + 2)
−

Z ∞

−∞

1

 (1 + 2)


=

Z ∞

−∞

1


−

Z ∞

−∞
 () 

=
h


i∞
−∞
− 1 =∞

Similarly  || =∞

F-distribution

Let  ∼ 2 and  ∼ 2, and if  and  are independent of each other,

then

 () =




has an F-distribution with  and  d.f..

The F-distribution was named after Sir Ronald A. Fisher, a remarkable

statistician of this century.
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Note 1: As →∞, 

→  (2) = 1, where  is a standardized normal

random variable. Thus,

 (∞) =  ∼ 2

and

 (∞∞) = 1
Note 2:

 (1 ) =



=

Ã
 (0 1)p

2

!2
= 2

Beta distribution

Another class of continuous distribution in the zero-one interval is the

Beta distribution. Its density function is given by

 () =
Γ (+ )

Γ ()Γ ()
−1 (1− )

−1
for  ∈ (0 1)

 () = 0 elsewhere,

where   0 and   0. It can be shown that the mean of the Beta

distribution is


+ 
and the variance is



(+ )
2
(+  + 1)

.

Poisson distribution

Suppose the random variable  takes discrete values 0,1,2,3,..., if  fol-

lows a Poisson distribution with mean , then

Pr ( = ) =
exp (−)

!
for  = 0 1 2 

where   0. It can be shown that the mean and the variance of the

Poisson distribution are both equal to .

Mixtures
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Mixtures of densities occur in some models. For example, one might

have a random variable  distributed as (0  ) where  comes from a

Poisson process, i.e., the variance of  is a draw from another density. Such

models occur with asset price changes (). The variable  is the number of

news items coming in on any given day so that the variance (volatility) of 

depends upon the amount of news becoming available.

Theorem 39 Let  and  be two random variables, the unconditional ex-

pectation of Y is the expectation of the conditional expectation of  given .

i.e.,

 ( ) =  ( ( |)) 
This theorem is called the Law of Iterated Expectation.

For example, suppose given , the random variable  is normally dis-

tributed with mean  and variance 1, i.e.  | ∼  ( 1). Now suppose 

is uniformly distributed in the zero-one interval. Then without knowing the

value of , the unconditional expectation of  will be

 ( ) =  ( ( |)) =  () = 05

Definition 40 Other measures often used to describe a probability distribu-

tion are

Skewness = 
£
( − )

3
¤


Skewness coefficient =

£
( − )

3
¤

3


Kurtosis = 
£
( − )

4
¤


Degree of excess =

£
( − )

4
¤

4
− 3

Skewness is a measure of the asymmetry of a distribution. For symmetric

distributions, skewness=0. Kurtosis is a measure of the thickness of the
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tails of the distribution. For a Normal distribution, the skewness =0 and

the degree of excess=0. Thus, when checking whether a random variable is

normally distributed, it will be helpful to see if both the skewness and the

degree of excess are zero.

Although the moments of most distributions can be determined directly

by evaluating the necessary integrals or sums, there is an alternative proce-

dure which sometimes provides considerable simplifications.

Definition 41 The probability-generating function of a discrete ran-

dom variable , where it exists, is given by

 () = 
¡

¢
=

∞X
=0

 Pr ( = ) 

The p.g.f. can be used to compute the mean of a discrete random variable

. The first derivative of  () evaluated at  = 1 is the mean of . i.e.,

 () =
 ()



¯̄̄̄
=1

=  0 (1) 

We also have

  () =  00 (1) +  0 (1)− [ 0 (1)]2 

Note that p.g.f. is for discrete random variables only. For continuous

random variables, one has to use the moment generating function.

Definition 42 The moment-generating function of a random variable

, where it exists, is given by

 () = 
¡

¢
= 

Ã ∞X
=0

()


!

!
=

∞X
=0



!

¡

¢
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The result utilizes the Taylor’s expansion that

 =

µ
lim
→∞

µ
1 +

1



¶¶

= lim
→∞

µ
1 +

1



¶

=

∞X
=0



!


We say that a moment-generating function exists if there exists a positive

constant  such that  ()  ∞ for  ≤  If it exists, it is unique and

completely characterizes the distribution of the random variable .

 () =
X


 () if  is discrete;

=

Z ∞

−∞
 ()  if  is continuous.

 ()


|=0 =  () 

Theorem 43 If  and  are constant, then

1. + () =  () ;

2.  () = () ;

3. + () =  () 

Moment-generating function plays an important role in determining the

probability distribution or density of a function of random variables when

the function is a linear combination of n independent random variables. The

method is based on the theorem that the moment-generating function of the

sum of  independent random variables equals the product of their moment-

generating function.

Theorem 44 If 1 2  and  are independent random variables and

 = 1 +2 + +, then

 () =

Y
=1


()

21



where 
() is the value of the moment-generating function of  at .

This suggests a simple approach to analyzing the distribution of indepen-

dent sums. The difficulty is that the method is not universal, since the m.g.f.

is not defined for every distribution. Considering the series expansion of ,

all the moments of  must evidently exist. The solution to this problem is

to replace the variable  by , where  is the imaginary number,
√−1

Definition 45 The characteristic function of a random variable  is

defined as

Φ () = 
¡


¢
=

Z ∞

−∞
 () 

It is defined for any distribution because by the modulus inequality for

complex random variables, we have

¯̄

¡


¢¯̄ ≤ 
¯̄


¯̄
= 

hp
(cos () +  sin ()) (cos ()−  sin ())

i
= 

µq
cos2 () + sin2 ()

¶
= 

³√
1
´
= 1 ∞

Note that the second step is utilizing the facts that  = cos ()+  sin ()

and that the modulus of a complex number  +  is given by |+ | =p
(+ ) (− ) =

√
2 + 2

Theorem 46 If 
³
||

´
∞, then

Φ ()


|=0 = 

¡

¢


Theorem 47 If  and  are constant,  and  are independent random

variables, then
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1. Φ+ () = Φ () ;

2. Φ+ () = Φ ()Φ () 

Transformation of Random Variable:

Sometimes we would like to find the density function of a function of a

particular variable. Suppose the distribution function and density function

of  are  () and  () respectively, what is the density function of

 =  ()?

Theorem 48 Let  =  () where  (·) is a strictly monotonic, differen-
tiable function (ensuring the inverse function  = −1 ( ) exists),  is a

continuous random variable with density function  () and −1 ( ) is the

inverse function for . Then

 () =  (
−1 ())

¯̄̄̄
−1 ()



¯̄̄̄
where the last element is the Jacobian of the transformation.

Proof. Denote the capital  as a r.v., and small letter  be a particular

value. We know that

Pr ( ≤ ) = Pr ( () ≤  ())

= Pr ( ≤ ) 

In other words

 () =  () 

Differentiate with respect to  and use the fact that  and  must

take non-negative values, we have:

 () =  ()

¯̄̄̄




¯̄̄̄
or

 () =  ()

¯̄̄̄




¯̄̄̄
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Plug in  = −1 () 

 () = 
¡
−1 ()

¢ ¯̄̄̄−1 ()


¯̄̄̄


Example 49 If  = ln ∼  ( 2), then  = exp will follow a log-

normal distribution. To find its density function, note that

¯̄̄̄




¯̄̄̄
=

¯̄̄̄
1



¯̄̄̄
,

 () =
1


√
2
exp

Ã
−1
2

µ
− 



¶2!
, −1 () = ln . We have

 () = 
¡
−1 ()

¢ ¯̄̄̄


¯̄̄̄
=

1


√
2
exp

Ã
−1
2

µ
ln  − 



¶2!
1




Exercise 0.23 Let 1, 2 be independent  (0 1) random variables, let

 = min {1max {1 2}} 
(a) What is the distribution of ?

(b) Find  () and   ().

Exercise 0.24 Show that for a normally distributed random variable, the

skewness and the degree of excess are zero.

Exercise 0.25 Suppose you know that, conditional upon ,  is distributed

as  (0 ). Find  (2),  (3),  (4) and determine the degree of excess

and the kurtosis in  if

a)  is a Poisson distributed random variable;

b)  is a  (0 1) random variable.

Exercise 0.26 Let  =  where  ∼  (0 2 ), the conditional expec-

tation of  given  is zero while the variance of  conditional upon  is

2 2. Find the probability that the variance , conditional upon  , exceeds

the unconditional variance.
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Exercise 0.27 Let 1,..., , +1 be independent  (0 1) random vari-

ables, let

 = 21 + 22 + 23 + + 2−1 + 2

a) What is the distribution of ? Find  ().

b) What are the distributions of
+1p


and
2+1


?

c) If we define another random variable  =  − 2+1 , then  must

have a Chi-square distribution with degrees of freedom  − 1, true or false?
Explain.

Exercise 0.28 What is the density functions of  = 2 and  = (2 − 1)13
if:

a.  ∼  (0 1),

b.  ∼  (0 1).

Exercise 0.29 Let  and  be two independent standardized normal ran-

dom variables. Show that

i) Cov(max { }) = 05
ii) Cov(min { }) = 05
iii) Cov(min { } max { }) = 1




iv) Var(max { }) = 1− 1



v) Var(min { }) = 1− 1



Exercise 0.30 True/False/Uncertain. Explain.

(a) There exists a random variable  such that  () = 2 and  (2) =

1

(b) The Chi-square distribution with 2 degrees of freedom is an exponen-

tial distribution with mean 2.

(c) If  follows a  (0 2) distribution, then  (4) = 34
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(d) For a random variable ,  () =   () 

(e) The difference of two independent Chi-square random variables is still

a Chi-square random variable.

(f) For an exponential random variable with density  () =
1


exp

³
−


´
,

the median is larger than the mean.

Exercise 0.31 True/False/Uncertain. Explain.

(a) There exists a random variable  such that  ()   (2) 

(b) The  (1 ) distribution will approach a Chi-square distribution with

1 degree of freedom when  tends to infinity.

(c) If  follows a  (0 1) distribution, then  ()    () 

(d) For a random variable ,  (−−) =   () 

Exercise 0.32 Let  be a continuous random variable which takes values

in (−∞∞)  Let  = max
½


1



¾
 rewrite  in terms of  .

Exercise 0.33 Let {}=1 be independent  (−05 05) random variables.

Let {} be the order statistic of  order statistic with {1} ≤  ≤ {} ≤
 ≤ {} Find the variance of the sample average  and the variance of the

trimmed mean 1 =
1

− 1
P

=2{} and 2 =
1

− 2
P−1

=2 {} in terms of

. Intuitively, which variance will be larger? Prove that Var
¡

¢
is smaller

than the other two variances.

Exercise 0.34 Let {}=1 and {}=1 be independent  (0 1) random vari-
ables. Let  and  be independent of each other. Let  = max { },
 = max

½
 −

 ()

 − 

 ( )

¾
, where  and  are the sample average of 

and  respectively,  () =

r
1



P

=1

¡
 −

¢2
, se( ) =

r
1



P

=1

¡
 − 

¢2
.

Let  and  be the sample average of  and  respectively. Find

(a) Var
¡

¢
;

(b) Var
¡

¢
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Exercise 0.35 Let 1, 2 be independent  (0 1) random variables condi-

tional upon  , which is uniform (0,1). If  = 1 + (1− )2, find

a) The conditional distribution of  given  .

b)  (),   ().

Exercise 0.36 Suppose you know that, conditional upon ,  is distributed

as  (0 ). If  is a  (0 1) random variable, find  () and  (2) 

Exercise 0.37 Show that the probability generating function for of a Poisson

random variable  with mean  is

 () = exp ( (− 1))
Find the mean and the variance of  via  () .

Exercise 0.38 Explain why there can be no random variable  for which

the moment generating function () =


1− 


Exercise 0.39 Can there be a random variable  for which the moment

generating function () = ? Explain.

Exercise 0.40 Let 1, 2 be independent  (0 1) random variables, let

 = 21 + 22

a) What is the distribution of ?

b) Find  () and   ().

c) If we define another random variable  = 212 find  ( ) and

  ( ) 

d) What is the distribution of
 + 

2
?

Exercise 0.41 Describe how to generate an exponential distribution from a

 [0 1] distribution.
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Exercise 0.42 Consider a random variable  whose density function is

 () = 0 + 1+ 2
2 for x ∈ [0 1]

= 0 otherwise

a) What are the restrictions on 0, 1 and 2 for  () to be a density

function.

b) Consider a random variable  , with

 = 0 +
1

2
1

2 +
1

3
2

3

If U has a Uniform zero-one distribution, what is the distribution of ?

c) Describe how to use GAUSS to generate a random variable with density

 () =
1

6
+ + 2 for  ∈ [0 1] ;

= 0 otherwise.

d) Describe how to use GAUSS to generate a random variable with density

 () = 2− − 32 + 23 for  ∈ [0 1] ;
= 0 otherwise.

Exercise 0.43 Let  ∼  (0 1), suppose  () ∼  (0 1), what is the func-

tional form of  ()?

Exercise 0.44 Find the lower limit of the following probability using the

Chebychev inequality:

i) Pr (−4    4) where  is a  (0 32);

ii) Pr (0    16) where  is a Chi-square random variable with 8 degrees

of freedom.
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Exercise 0.45 Find the moment generating function of the uniform (0,1)

random variable.

Exercise 0.46 For an exponential random variable  with density

 () =
1

2
exp

³
−
2

´


the median is larger than the mode. True or False? Explain.

Exercise 0.47 Greene, Chapter 3, Exercises 14, 18, 25-30.
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ECO5120: Econometric Theory and Application, Fall 2006

Prof. T.L. Chong

HANDOUT 3

LARGE-SAMPLE THEORY

One of the objectives of econometrics is to estimate the unknown popu-

lation parameters via various estimators. For example, we can estimate the

population mean  via the sample mean , where  is the sample size. In

this case,  will be a random (stochastic) sequence in , in the sense that

its values are different from sample to sample. We want to examine if this

random sequence converges to the true mean when  is very large. Before

studying the random sequences, we first introduce the concept of determinis-

tic sequences. A deterministic sequence  is basically a function of , where

 is a positive integer.

Definition 50 A real sequence is a mapping from  to , where  =

{ :  = 1 2 } is the set of natural numbers, and  is the real line.

Limits of Sequences

Let {}∞=1 be a sequence of real numbers. The sequence is said to

converge to a constant  if for any   0, there exists an such that | − | 
 whenever  ≥  ; This is indicated as

lim
→∞

 = 

or equivalently,

 →  as →∞

Example 51 If  =
1


, lim
→∞

 = 0

Example 52 If  =
P

=1

1


, lim
→∞

 =∞
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Proof. For   2, we have

 =

X
=1

1


= 1+

1

2
+
1

3
++

1


 1+

1

2
+

µ
1

3
+
1

4

¶
+

µ
1

5
+ +

1

8

¶
++

µ
1

2−1 + 1
+ +

1

2

¶


Now since

1

2−1 + 1
+ +

1

2
=

2−1X
=1

1

2−1 + 


2−1X
=1

1

2−1 + 2−1
=
2−1

2
=
1

2


Thus every term in the parenthesis is bigger than
1

2
and we have

  1 +


2


Therefore, as  →∞ we have →∞ and  →∞

Example 53 If  =
³
1 +





´
, lim
→∞

 = exp () 

Definition 54 A sequence of deterministic matrices C converges to C if

each element of C converges to the corresponding element of C.

Example 55 If C =

⎛⎜⎝
1






ln



µ
1− 1



¶

⎞⎟⎠, then C = Ã 0 0

0 −1

!


Definition 56 The supremum of the sequence, denoted by

sup
≥1



is the least upper bound (l.u.b.) of the sequence, i.e., the smallest

number, say, , such that  ≤ , for all .

Definition 57 The infimum of the sequence, denoted by
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inf
≥1



is the greatest lower bound (g.l.b.) of the sequence, i.e., the largest

number, say, , such that  ≥ , for all .

Example 58 If  =
1


 then sup

≥1
 = 1 and inf

≥1
 = 0

Definition 59 The sequence {}∞=1 is said to be amonotone non-increasing
sequence if

+1 ≤ , for all 

and it is said to be a monotone non-decreasing sequence if

+1 ≥ , for all 

Definition 60 Let {}∞=1 be a sequence of real numbers and let

 = sup
≥



 = inf
≥



Then, the sequences {}, {} are, respectively, monotone non-increasing
and non-decreasing, and their limits are said to be the limit superior and limit

inferior of the original sequence and are denoted, respectively, by

lim sup lim inf or lim lim

Thus we write

lim
→∞

 = lim
→∞

sup
≥



lim
→∞

 = lim
→∞

inf
≥
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The limsup is the eventual upper bound of a sequence, and the liminf is

the eventual lower bound of a sequence.

Proposition 61 Let {}∞=1 be a sequence of real numbers, then

lim sup  ≥ lim inf 

Definition 62 Let {}∞=1 be a sequence of real numbers, then its limit ex-
ists if and only if

lim sup  = lim inf 

Example 63 If  = (−1), then lim sup  = 1, lim inf  = −1. The limit
does not exist.

Example 64 If  =

µ
−1


¶

, then lim sup  = 0, lim inf  = 0. The limit

exists and is equal to zero.

Rates of Convergence

Definition 65 The sequence {} is at most of order n, denoted 
¡

¢
,

if and only if for some real number ∆, 0  ∆  ∞, there exists a finite
integer  such that for all  ≥  ,

¯̄̄̄




¯̄̄̄
 ∆In other words, {} is 

¡

¢

if



is eventually bounded as n becomes large.

Definition 66 The sequence {} is of order smaller than n, denoted

¡

¢
, if and only if for every real number , 0    ∞, there exists a

finite integer  () such that for all  ≥  () 

¯̄̄̄




¯̄̄̄
  i.e.  = 

¡

¢
if




→ 0 as n becomes large.
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Obviously, if {} is 
¡

¢
, then {} is 

¡

¢


In particular, {} is  (1) if  is eventually bounded, where as {} is
 (1) if  → 0

Example 67 Let  = 4 + 2 + 6
2 Then {} is  (2) and 

¡
2+

¢
for

every   0.

Example 68 Let  = (−1)  Then {} is  (1) and 
¡

¢
for every   0.

Example 69 Let  = exp () In this case,  =  (exp ()) 

Proposition 70 Let {}∞=1 and {}∞=1 be sequences of real number.

() If {} is 
¡

¢
and {} is  (), then  is 

¡
+

¢
and

( + ) is  (
), where  = max [ ].

() If {} is 
¡

¢
and {} is  (), then  is 

¡
+

¢
and ( + )

is  ().

() If {} is 
¡

¢
and {} is  (), then  is 

¡
+

¢
and

( + ) is  (
).

Definition 71 The stochastic sequence { ()} is at most of order n in
probability, denoted 

¡

¢
, if there exists an  (1) nonstochastic sequence

 such that
 ()


− 

→ 0

When a sequence { ()} is 

¡

¢
, we say it is bounded in proba-

bility.

Definition 72 The sequence { ()} is of order smaller than n in

probability, denoted 
¡

¢
, if

 ()


→ 0

Proposition 73 Let {}∞=1 and {}∞=1 be sequences of random number.
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() If {} is 

¡

¢
and {} is  (

), then  is 

¡
+

¢
and

( + ) is  (
), where  = max [ ];

() If {} is 
¡

¢
and {} is  (), then  is 

¡
+

¢
and

( + ) is  (
);

() If {} is 

¡

¢
and {} is  (), then  is 

¡
+

¢
and

( + ) is  (
).

Various Modes of Convergence

Let  be a sequence of random variables and  be a constant.

Definition 74  is said to converge to  in probability if

lim
→∞

Pr (| − |  ) = 0

for any   0. We write 
→  or plim = 

Example 75 Let  be a sequence of random variables such that  equals

either 0 or , with probability

µ
1− 1



¶
and

1


respectively. Then 

→ 0

Proof.

Pr (| − 0|  ) = Pr (||  )

= Pr (0  ) Pr ( = 0) + Pr (  ) Pr ( = )

= 0×
µ
1− 1



¶
+Pr (  )

1



=
Pr (  )




lim
→∞

Pr (| − 0|  ) = lim
→∞

Pr (  )


= 0
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In the rest of this handout, we let  , and  be constants and  (·) a
real-valued continuous function taking finite values.

Theorem 76 If 
→ , then  ()

→  () 

Proof. (exercise).

Theorem 77 If 
→ , 

→ , then

()  + 
→ + ;

() 
→ ;

()




→ 


if  6= 0

Proof. (exercise).

Definition 78 If  has a c.d.f.  (), it converges in distribution to

a random variable  with cumulative distribution function  () if

lim
→∞

| ()−  ()| = 0

at all continuity points of  (). We say that 
→ 

Generally speaking, if the distance between  () and  () converges

to zero in the domain of , we say that  converge in distribution to .

The reason for saying “at all continuity points” is to allow the case where the

distance between  () and  () does not converge to zero at some points.

Consider the following example.

Example 79 Let

 () = 0   0

= 1  ≥ 0
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and let

 () = 0   −1


=
1

2
+



2
 − 1


≤  ≤ 1



= 1  
1




In this case, note that  () is discontinuous at  = 0. The distance

between  () and  () does not converge to zero at  = 0 since ∞ (0)

= 1
2
and  (0) = 1. By adding the phase “at all continuity points”, we

exclude the point  = 0 and the definition above allows  to converge in

distribution to .

Thus, the limiting distribution of a sequence of random variable, if exists,

cannot in general be determined by the limit of the c.d.f..

Theorem 80 (Mann and Wald) Let  (·) be a continuous function, if


→ , then  ()
→  () 

Proof. (exercise).

Example 81 Let  be a random variable which follows a t-distribution with

degrees of freedom  and let  () = 2. Since

 () = 2 =  (1 ) 


→  =  (0 1)

and

 () = [ (0 1)]
2
= 2 (1) 

the above theorem says that

 (1 )
→ 2 (1) 
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Theorem 82 If 
→ , and 

→ 0, then 
→ 0

Proof. (exercise).

Theorem 83 (Slutsky) If 
→ , 

→ , then

()  + 
→  + ;

() 
→ ;

()




→ 


if  6= 0

Proof.

() Since
→  we have+

→ +. Further, +−( + ) =

 − 
→ 0, thus  +  and  +  have the same limiting distribution

which is  + .

() Since 
→  we have 

→ . Further,  −  =

 ( − )
→ 0 . Thus  and  have the same limiting distribu-

tion which is .

() Since
→ we have





→ 


. Further,




−


= 

µ
1


− 1



¶
→

0 . Thus



and




have the same limiting distribution which is




.

Definition 84 A sequence of random variables  are an Independent

and Identical Distributed (i.i.d.) if all the  have the same distribution

and  does not depend on  for any  6= .

Theorem 85 Weak Law of Large Numbers (Linchine)

If {}=1 are i.i.d. with finite mean  and finite variance 2, the sample

average  =
1



P

=1 converges to the true mean  as the sample size 

goes to infinity.

Proof. By Chebyshev’s inequality,
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Pr

µ¯̄
 − 

¯̄
≥ 

√


¶
≤ 1

2


Putting  =
√



Pr
¡¯̄
 − 

¯̄
≥ 
¢ ≤ 2

2

→ 0 as →∞ for any   0

Thus, 
→ 

We call it a weak law as we make a very strong assumption that  are

i.i.d.. Remember, the power of a law or a theorem depends on the assump-

tions that you make, the weaker the assumptions (the less you assume), the

higher the power of your theorem.

Theorem 86 Central Limit Theorem (Lindeberg-Lévy)

If {}=1 is an i.i.d. sequence with mean  and variance 2, then as

→∞

 =
1√


X
=1


→  (0 1) 

where  =
 − 


.

Proof. (exercise).

This is the simplest version of the Central Limit Theorem, which states

that if {}=1 are i.i.d. with finite mean  and finite variance 2, the sample
average converges in distribution to a normal distribution with mean  and

variance
2


, as the sample size  goes to infinity. It is a powerful theorem

because  can be any distributions. Most of the statistical inference and

hypothesis testing are based on this theorem.
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Note that we assume total independence and only require the existence

of the first and second moments in the above simplest versions. There are

many different versions of Law of Large Numbers and Central Limit The-

orem generated from the trade-off between degrees of dependence and the

moment requirements. In other words, we may allow and to be slightly

dependent, but we may require the existence of higher moments of  i.e., if

we permit  to be dependent, we may need to assume  () ∞ for some

  2

Example 87 Let 1 and 2 be two independent random variables distrib-

uted as

Pr ( = −1) = Pr ( = 1) =
1

2

where  = 1 2.

Then the distribution of

 =
1 +2

2

will be

Pr
¡
 = −1¢ = Pr (1 = −1 and 2 = −1)

= Pr (1 = −1)Pr (2 = −1)
=

1

2
× 1
2
=
1

4


Pr
¡
 = 0

¢
= Pr ({1 = −1 and 2 = 1} or {1 = 1 and 2 = −1} )
= Pr (1 = −1) Pr (2 = 1) + Pr (1 = 1)Pr (2 = −1)
=

1

2


40



Pr
¡
 = 1

¢
= Pr (1 = 1 and 2 = 1)

= Pr (1 = 1)Pr (2 = 1)

=
1

2
× 1
2
=
1

4


Note that although 1 and 2 are evenly distributed,  is not evenly

distributed but has a bell-shape distribution. As the number of observations

tends to infinity,  will have a normal distribution.

More demanding materials

We discuss the case where  converges in probability to a constant  in

the previous section. Actually, the concept of convergence in probability is

more than that.  can also be converge in probability to a random variable

. The following theorem states that if  converges in probability to a

random variable , than it must converge in distribution to .

Theorem 88 
→  ⇒ 

→ 

Proof. For   0 we have

Pr ( ≤ )

= Pr ({ ≤ } ∩ {| −| ≤ }) + Pr ({ ≤ } ∩ {| −|  })
≤ Pr ( ≤ + ) + Pr (| −|  ) 

where the events whose probabilities appear on the right-hand side of the

inequality contain the corresponding events on the left.

Pr (| −|  )→ 0 by hypothesis, and hence

lim supPr ( ≤ ) ≤ Pr ( ≤ + ) 

Similarly

Pr ( ≤ − )

= Pr ({ ≤ − } ∩ {| −| ≤ })+Pr ({ ≤ − } ∩ {| −|  })
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≤ Pr ( ≤ ) + Pr (| −|  ) 

and so

Pr ( ≤ − ) ≤ lim inf Pr ( ≤ ) 

Since lim inf Pr ( ≤ ) ≤ lim supPr ( ≤ ), we have

Pr ( ≤ − ) ≤ lim inf Pr ( ≤ ) ≤ lim supPr ( ≤ ) ≤ Pr ( ≤ + ) 

Further, not also that

Pr ( ≤ − ) ≤ Pr ( ≤ ) ≤ Pr ( ≤ + ) 

Since  is arbitrary, we let it go to zero such that

Pr ( ≤ ) = lim inf Pr ( ≤ ) = lim supPr ( ≤ ) 

Since

limPr ( ≤ ) = Pr ( ≤ )

Thus the limiting distribution of  exists and is the same as that of .

Note that convergence in probability implies convergence in distribution,

but the converse does not necessarily hold. The following is the relationship

among the four concepts of convergence.

Relation between four modes of convergence



↓
 →  → 

Theorem 89 If 
→ , and | −| → 0, then the limiting distribution

of  exists and is the same as that of 
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Proof. Let   0

Pr ( ≤ ) = Pr ( + ≤ +) = Pr ( ≤ + − )

= Pr ({ ≤ + −  | − |  } ∪ { ≤ + −  | − | ≥ })
≤ Pr ( ≤ + −  | − |  )+Pr ( ≤ + −  | − | ≥ )

≤ Pr ( ≤ + ) + Pr (| − | ≥ ) 

lim supPr ( ≤ )

≤ lim supPr ( ≤ + ) + lim supPr (| − | ≥ )

= limPr ( ≤ + ) + 0

= Pr ( ≤ + ) 

Similarly

Pr ( ≤ − ) = Pr ( +  ≤ − + ) = Pr ( ≤ − +  −)

= Pr ({ ≤ − +  − | −|  } ∪ { ≤ − +  − | −| ≥ })
≤ Pr ( ≤ − +  − | −|  )+Pr ( ≤ − +  − | −| ≥ )

≤ Pr ( ≤ ) + Pr (| −| ≥ ) 

lim inf Pr ( ≤ − ) ≤ lim inf Pr ( ≤ ) + lim inf Pr (| −| ≥ )

limPr ( ≤ − ) ≤ lim inf Pr ( ≤ ) + 0

Pr ( ≤ − ) ≤ lim inf Pr ( ≤ ) 

Thus

Pr ( ≤ − ) ≤ lim inf Pr ( ≤ ) ≤ lim supPr ( ≤ ) ≤ Pr ( ≤ + )

Let → 0

limPr ( ≤ ) = Pr ( ≤ )

Thus the limiting distribution of  exists and is the same as that of .
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Definition 90 A sequence of random variables {} is said to converge to
 almost surely if

Pr
³
lim
→∞

 = 
´
= 1

or equivalently, for every   0,

lim
→∞

Pr

µ
sup
≥

| − |  

¶
= 0

We write 
→ 

In other words, let Φ ⊆ Ω be the set of outcomes such that, for every

 ∈ Φ,  () →  as  → ∞. If the probability measure Pr (Φ) = 1, the
sequence is said to converge almost surely, or converge with probability one.

Theorem 91 
→ ⇒ 

→ 

Proof. Since

| − |  ⇒ sup
≥

| − |  

we have

Pr (| − |  ) ≤ Pr

µ
sup
≥

| − |  

¶
lim
→∞

Pr (| − |  ) ≤ lim
→∞

Pr

µ
sup
≥

| − |  

¶
Since both are non-negative, we have

lim
→∞

Pr

µ
sup
≥

| − |  

¶
= 0

implies

lim
→∞

Pr (| − |  ) = 0
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However, the converse is not necessarily true. Thus, almost sure conver-

gence implies convergence in probability. A sequence that converges in prob-

ability always contains a subsequence that converges almost surely. Con-

vergence in probability allows more erratic behavior in the converging se-

quence than almost sure convergence, and by simply disregarding the erratic

elements of the sequence we can obtain an almost surely convergent subse-

quence.

Example 92 Convergence in probability does not imply convergence almost

surely, to give a counter-example, let the sample space be Ω = [0 1] 

Let

Ω =

∙
0 −1 +

1


− 1
¸
∪
∙
−1min

½
1 −1 +

1



¾¸
where

0 = 0

 =
¡P

=1
1


¢− integer ¡P

=1
1


¢
for  ≥ 1

e.g.

1 =
¡P1

=1
1


¢− integer ¡P1

=1
1


¢
= 1− 1 = 0

2 =
¡P2

=1
1


¢− integer ¡P2

=1
1


¢
= 1

1

2
− 1 = 1

2


Ω1 =

∙
0 0 +

1

1
− 1
¸
∪
∙
0min

½
1 0 +

1

1

¾¸
= [0 0] ∪ [0min {1 1}] = [0 1] 

Ω2 =

∙
0 1 +

1

2
− 1
¸
∪
∙
1min

½
1 1 +

1

2

¾¸
=

∙
0−1

2

¸
∪
∙
0min

½
1
1

2

¾¸
=  ∪

∙
0
1

2

¸
=

∙
0
1

2

¸


Ω3 =

∙
0 2 +

1

3
− 1
¸
∪
∙
2min

½
1 2 +

1

3

¾¸
=

∙
0
1

2
+
1

3
− 1
¸
∪
∙
1

2
min

½
1
1

2
+
1

3

¾¸
= ∪

∙
1

2
min

½
1
5

6

¾¸
=

∙
1

2

5

6

¸
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and so on.

 () = 1 for  ∈ Ω

 () = 0 otherwise

e.g.,

1 (0) = 12 (0) = 1 3 (0) = 0 4 (0) = 15 (0) = 0 

1

µ
1

12

¶
= 1 2

µ
1

12

¶
= 13

µ
1

12

¶
= 04

µ
1

12

¶
= 1 5

µ
1

12

¶
= 1 

1 (1) = 12 (1) = 0 3 (1) = 0 4 (1) = 15 (1) = 0 

We have for 0    1

Pr (||  ) =
1



and

lim
→∞

Pr (| − 0|  ) = 0

Thus  converges in probability to zero.

However,  does not converge almost surely to zero. To see this, note

that Ω keeps moving to the right until, passes through the point  = 1 and

starts again from  = 0 Thus, for any given  and , there exists a finite

constant    such that  () = 1.

Thus

Pr
n
lim
→∞

 () = 0
o
= 0
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and  does not converge to 0 almost surely since

Pr
³
lim
→∞

 = 0
´
6= 1

Definition 93  is said to converge in the r
th mean to  if

lim
→∞

 (| − |) = 0

for some   0. We write 
→ 

When  = 2, the convergence is said to occur in quadratic mean, de-

noted 
→ 

A useful property of convergence in the  mean is that it implies con-

vergence in the  mean for   .

Theorem 94 If 
→  and   , then 

→ 

Proof. Let  () = ,   1,  ≥ 0. Then  is concave. set  = | − |
and  =




. From Jensen’s inequality,

 (| − |) = 
³
{| − |}

´
≤ { (| − |)} 

Since  (| − |)→ 0, it follows that  (| − |)→ 0, 
→ 

Convergence in the  mean is a stronger convergence concept than con-

vergence in probability, and in fact implies convergence in probability. To

show this, we use the generalized Chebyshev inequality.

Theorem 95 If 
→  for some   0, then 

→ 

Proof. Let  =  −  and apply the Generalized Chebyshev inequality,

for every   0

Pr (| − | ≥ ) ≤  | − |
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Since
→ , we have | − | → 0, and as a result Pr (| − | ≥ )→

0. Thus we have 
→ 

Exercise 0.48 True/False.

(a) There exists a moment generating function  () = + 1

(b) If  follows a  (0 2) distribution, then  (3) =  (5) 

(c) For any random variables  and  ,  ( ( )) = 0

(d) lim→∞ 2 =∞

(e) lim→∞
P

=0



2+1
= 1

(f) The sequence  = 2 − 10 + 25 is a monotone non-decreasing se-
quence.

(g) Let  be a Chi-square random variable with  degrees of freedom,

then



=  (1).

(h)  (1)− (1) = 0

(i) If  follows a uniform distribution 

µ
0
1



¶
, then  converges in

probability to zero.

(j) Convergence in distribution implies convergence in probability .

(k) The Weak Law of Large Number holds for all random variables.

(l) Convergence in probability implies almost sure convergence.
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(m) An estimator is consistent if it is asymptotically unbiased.

Exercise 0.49 The probability generating function of a discrete random vari-

able  is given by

 () = 
¡

¢
=

∞X
=0

 Pr ( = ) 

If a random variable  follows a distribution

Pr ( = ) =
1

2+1
for  = 0 1 2 

(a) Find the probability generating function.

(b) Find the mean and the variance of  via the probability generating

function.

Exercise 0.50 For a Uniform random variable  (0 ), the variance is smaller

than . True or False? Explain.

Exercise 0.51 Let  be a continuous random variable which takes values

in (0∞)  Let  = max
½
 +

1


 1

¾
 rewrite  in terms of  .

Exercise 0.52 To show the Law of Large Number, consider the random ex-

periment of throwing a dice  times. Let  be the outcome at the  trial,

 = 1 2   . Let  be the sample average of these 

(a) What is the population mean of the outcome for throwing a dice

infinite number of times?

(b) What possible values will  take if  = 1?  = 2?  = 3?

(c) Try the experiment yourself, record the value of  and plot a diagram

to indicates its behavior as  getting large from 1 to 30. Does  converge

to 35?
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Exercise 0.53 To show the Central limit Theorem, let use consider the ran-

dom experiment in the previous exercise of throwing a dice  times.

(a) Try the experiment yourself, by using  = 30. Record the value of .

(b) Throw the dice for another 30 times, record the value of , does the

value of  different from the previous one?

(c) Keep repeating part (d) until you collects 20 values of , i.e. you

have 18 more rounds to go.

(d) Plot the histogram (the frequency diagram) of  for the range 0 to

6, with each increment equal 01.

(e) Repeat part (d) by finding another 4 classmates and pool the result

of 100 values of . If you do not want to approach other classmates, do the

experiment yourself 100 times then.

Exercise 0.54 Use GAUSS to generate 36 random numbers from the uni-

form distribution  (0 1); calculate the sample mean, and repeat this proce-

dure 100 times. Thus you will have 100 sample means, say, 1, 2,...,100.

Define a variable  =
√
36
¡
 − 05

¢
  = 1 2  100 Now make two fre-

quency tables of  with the length of each interval 001 and 01 respectively.

Plot the two histograms.

Exercise 0.55 Suppose  ( = 1 2  100) is a discrete random variable

which takes 0 with probability 1
2
, and 1 with probability 1

2
. Write a simple

GAUSS procedure to generate  (Hint: think of how to generate such a

discrete random variable from a uniform (0,1) distribution.)

Exercise 0.56 True/False/Uncertain. Explain.

(a)  (1)×  (1) =  (1) ;

(b) lim→∞

µ
2+ ln 2

2− ln 2
¶−

= 2;

(c) The Central Limit Theorem states that the sample average of an.

i.i.d. random sequence with finite mean and finite variance has a normal

distribution when the sample size goes to infinity;

(d) Convergence in probability implies convergence in distribution;
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(e) The sequence  =



is a monotone non-increasing sequence.

(f) The sequence  = 2 − 10 is a monotone non-decreasing sequence.
(g) Convergence in probability implies almost sure convergence.

(h) The Weak Law of Large Number states that the sample average of

an. i.i.d. random sequence has a normal distribution when the sample size

goes to infinity.

Exercise 0.57 Find the limits of the following sequences

(a) lim→∞

µ
1 +

ln 2



¶

;

(b) lim→∞

µ
2+ ln 2

2− ln 2
¶

;

(c) lim→∞
2 + − 1
2 − − 1 

Exercise 0.58 If  = , find sup
≥1

, inf
≥1

, lim sup  and lim inf  for

(a)   −1;
(b)  = −1;
(c) −1    0;

(d) 0    1;

(e)  = 1;

(f)   1

Exercise 0.59 Show that the limsup and liminf can also be defined as

lim
→∞

sup
≥

 = inf

sup
≥



and

lim
→∞

inf
≥

 = sup


inf
≥



Exercise 0.60 True or false?
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(a) lim sup ( + ) = lim sup  + lim sup ;

(b) lim sup () = (lim sup ) (lim sup ) 

If true, prove it; If false, give a counter example.

Exercise 0.61 Find the limits of

a)

lim
→∞

X
=1

1

 (+ 1)


b)

lim
→∞

1



X
=−

1

1 + exp (−) 

Exercise 0.62 Find the supremum and infimum of the following sets:

a) (−10 10)
b) (−∞∞)
c) ∩∞=1

©
1


ª
d) ∪∞=1

©
1


ª
e) ∩∞=1

£
1

 1
¤

f) ∪∞=1
£
1

 1
¤

g)
©
 :  = 1


  = 1 2 

ª
h)
©
 :  = −1


  = 1 2 

ª
i) { :  =   = 1 2 }
j) { :  = −  = 1 2 }

Exercise 0.63 (i) Find the limsup and liminf of the following sequences and

determine if the limits of these sequences exist.

a) { :  = (−1)   ≥ 1}
b)

½
 :  = (−1) 2


  ≥ 1

¾
c) { :  =  −   ≥ 1}
(ii) Which of the above sequences is(are)  (1), and which is(are)  (1)?
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Exercise 0.64 Suppose we have a sample {}=1 which drawn from a U(0,1)
distribution. Let

 = max {1, 2,...,},
 = min {1, 2,...,},

 () = Pr ( ≤ ) be the distribution function of ,

 () be the density function of ,

 () = Pr ( ≤ ) be the distribution function of ,

 () be the density function of .

a) Find  (),  (),  (),  ().

b) Find the expectation of the range  ( − ) and calculate its limit

when →∞

c) Plot  () for  = 1 2 3,4.

d) Plot  () for  = 1 2 3 4.

e) Suppose  converges in distribution to , which has a distribution

function  (), find  () 

f) Suppose  converges in distribution to  , which has a distribution

function  (), find  () 

Exercise 0.65 Let {}=1 be independent discrete random variables which

take values zero or one with probability half and half.

Let

 = 1 ×2 ×3×...×,

 () = Pr ( ≤ ) be the distribution function of ,

(a) Plot  () against  for  = 1 2.
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(b) Find the expectation  () and calculate its limit when →∞

(c) Does  converge in probability to zero? Prove or disprove.

(d) Does  converge in distribution to zero? Prove or disprove.

(e) Does  converge almost surely to zero? Prove or disprove.

Exercise 0.66 Let 1, 2,...,  be i.i.d. random variables with finite mean

 and finite variance 0  2  ∞, then the sample mode has a normal
distribution when the sample size tends to infinity. True or False? Explain.

Exercise 0.67 Find the limits of the following sequences:

(a) 1 =
2

1
× 2
3
 2 =

2

1
× 2
3
× 4
3
× 4
5
 3 =

2

1
× 2
3
× 4
3
× 4
5
× 6
5
× 6
7
 4 = ;

(b) 1 = 2 2 = 2× 2√
2
 3 = 2× 2√

2
× 2p

2 +
√
2
 4 = ;

(c)  =
P

=1 (−1)−1
1

2− 1;

(d)  =
P

=1

1

4
;

Exercise 0.68 The sequence of Fibonacci numbers is given by

0 = 0 1 = 1  = −1 + −2 for  ≥ 2

(a) Write down


−1
for  = 2 3 4 5

(b) Find

lim
→∞



−1


(c) Solve the close form solution of  in terms of .

Exercise 0.69 Find the limits of the following sequences:

(a) 1 =
√
1 2 =

p
1 +
√
1 3 =

q
1 +

p
1 +
√
1 4 = ;

(b) 1 = 1 2 = 1 +
1

1 + 1
 3 = 1 +

1

1 + 1
1+1

 4 = ;

(c)  =
P

=1
1

(+1)
;
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(d)  =
P

=1
1
2
;

(e)  =
P

=1 (−1)−1 1 ;
(f)  =

2

2
;

(g)  =
P

=1

1


− ln

Exercise 0.70 Let

0 =
√
2− 1

 =
1− 4

p
1− 4−1

1 + 4
p
1− 4−1



0 = 6− 4
√
2

 = (1 + )
4
−1 − 22+1

¡
1 +  + 2

¢


Calculate the value of
1

15
.

Exercise 0.71 [Difficult]For a random sample of size 2+1 from the pop-

ulation with mean , median e and variance 2: Let 1 2  2+1 be the
order statistic in ascending order.

a) Prove that a central limit theorem exists for the median +1, i.e. for

large , the median +1 is approximately normal with mean equal to the

population median e and variance 1

8 [ (e)]2 .
b) Is there any central limit theorem(s) applied to 1 and/or 2+1? If

yes, prove it. If not, give counter-examples.

c) Find the density functions and the expectations of the order statistic

1 +1 2+1 from the following populations:

(i) (0 1)

(ii) (0 1)

(iii) Exponential distribution with mean 1.
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Exercise 0.72 [Difficult]Let  (2) be the number of ways of decompos-

ing the number 2n (n=1,2,3....) into the sum of two prime numbers. For

example, 24 = 5 + 19 = 7 + 17 = 11 + 13, so  (24) = 3.

(a) Find  (2) for  = 11 12  30.

(b) Find lim→∞
 (2)

2

(c) Prove or disprove the conjecture that  (2)  0 for all  = 2 3 4,......

(d) Prove or disprove the conjecture that  (6) ≥  (6± 2) for all
 = 4 5 6,......
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POINT ESTIMATION

Population and sample are very different concepts. We would like to

uncover the population mean () and the population variance (2), but there

are not sufficient resources to do a detailed study on the population. Even in

the case of throwing a dice, we do not know whether the dice is leaded or not.

What we normally do is to draw a sample from the population. A sample is

a subset of a population. Hopefully, we can retrieve information about the

population from a sample when the sample size is large enough. Having a

sample, we can construct estimators to estimate the mean and variance of a

population.

Definition 96 An estimator is a rule or formula that tells us how to es-

timate a population quantity, such as the population mean and population

variance.

An estimator is often constructed by exploiting the sample information.

Thus, it is usually a random variable since it takes different values under

different samples. An estimator has a mean, a variance and a distribution.

Definition 97 An estimate is the numerical value taken by an estimator,

it usually depends on the sample drawn.

Example 98 Suppose we have a sample of size  , the sample mean

 =
1 +2 + +



is an estimator of the population mean.

If  turns out to be 3.4, the 3.4 is an estimate of the population mean.

Thus, the estimate differs from sample to sample.
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Example 99 The statistic

e =
1 +2 + +−1



is also an estimator of the population mean. Conventionally,  denotes

the sample mean, we may use e, b, ∗, etc. to denote other estimators.

Example 100 An weighted average

e = 11 + 22 + +   where

X
=1

 = 1

is also estimator of the population mean.

Example 101 A single observation 1 is also estimator of the population

mean.

∗ =
2
1 +2

2 + +2




is also an estimator of the population mean.

Example 102 A constant, for example, 3.551 is also an estimator of the

population mean. In this case, 3.551 is both an estimator and an estimate.

Note that when we use a constant as an estimator, the sample has no role.

No matter what sample we draw, the estimator and the estimate are always

equal to 3.551.

Thus, there are a lot of estimators for the population mean. What criteria

should be used to evaluate a good estimator? In choosing the best estimator,

we usually use criteria such as linearity, unbiasedness and efficiency.

The first criterion is linearity, an linear estimator is by construction sim-

pler than a nonlinear estimator. The mean and variance of a linear estimator

are easy to evaluate.

Definition 103 An estimator b is linear if it is a linear combination of

the sample observations. i.e.
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b = 11 + 22 + +  

where  ( = 1 2   ) are constants. They can be negative, larger than

1, and some of them can be zero.

However, if all  are zero, then b is no longer an estimator.

Thus, estimators in the first four examples are linear, while estimators in

the last two examples are not linear.

We reduce the sets of all possible estimators by just focusing on linear

estimators. Still, there are plenty of linear estimators, so how should they be

compared? Here, we introduce the concept of unbiasedness.

Definition 104 An estimator b is unbiased if 
³ b´ = , where  is the

true mean of the random variable .

It is important to realize that any single observation from a sample is

unbiased. i.e.,

 () =   = 1 2  

This is because if an observation is drawn from a population, the best and

most reasonable guess of its value is the true mean () of the population.

For an estimator constructed by using two or more observations, whether

it is unbiased depends on the way it is constructed.

Example 105 If  ( = 1 2   ) are random variables with  () = 

and   () = 2 Show that:

(a)  =

P
=1




is an unbiased estimator for 

(b) b2 =
P
=1

¡
 −

¢2
 − 1 is an unbiased estimator for 2

Solution:(a)
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¡

¢
= 

Ã
1



X
=1



!
=
1



X
=1

 () =
1



X
=1

 = .

(b)


¡b2¢ = 

ÃP

=1( −)2

 − 1

!

= 

ÃP

=1
2
 − 

2

 − 1

!

=

P

=1 (
2
 )− 

³

2
´

 − 1
=

 (2 + 2)−  (2   + 2)

 − 1
= 2

Example 106 Consider a regression model

 = 0 + 1 +   ∼ 
¡
0 2

¢
b =  − b0 − b1

is the estimated residual. Show that

b2 =
P
=1

b2
 − 2

is an unbiased estimator for 2.

Solution: We only have to show that 

µ
P
=1

b2¶ = ( − 2)2. Note
that



µ
P
=1

b2¶ = 

µ
P
=1

³
 − b0 − b1

´2¶
= 

µ
P
=1

³
 −  − b1 ¡ −

¢´2¶
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= 

µ
P
=1

³
0 + 1 +  −

¡
0 + 1 + 

¢− b1 ¡ −
¢´2¶

= 

µ
P
=1

³
 − −

³b1 − 1

´ ¡
 −

¢´2¶
= 

∙
P
=1

( − )
2
+
³b1 − 1

´2 P
=1

¡
 −

¢2 − 2³b1 − 1

´ P
=1

¡
 −

¢
( − )

¸
= 

⎡⎣ P
=1

( − )
2
+

⎛⎝ 
=1
(−)


=1
(−)2

⎞⎠2

P
=1

¡
 −

¢2 − 2 
=1
(−)


=1
(−)

P
=1

¡
 −

¢


⎤⎦
=

P
=1

 ( − )
2 −





=1
(−)

2

=1
(−)2

=
P
=1

 (2 )−  (2)−

=1
(−)2(2)+2

−1
=1



(−)(−)()


=1
(−)2

=
P
=1

2 − 

µ
2



¶
−


=1
(−)22+2

−1
=1



(−)(−)(0)


=1
(−)2

= ( − 1)2 − 2 = ( − 2)2

We further reduce the sets of all possible estimators by just focusing on

linear and unbiased estimators. However, if there are plenty of linear and

unbiased estimators, how do we select the best estimator linear unbiased

estimator? We introduce the concept of efficiency.

Definition 107 An estimator b is more efficient than another estimator

∗ if  
³ b´    (∗) 

Example 108 If we just look at the efficiency criteria, estimator in the last

example is the most efficient estimator since the variance of a constant is

zero. However, it is neither linear nor unbiased. A constant as an estimator

actually gives us no information about the population mean. Thus, despite

the fact that it is efficient, it is not a good estimator.

Definition 109 An estimator b is consistent estimator of the population

mean  if it converges to the  as the sample size goes to infinity.
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Anecessary condition for an estimator to be consistent is that  
³ b´→

0 as the sample size goes to infinity. If the estimator truly reveals the value

of the population mean , the variation of this estimator should be small

when the sample is very large. In the extreme case, when the sample size is

infinity, the estimator should have no variation at all.

An unbiased estimator with this condition satisfied can be considered as

a consistent estimator. If the estimator is biased, it can be consistent too,

provided that the bias and the variance of this estimator both go to zero as

the sample size goes to infinity.

Consistency is a rather difficult concept. It is very important for an

estimator to be consistent, as what we finally want to know is the information

of the population parameters. If an estimator is inconsistent, it tells us

nothing about the population no matter how large the sample is.

One of the consistent estimator for the population mean is the sample

mean

 =
1 +2 + +




Note that it is unbiased as


¡

¢
= 

µ
1 +2 + +



¶
=

 (1) + (2) + + ( )



=
+ + + 


=




= 

Second, suppose the variance of ,   () = 2 ∞ for  = 1 2  ,

then
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¡

¢
=  

µ
1 +2 + +



¶
=

1

 2
  (1 +2 + + )

=
1

 2
[  (1) +   (2) + +   ( )]

=
1

 2

£
2 + 2 + + 2

¤
=

1

 2

£
2

¤
=

2


→ 0 as  →∞

Be careful that consistency and unbiasedness do not imply each other.

An estimator can be biased but consistent. Consider the estimator in

example 2,

e =
1 +2 + +−1




For any given value of sample size  ,


³ e´ =  − 1


 6= 

The bias is

1




which goes to zero as  →∞. Thus, we say e is biased in finite sample

but is asymptotically unbiased.

Note also that as  →∞

 
³ e´ =  

µ
1 +2 + +−1



¶
=

 − 1
 2

2 =

µ
1


− 1

 2

¶
2 → 0

Since both the bias and the variance of e go to zero, e is a consistent

estimator.

An estimator can also be unbiased but inconsistent. A single observation

as an estimator for the population mean. It is unbiased. However, it is
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inconsistent as we just use one observation from a sample of size  , no

matter how large  is, thus increasing the number of other observations

cannot improve the precision of this estimator.

Maximum Likelihood Estimation

The principle of maximum likelihood provides a mean of choosing an

asymptotically efficient estimator for a set of parameters.

Let {}=1 be i.i.d. random variable with joint density  (1 2  ; ),

where  = (1 2 )
0
. Since the sample values have been observed and

therefore fixed number, we regard  (; ) as a function of .

Definition 110 Let  = (1 2  )
0
, we defined the likelihood function

as

 (; ) =  (1 2   ; ) =


Π
=1

 (; ) 

and the log-likelihood function is defined as ln (; ) 

The maximum likelihood estimator b is the estimator that maximizes

the likelihood function. Since logarithmic function is a strictly monotonic

function, b also maximizes the log-likelihood function.

b = argmax (; ) = argmax (ln (; )) 

Example 111 Consider a random sample of 10 observations from a Poisson

distribution 1 2  10

The density of each observation is

 (; ) =
 exp (−)

!


with

 () = 
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  () = 

 (; ) =  (1 2  10; )

=
10

Π
=1

 (; ) 

=
10

Π
=1

 exp (−)
!

=
1+2+10 exp (−10)

10

Π
=1

!



ln (; ) = ln
1+2+10 exp (−10)

10

Π
=1

!

=

Ã
10X
=1



!
ln  − 10 − ln

µ
10

Π
=1

!

¶

b = argmax (ln (; ))

First order condition,




ln (; ) =

P10

=1 


− 10 = 0

b =

P10

=1 

10


Definition 112 The scores  is a  by 1 vector defined as

 =



ln (; ) =

X
=1




ln  (; ) 

Example 113 For the Poisson random variable in previous example,

65



 =



ln (; )

=




ÃÃ
10X
=1



!
ln  − 10 − ln

µ
10

Π
=1

!

¶!

=

P10

=1 


− 10

Theorem 114 The scores have zero expectation when the density for  is

correctly specified.

Proof.  () = 

∙



ln (; )

¸
= 

∙
1

 (; )




 (; )

¸
=

Z ∞

−∞
· · ·
Z ∞

−∞

∙
1

 (; )




 (; )

¸
 (; ) 1 · · · 

=

Z ∞

−∞
· · ·
Z ∞

−∞




 (; ) 1 · · · 

=




Z ∞

−∞
· · ·
Z ∞

−∞
 (; ) 1 · · · 

=



[1] = 0

Note that if the density is misspecified, say suppose the true joint density

is  (1 2  ; ), then the expectation of score will not be zero in general

since

 () =

Z ∞

−∞
· · ·
Z ∞

−∞

∙
1

 (; )




 (; )

¸
 (1 2  ; ) 1 · · ·  6= 0

Example 115 For the Poisson random variable in previous example,

 () = 

ÃP10

=1 


− 10

!
=

P10

=1 ()


− 10 =

P10

=1 


− 10 = 0

Definition 116 Fisher’s Information Matrix  is the variance-covariance

matrix of the scores for . i.e.
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 = 
£
( − ()) ( − ())

0¤
=  (0) 

 =

X
=1



∙



ln  (; )



0
ln  (; )

¸


Proof.  =  (0) = 

∙µP

=1




ln  (; )

¶µP

=1



0
ln  (; )

¶¸
= 

∙P

=1




ln  (; )



0
ln  (; ) +

P

=1

P
 6=




ln  (; )



0
ln  (; )

¸
=
P

=1
£


ln  (; )


0 ln  (; )

¤
+
P

=1

P
 6=

¡


ln  (; )

¢

¡


0 ln  (; )

¢
by independence of  and  for  6= 

Note that



∙



ln  (; )

¸
= 

∙
1

 (; )




 (; )

¸
=

Z ∞

−∞

∙
1

 (; )




 (; )

¸
 (; ) 

=

Z ∞

−∞




 (; ) 

=




Z ∞

−∞
 (; ) 

=



[1] = 0

Thus,

 =

X
=1



∙



ln  (; )



0
ln  (; )

¸


Example 117 For the Poisson random variable in the previous example,

 = 
¡
( − ())

2
¢
=  (2) = 

ÃP10

=1 


− 10

!2
= 

³P10

=1

³

− 1
´´2

= 

∙P10

=1

³

− 1
´2
+
P10

=1

P
 6=
³

− 1
´³


− 1
´¸

=
P10

=1

µ³

− 1
´2¶

+
P10

=1

P
 6=

³

− 1
´

³

− 1
´
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by independence of  and  for  6= 

=
P10

=1

µ³

− 1
´2¶

+
P10

=1

P
 6=

µ
 ()


− 1
¶µ

 ()


− 1
¶

=
P10

=1

µ³

− 1
´2¶

+
P10

=1

P
 6=

µ



− 1
¶µ




− 1
¶

=
P10

=1

µ³

− 1
´2¶

=
1

2
P10

=1
¡
( − )

2
¢

=
1

2
P10

=1   () =
1

2
P10

=1  =
10




 =
P10

=1

∙µ



ln  (; )

¶


0
ln  (; )

¸
=
P10

=1

"µ



ln  (; )

¶2#
=
P10

=1

"µ



ln

 exp (−)
!

¶2#
=
P10

=1

µ³

− 1
´2¶

=
10




Theorem 118 The Fisher’s Information Matrix can also be written as

 = −
µ

2

0
ln (; )

¶


Proof. Since  () = 

µ



ln (; )

¶
=

Z ∞

−∞
· · ·
Z ∞

−∞

µ



ln (; )

¶
 (1 2   ; ) 1 · · ·  = 0

Differentiating both sides with respect to 0



0
 () =

Z ∞

−∞
· · ·
Z ∞

−∞



0
( (; )) 1 · · ·  = 0

This impliesZ ∞

−∞
· · ·
Z ∞

−∞

µ




0
 (; ) +  (; )



0


¶
1 · · ·  = 0

Z ∞

−∞
· · ·
Z ∞

−∞




0
 (; ) 1 · · ·  = −

Z ∞

−∞
· · ·
Z ∞

−∞

µ
2

0
ln (; )

¶
 (; ) 1 · · · 

Z ∞

−∞
· · ·
Z ∞

−∞


1

 (; )

µ


0
 (; )

¶
 (; ) 1 · · ·  = −

µ
2

0
ln (; )

¶
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Z ∞

−∞
· · ·
Z ∞

−∞


µ


0
ln (; )

¶
 (; ) 1 · · ·  = −

µ
2

0
ln (; )

¶

 [0] = −
µ

2

0
ln (; )

¶

 = −
µ

2

0
ln (; )

¶


Example 119 For the Poisson random variable in the previous example,

−
µ

2

0
ln (; )

¶
= −

µ
2

2
ln (; )

¶
= −

Ã
2

2

ÃÃ
10X
=1



!
ln  − 10 − ln

µ
10

Π
=1

!

¶!!

= −
Ã





ÃP10

=1 


− 10

!!
= 

ÃP10

=1 

2

!
=
10



=

X
=1



∙µ



ln  (; )

¶


0
ln  (; )

¸


Theorem 120 If  ∼  with density  (; ), b is any unbiased esti-
mator of , the minimum variance of b that can be attained is −1 

Proof. Note that since b is unbiased, we have

³b´ = Z ∞

−∞
· · ·
Z ∞

−∞
b (1 2   ; ) 1 · · ·  = 

Differentiating both sides with respect to 0



0

³b´ = Z ∞

−∞
· · ·
Z ∞

−∞
b 

0


Π
=1

 (; ) 1 · · ·  = 

This implies
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Z ∞

−∞
· · ·
Z ∞

−∞
b X

=1

µ
Π 6= (; )



0
 (; )

¶
1 · · ·  = 

Z ∞

−∞
· · ·
Z ∞

−∞
b X

=1

µ
Π 6= (; )  (; )

1

 (; )



0
 (; )

¶
1 · · ·  = 

Z ∞

−∞
· · ·
Z ∞

−∞
b X

=1

µ
Π
=1 (; )



0
ln  (; )

¶
1 · · ·  = 

Z ∞

−∞
· · ·
Z ∞

−∞
bΠ

=1 (; )

Ã
X
=1



0
ln  (; )

!
1 · · ·  = Z ∞

−∞
· · ·
Z ∞

−∞
b0Π

=1 (; ) 1 · · ·  = 

Thus


³b0´ = 

Using the fact that



µ³b − 
´³b − 

´0¶
 (0)−

h

³³b − 

´
0
´i2

is a positive semi-definite matrix, we have



µ³b − 
´³b − 

´0¶
 (0)−

h

³b0´i2

is a positive semi-definite matrix. Hence



µ³b − 
´³b − 

´0¶
 − 

is a positive semi-definite matrix. Therefore

 
³b´− −1

is a positive semi-definite matrix.

We call −1 the Cramér-Rao lower bound of an unbiased estimator
b.

Properties of Maximum Likelihood Estimators
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1. Consistency:

 limb = 

2. Asymptotic Normality:

√

³b − 

´
→ 

³
0 lim

→∞

¡
−1

¢´


3. Asymptotic efficiency: b is asymptotically efficient and achieves the

Cramér-Rao lower bound.

 
³b

´
= −1 

4. Invariance: If  (·) is a continuous function, then the ML estimator for
 () is 

³b

´
Exercise 0.73 In examples 98-102, suppose  ∼  ( 2),

i) Which estimators are unbiased?

ii) Rank the efficiency of the estimators in the five examples.

Exercise 0.74 Construct an estimator which is biased, consistent and less

efficient than the simple average .

Exercise 0.75 Suppose the span of human life follows an i.i.d. distribution

with an unknown upper bound  ∞. Suppose we have a sample of  obser-
vations 1 2   on people’s life span, construct a consistent estimator

for  and explain why your estimator is consistent.

Exercise 0.76 Suppose we have a sample of 3 independent observations

12 and 3 drawn from a distribution with mean  and variance 2.

Which of the following estimators is/are unbiased? Which one is more effi-

cient? Explain.

b =
1 + 22 +3

4
 b =

1 +2 +3

3
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Exercise 0.77 True or false?

a. An estimator is unbiased if it is consistent.

b. An estimator is efficient if it is unbiased.

c. The Maximum Likelihood estimator is unbiased.

d. The Maximum Likelihood estimator is asymptotically more efficient

than any estimators.

Exercise 0.78 Consider a random sample of 10 observations from a Normal

distribution 1 2  10. The density of  is

 (; 1 2) =

r
2

2
exp

Ã
−2
2

µ
 − 1

1

¶2!
where 1 2 are unknown parameters.

(a) Find the log-likelihood function.

(b) Find the score functions.

(c) Now let the observations be

1 2 3 4 5 6 7 8 9 10

−5 −4 −3 −2 −1 1 2 3 4 5

(i) Find the values of ML estimates for 1 and 2

(ii) Evaluate the Fisher’s Information Matrix.

Exercise 0.79 Consider a random sample of 10 observations from a Normal

distribution 1 2  10. The density of  is


¡
; 

2
¢
=

1√
22

exp

Ã
−( − )

22

2
!

where  and 2 are unknown mean and variance of the population re-

spectively.

(a) Find the log-likelihood function.

(b) Find the score functions.

(c) Find the ML estimators for  and 2

(d) Find the Fisher’s Information Matrix.
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Exercise 0.80 Consider a simple linear regression model:

 = 0 + 1 +   = 1 2  

i) Write down the OLS estimators b0 and b1
ii) Given 

³
, b1´ = 0, show that  ³b0, b1´ = − 

³b1´ 
Explain intuitively why this covariance depends on, discuss cases where

  0,  = 0, and   0 (Hint: Use the fact that the estimated regression

line must pass through the point
¡


¢
, and see how the intercept and slope

vary as this regression line rotates about the point
¡


¢
.)

iii) If  () = −2, will b0 and b1 be biased? Explain your answers.
Exercise 0.81 Consider the model:  = 0 + 1 +   = 1 2  

a) Suppose we have four observations of ( ),  = 1 2 3 4

 0 1  1− 

 0 1 1 0

Find the followings in term of :

i) b0 b1
ii) b = b0 + b1 for  = 1 2 3 4

iii)  =
4P

=1

³
 − b´2

iv)  =
4P

=1

¡
 − 

¢2
v) 2 = 1− 


b) For what value(s) of  will the b1 equal 1?
c) For what value(s) of  will the 2 be maximized? For what value(s) of

 will the 2 be minimized?

Exercise 0.82 Consider the following density function of a random variable

.
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 (; ) = 1 for      + 1;

= 0 elsewhere.

i) Find the moment generating function of .

ii) Sketch the graph of  (; 1)   (; 2) and  (; 3) 

Let 1 and 2 constitute a random sample of size 2 from the above

population.

iii) Find the joint density of 1 and 2.

iv) Find the likelihood function  (; ) and the log-likelihood function

ln (; ) 

v) Find the score  =



ln (; ) 

Exercise 0.83 Suppose the random variable  ∼  ( 2)  Let  = ( 2)

a) Derive the log-Likelihood function ln (; ), Scores function  and

the Fisher’s Information Matrix .

b) Derive the ML estimator b.
Exercise 0.84 Suppose the random variable  ∼  (exp ()  1),  = 1 2  100,

 and  are independent for all  6= . Thus

 (; ) =
1√
2

−
(−)

2

2 

a) Derive the log-Likelihood function ln (; ) and the scores function

.

b) Derive the ML estimator b.
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c) Show that the Fisher’s Information Matrix is

 = 100
2

Exercise 0.85 Consider a random sample of 10 observations from a Poisson

distribution 1 2  10.

The probability of observing the value  is

 (; ) =
 exp (−)

!


Thus the likelihood function is

 (; ) =
1+2+10 exp (−10)

10

Π
=1

!



(a) Find the log-likelihood function.

(b) Find the score function.

(c) Find the ML estimator.

(d) Find the Fisher’s Information Matrix.

(e) Now let the observations be

1 2 3 4 5 6 7 8 9 10

1 2 2 3 3 3 4 4 4 4

Perform a Wald test for the following hypothesis at  = 5%

0 :  = 3

1 :   3

(From the Chi-square table with one degree of freedom and  = 5%, the

critical value is 21 () = 384146).

Exercise 0.86 Given the data  = (1 2   )
0
  is an i.i.d. random

variable with density function
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 (; ) =
1


−


 0   ∞

a) Find the likelihood function  (; ) and the log-likelihood function

ln (; ) 

b) Find the score  = 

ln (; ) 

c) Find the Fisher’s Information Matrix

 =

X
=1



Ã∙



ln  (; )

¸2!
d) Show that  can be written as

 = −
µ

2

2
ln (; )

¶
e) Find the ML estimator of  and obtain the asymptotic distribution of

this estimator.

Now suppose we observe the data  = (1 2   )
0
and  = − ln

f) Show that the density function of  is given by

 (; ) =
1


−−

1

− −∞   ∞

g) Find the likelihood function  (; ) and the log-likelihood function

ln (; ) 

h) Find the score  = 

ln (; ) 

i) Find the Fisher’s Information Matrix

 =

X
=1



Ã∙



ln  (; )

¸2!
j) Show that  can be written as

 = −
µ

2

2
ln (; )

¶
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k) Find the ML estimator of  and obtain the asymptotic distribution of

this estimator.

l) If  =  () is a monotonic, continuous and differentiable function of .

Suppose we only observe the data of  and we only know the density of .

Show the MLE derived by the following two procedures are equivalent.

i) Transform the density of  into the density of  by  (; ) =  (; )
¯̄̄



¯̄̄
,

and maximize ln (; ) 

ii) Transform the data of  into  = −1 (), and maximize ln (; ) 

Exercise 0.87 Given the data  = (1 2   )
0
  is an i.i.d. random

variable with density function

 (;   ) = +      + 1

a) Find the likelihood function  (;   ) and the log-likelihood function

ln (;   ) 

b) Find the score  = 

ln (; )   = (  )

0


c) Find the Fisher’s Information Matrix

 =

X
=1



µ



ln  (; )



0
ln  (; )

¶
d) Derive the ML estimator b.

Exercise 0.88 Consider the following density function of a random variable

.

 (; ) =  for 0 ≤  ≤
r
2


;

= 0 elsewhere.
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i) Sketch the graph of  (; 1)   (; 2) and  (; 3) 

Let 12  constitute a random sample of size  from the above

population.

ii) Find the joint density of 12  

iii) Find the likelihood function  (; ) and the log-likelihood function

ln (; ) 

iv) Find the score  =



ln (; )  does the score have zero expecta-

tion?

v) Find the ML estimator b. Is your estimator consistent? Explain.
vi) Find the Fisher’s information matrix  () using

 () = −
µ

2

2
ln (; )

¶
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ECO5120: Econometric Theory and Application, Fall 2006

Prof. T.L. Chong

HANDOUT 5

HYPOTHESIS TESTING

When we observe a phenomenon, we would like to explain it by a hypoth-

esis. We usually post a null hypothesis and an alternative hypothesis.

For example, when we observe that the death toll in winter is higher than

those in other seasons, we may post a null hypothesis that the death toll

is negatively related to temperature. The alternative hypothesis would be

that the death toll has nothing to do with or that it is positively related to

temperature.

A hypothesis is not a theorem. A theorem is always true when certain

assumptions are held, whereas a hypothesis is just a guess. Thus, we have to

test how likely our hypothesis is going to be correct. In testing a hypothesis,

we cannot be 100 percent sure that it is correct, otherwise it becomes a

theorem. Thus, we may commit errors when concluding a hypothesis. There

are two possible types of errors.

Definition 121 Rejection of the null hypothesis when it is true is called a

Type I Error; the probability of committing a type I error is denoted by 

Definition 122 Acceptance of the null hypothesis when it is false is called a

Type II Error; the probability of committing a type II error is denoted by



We want to reduce both Type I and Type II errors as much as we can.

However, as there is no free lunch, we cannot reduce both errors. Reducing

the chance of committing Type I Error will increase the chance of committing

Type II Error and vice versa.

Example 123 Suppose a random variable  comes from either  (0 1) or

 (05 15), but we do not know which one is the true population. Thus we

test the hypothesis that:
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0 :  ∼  (0 1) ;

1 :  ∼  (05 15)

Suppose we use a single observation 1 to test the hypothesis. It is ob-

vious that if 1  05, then we accept the null and reject the alternative

hypothesis. If 1  1, then we reject the null and accept the alternative.

However, if 05 ≤ 1 ≤ 1, then we have a problem in judging which hypoth-
esis is true. What we can do is to set a rule. Suppose we only want a 5%

probability of committing type I error, i.e.,  = 5%, then our rule is to reject

0 if 1 ≥ 095. By doing so, even if 1 is true, we will accept 0 as far as

1  095, thus the probability of committing Type II error is

 = Pr (1  095|1 ∼  (05 15)) = 045

Testing Statistical Hypothesis

The current framework of testing statistical hypothesis is largely due to

the work of Neyman and Pearson in the late 1920s, early 30s, complementing

Fisher’s work on estimation.

Definition 124 A statistical hypothesis is an assertion about the distri-

bution of one or more random variables. If the statistical hypothesis com-

pletely specifies the distribution, it is called a simple hypothesis; if it does

not, it is called a composite hypothesis. In general, we can write 0 :  ∈ Θ0,

1 :  ∈ Θ1.

For example, 0 :  ≤ 05 is a composite statistical hypothesis since

it does not completely specify the distribution. If the null hypothesis is

0 :  = 05, then it is a simple statistical hypothesis.

Definition 125 A test of a statistical hypothesis is a rule which, when the

experimental sample values have been obtained, leads to a decision to accept

or to reject the hypothesis under consideration.
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Definition 126 Let  be that subset of the sample space which, in accor-

dance with a prescribed test, leads to the rejection of the hypothesis under

consideration. Then  is called the critical region of the test.

Definition 127 The probability of rejecting 0 when 0 is false at some

point 1 ∈ Θ1, i.e. Pr ( ∈ ;  = 1) is called the power of the test at

 = 1

Definition 128  () = Pr ( ∈ ;  ∈ Θ0 ∪Θ1) is called the power func-

tion of the test defined by the rejection region 

Example 129 Suppose the random variable  has a density function of the

form

 (; ) =
1


exp

³
−


´
0   ∞;

= 0 otherwise.

Suppose we want to test

0 :  = 2;

1 :   2

Thus Θ0 = {2} and Θ1 = (2∞) 
A random sample of size 2 is used. The rejection region  is set at

 =

½µ
1 2; =

1 + 2

2
 475

¶¾
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 () = Power at 

= Pr ((12) ∈ ;  ≥ 2)
= Pr (1 + 2 ≥ 95;  ≥ 2)
= 1− Pr (1 + 2  95;  ≥ 2)
= 1−

Z 95

0

Z 95−2

0

1

2
exp

µ
−1 + 2



¶
12

=

µ
 + 95



¶
exp

µ
−95



¶


If 0 is true, the joint density function of 1 and 2 is

 (1; 2)  (1; 2) =
1

4
exp

µ
−1 + 2

2

¶
0  1 2 ∞;

= 0 otherwise.

 (2) = Power at ( = 2)

= Pr (1 + 2 ≥ 95;  = 2)
=

µ
2 + 95

2

¶
exp

µ
−95
2

¶
' 005

 (4) = Power at ( = 4)

=

µ
4 + 95

4

¶
exp

µ
−95
4

¶
' 314

 (95) = Power at ( = 95)

= 2 exp (−1)
' 736
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 (∞) = Power at ( =∞)
= 1

Definition 130 The significance level of the test or (the size of the crit-

ical region) is the maximum value of the power function of the test when 0

is true.

 = max
∈Θ0

 () 

If the set Θ0 contains only one element 0, then  =  (0). The maxi-

mum operator is called for when Θ0 is an interval or contains more than one

single point.

Definition 131 A test is unbiased if its power is greater than or equal to

its size for all values of parameters.

If a test is biased, then the power is less than the size, which means

Pr (Reject 0|0 is false)  Pr (Reject 0|0 is true)

1− Pr (Accept 0|0 is false)  1− Pr (Accept 0|0 is true)

Pr (Accept 0|0 is true)  Pr (Accept 0|0 is false) 

In other words, if a test is biased, then for some values of the parameter,

we are more likely to accept the null when it is false than when it is true.

Definition 132 A test is consistent if its power goes to one as the sample

size grows to infinity.

The Normal Test

Consider a random sample 1, 2,..., drawn from a normal distrib-

ution with unknown mean  and a known variance 2. We would like to

test whether  equals a particular value 0. i.e.,
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0 :  = 0;

0 is a pre-specified value, e.g. 0 = 0. We construct a test statistic ,

where

 =
 − 0


√



Under 0 :  = 0,  ∼  (0 
2). Since the sum of normal random

variable is also normal, as a result,  is also normally distributed for all

sample size  , no matter  is small or large. Thus

 =
1


(1 +2 + + ) ∼ 

µ
0

2



¶


Hence

 ∼  (0 1) 

In the two-sided case (i.e. 1 :  6= 0), we reject 0 at a significance

level  if ||  
2
 For example 0025 = 196.

In the one-sided case (i.e. 1 :   ()0), we reject 0 at a significance

level  if    (  −) 

A 100 (1− )% confidence interval for  isµ
 − 

2

√

 + 

2

√


¶


If 0 does not fall into this interval, we reject 0 at the significance level



The normal test is of limited use since we have two very strong assump-

tions that the observations  come from the normal distribution and that

the variance is known. A more commonly used test is the t-test, which is

called for when the population variance is unknown and the sample size is

small.

84



The t-Test

Consider a random sample 1, 2,... drawn from a normal distribu-

tion with unknown mean  and unknown variance 2. We would like to

test whether  equals a particular value 0.

0 :  = 0

We construct a test statistic, defined as

 =
 − 0b√ 

where  stands for the observed value of the statistic under the null

hypothesis that  = 0.

What is the distribution of ? Recall that

b =
vuuut P

=1

¡
 −

¢2
 − 1 

Note that

 =
 − 0b√ =

−0

√
s

1
−1

P
=1

³
−



´2 
Under 0 :  = 0,  ∼  (0 

2), thus  = 1

(1 +2 + + ) ∼


³
0

2



´
, and

 − 0


√

∼  (0 1) 

Further, it can be shown that (very difficult)

X
=1

µ
 −



¶2
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has a Chi-square distribution with degrees of freedom ( − 1), and that
(also very difficult)

 − 0


√


and

X
=1

µ
 −



¶2
are independent.

Recall the definition of a t-distribution,

 =
 − 0b√ =

−0

√
s

1
−1

P
=1

³
−



´2 =  (0 1)q
2−1 ( − 1)

will have a t-distribution with degrees of freedom ( − 1).

In the two-sided case (i.e. 1 :  6= 0), we reject 0 at a significance

level  if ||  
2
−1. For example, 00259= 2262.

In the one-sided case (i.e. 1 :   ()0), we reject 0 at a significance

level  if   −1 (  −−1) 

A 100 (1− )% confidence interval for  isµ
 − 

2
−1

b√

 + 

2
−1

b√


¶


If 0 does not fall into this interval, we reject 0 at the significance level



Example 133 Suppose the height of the population of Hong Kong is nor-

mally distributed  (, 2). Suppose we want to test a hypothesis that the

mean height of the population of Hong Kong at a certain time is  =160cm.

We test this based on a sample of 10 people of Hong Kong, the sample mean

being  =165cm and the standard error (note that standard error is the
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square root of the sample variance while standard deviation is the square root

of the population variance) is b =5cm.
Thus we test

0 :  = 160

1 :  6= 160

Since the sample size is small and 2 is unknown, we use the t-test, the

observed t-value is calculated by

 =
 − 0b√ =

165− 160
5
√
10

= 3163

 will have a -distribution with degrees of freedom equal  − 1.
In the two-sided case, we reject 0 at a significance level  if || 


2
−1.

Now, let  = 5%, then

00259= 2262

Since ||  00259, we reject 0 at  = 5% This means we are 95%

sure that the population mean is not equal to 160cm.

A 95% confidence interval for  is

 ∓ 00259

µ b√
10

¶
= 165∓ 2262

µ
5√
10

¶
= (1614 1686) 

Since 160 does not fall into this interval, we reject 0 at  = 5%

Note that the conclusion depends on the value of  that we set, if we set

 = 1%, then

0019= 325
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Since ||  0019, we do not reject 0 at  = 1% This means we

cannot be 99% sure that the population mean is not equal to 160cm.

What if X are not Normally Distributed?

Thus far, we assume that the observations are normally distributed. What

if this assumption does not hold?

Consider a random sample 1, 2,... drawn from any distribution

with unknown finite mean  and a finite unknown variance 2. We would

like to test whether  equal a particular value 0.

0 :  = 0

If the sample size is small, say if   30, then we cannot test the hy-

pothesis since we do not know what the behavior of the sample mean  and

sample variance b2 if  is not normally distributed.

However, if the sample size is large, say   30, we can apply the Cen-

tral Limited Theorem that  is normally distributed and the Law of Large

Number that b2 will converge to the population variance 2
Then the test statistic

 =
 − 0b√

will be approximately normally distributed as  (0 1) 

In the two-sided case(i.e., 1 :  6= 0), we reject 0 at a significance

level  if ||  
2
 For example 0025 = 196.

In the one-sided case(i.e., 1 :   ()0), we reject 0 at a significance

level  if    (  −) 

A 100 (1− )% confidence interval for  is

 ∓ 
2

b√



If 0 does not fall into this interval, we reject 0 at the significance level
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Thus if the observations  are not normal, we need a large sample to

carry out the test.

Hypothesis testing on ’s in a simple regression model

We run a linear regression for the model

 = 0 + 1 + 

because we want to see whether  is linearly depending on , i.e., we

want to see whether 1 equals zero.

After the estimation, we would like to test some hypotheses. Suppose

we find b1 = 034 from the sample, we may want to test whether the true

parameter 1 equals zero or not. That is, we may want to test 0 : 1 =

0. We must perform this test because if we cannot reject 0, that implies

 cannot explain  and the regression model is useless. When we test

this hypothesis, we have to form a test statistic and find the distribution

of this test statistic. Usually, we will look up the t-table, thus we may use

a test statistic which follow a t-distribution. As I mentioned previously,

when we use the t-distribution, we have to assume that the observations

are coming from a normal distribution. In the case of regression model, the

random elements are . Therefore we have to make the assumption that

 ∼  (0 2).

This assumption is not necessary as far as estimation is concerned. It is

called for when we want to perform hypothesis testing on ’s. Suppose we

perform a two-sided test on 1:

0 : 1 = 0;

1 : 1 6= 0

A standard way to test the hypothesis is to form a test statistic
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 =
b1 − 1r
 

³b1´ 
where b1 is the OLS estimator for the unknown parameter 1 and

 
³b1´ = 2

P
=1

¡
 −

¢2 
Note that since b1 is unbiased,

 () =

³b1 − 1

´
vuuut 2

P
=1

¡
 −

¢2
= 0

and

  () =  

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
b1 − 1vuuut 2

P
=1

¡
 −

¢2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

 
³b1´
2

P
=1

¡
 −

¢2
= 1

Thus, the test statistic will have a distribution with mean zero and vari-

ance 1, but what is its exact distribution? This depends on whether 2 is

known or not. Note that
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 =
b1 − 1vuuut 2

P
=1

¡
 −

¢2
=

P

=1

¡
 −

¢
P

=1

¡
 −

¢2vuuut 2

P
=1

¡
 −

¢2
=

1 −s
2

P
=1

¡
 −

¢21 + 1 −s
2

P
=1

¡
 −

¢21 + +
 −s

2
P
=1

¡
 −

¢2 
which is a linear combination of  Since  has a normal distribution,

if 2 is known, by the property that normal plus normal is still normal, the

test statistic  will have a  (0 1) distribution.

The problem again, is that 2 is unknown in the real world, so we will

have to estimate it. Recall that 2 is the variance of  in the true model:

 = 0 + 1 + 

After we get the  estimators b0 and b1 the estimated residual is
b =  − b0 − b1

and we define

b2 =
P
=1

b2
 − 2 

We use b2 to estimate 2.
Two questions here. First, why

P
=1

b2 but not P
=1

³b − b´2? Second, why
we have to use ( − 2), but not ?
The answer to the first question is

P
=1

b = P
=1

³
 − b0 − b1

´
= 0 by

the first normal equation (*). Thus b = 1


P
=1

b = 0
The reason why we have to use ( − 2) is because we want b2 to be an

unbiased estimator of 2. This number should be equal to the number of
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0 in the regression. If we have a multiple regression with  0, then it

should be ( − ) at the bottom. It is the same reason why we usually put

( − 1) at the bottom when forming a sample variance of a random variable,
all because we want to get an unbiased estimator of 2. Now,

 =
b1 − 1vuuut b2

P
=1

¡
 −

¢2
=

b1 − 1vuuut 2

P
=1

¡
 −

¢2
r

2b2

=  (0 1)×
s

2b2 =  (0 1)rb2
2

=
 (0 1)vuuut 1

 − 2
P
=1

b2
2

=
 (0 1)vuuut P
=1

µb


¶2
 − 2



It can be shown that (very difficult)
P
=1

µb


¶2
has a Chi-square distri-

bution with degree of freedom ( − 2), and that
P
=1

µb


¶2
is independent

of
b1 − 1vuuut 2

P
=1

¡
 −

¢2
, thus the test statistic  =

 (0 1)r
2−2
 − 2

will have a t-

distribution with degrees of freedom ( − 2)  This explains why we have to
use the t-table for hypothesis testing in regression models.

Asymptotic Distribution of a Nonlinear Function

Theorem 134 If
√

³b − 

´
→  (0 2), and if  (·) is a continuous dif-

ferentiable function, then

√

³

³b´−  ()

´
→ 

³
0 {0 ()}2 2

´
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Proof. Let  lies between b and , taking Taylor expansion around , we

have:


³b´ =  () + 0 ()

³b − 
´
+
1

2
00 ()

³b − 
´2

√

³

³b´−  ()

´
=
√
0 ()

³b − 
´
+
1

2
00 ()

h√

³b − 

´i³b − 
´

=
√
0 ()

³b − 
´
+
1

2
 (1) (1)  (1)

=
√
0 ()

³b − 
´
+  (1)


= 0 ()

h√

³b − 

´i
→ 0 ()

¡
0 2

¢

= 

³
0 {0 ()}2 2

´


Three Asymptotic Tests

Thus far, we have only discussed tests for a single parameter that based

on finite sample. We now discuss three tests which can handle complicated

restrictions for multiple parameters. The three tests are the Wald, Likelihood

Ratio and Lagrange Multiplier tests. Asymptotically, the three tests are

equivalent and have a Chi-square distribution. The tests are based on the

maximum likelihood estimation and use the asymptotic normality of the ML

estimators.

Wald Test

Now consider how to test the linear restriction of the form

0 :  = 

For example, if  is a scalar and if we want to test 0 :  = 0, then  = 1

and  = 0.

If we want to test 0 : 1 = 3 and 2 = 4, then

 =

Ã
1 0

0 1

!
  =

Ã
1

2

!
  =

Ã
3

4

!
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Let b be the ML estimate, if the restriction is valid, b −  should be

close to zero. Hence we directly test whether b −  = 0. Note that

b − 
→ 

³
0  

³b´0´ 
The Wald test statistic is defined as

 =
³
b − 

´0 h
d  ³b´0i−1 ³b − 

´
→ 2

where  is the number of restrictions imposed, d  ³b´ = −1
³b´ is the

inverse of the Fisher’s Information Matrix evaluated at the ML estimate b
What is important here is that b maximizes the likelihood function ignor-

ing the restrictions and so it is called the unrestricted estimator. We never

actually find an estimate of  that is compatible with the restriction.

For nonlinear restriction, we write

0 :  () = 0

For example, suppose we want to test 0 : 
2
1 + 2 − 3 = 0 then  () =

21 + 2 − 3
The Wald test becomes

 = 
³b´0 d  ³ ³b´´−1  ³b´ → 2

Likelihood Ratio Test

Consider the restriction 0 :  () = 0. Let b be the restricted estimate
under 0. If the restriction is valid, b should be close to the unrestricted
ML estimate b. Thus ln³;b´− ln³;b´ should be close to zero. Note
that 

³
;b´ is the likelihood under restriction, ³;b´ is the likelihood

without restriction, with the possibility that the restriction may be wrong,

it is clear that


³
;b´ ≤ 

³
;b´ 
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The Likelihood Ratio is defined as


³
;b´


³
;b´ ≤ 1

and the LR test is defined as

 = −2 ln

³
;b´


³
;b´ = 2

³
ln

³
;b´− ln³;b´´ → 2

LR is a non-negative number and has an asymptotic Chi-square distrib-

ution with degrees of freedom equal the number of restrictions imposed.

Lagrange Multiplier Test

Consider the restriction 0 :  () = 0. If the restriction is valid, the

restricted estimator should be near the point that maximizes the log likeli-

hood. Therefore the slope of the log-likelihood should be near zeros at the

restricted estimator.

The restricted estimator b for  is obtained by solving the following
Lagrangian function

ln∗ (; ) = ln (; ) +  ()

Differentiating ln∗ (; ) with respect to  and , we have the following

necessary conditions:

 ln∗  (; )


=
 ln (; )


+ 0 () = 0

and

 ln∗  (; )


=  () = 0

If the restrictions are valid, b = b, where b is the unrestricted estimator
solving

 ln (; )


= 0.
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 ln
³
;b´


=

 ln
³
;b´


= 0

Thus testing  () = 0 can be reduced to testing
 ln

³
;b´


= 0

Define

 =

⎛⎝ ln
³
;b´



⎞⎠0 h

³b´i−1

⎛⎝ ln
³
;b´



⎞⎠ → 2

where 
³b´ is Fisher’s Information Matrix evaluated at b.

LM has an asymptotic Chi-square distribution with degrees of freedom

equal the number of restrictions imposed.

Example 135 Consider a random sample of 10 observations from a Poisson

distribution 1 2  10 in Handout 3. The density of each observation is

 (; ) =
 exp (−)

!


 (; ) =
1+2+10 exp (−10)

10

Π
=1

!



ln (; ) =

Ã
10X
=1



!
ln  − 10 − ln

µ
10

Π
=1

!

¶


Let the observations be

1 2 3 4 5 6 7 8 9 10

3 2 5 6 2 1 7 3 4 3

then

b = P10

=1 

10
= 36
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 =
 ln (; )


=

P10

=1 


− 10

The Fisher’s Information Matrix is

 () =
10




Suppose we want to test

0 :  = 3

1 :   3

Now, we have

 = 1  = 3

d  ³b´ = 
³b´−1 = b

10
= 36

b = 36

 =
³
b − 

´0 h
d  ³b´0i−1 ³b − 

´
=

³b − 3´2
−1

³b´ =
(36− 3)2

36
= 1

We can also rewrite the hypothesis as

0 :  () = 0

1 :  ()  0

where

 () =  − 3
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b = 3

 = −2 ln
⎛⎝

³
;b´


³
;b´

⎞⎠ = 2
³
ln

³
;b´− ln³;b´´

= 2

ÃÃ
10X
=1



!
lnb − 10b − lnµ 10

Π
=1

!

¶
−
Ã

10X
=1



!
lnb + 10b + lnµ 10

Π
=1

!

¶!
= 2 ((36) ln (36)− 10 (36)− (36) ln (3) + 10 (3))
= 11271521

 =

⎛⎝ ln
³
;b´



⎞⎠0 h

³b´i−1

⎛⎝ ln
³
;b´



⎞⎠
=

³10
=1  − 10

´2
10b

=

¡
36
3
− 10¢2
10

3

= 12

Since we have only one restriction that  − 3 = 0, we look up the Chi-
square table with one degree of freedom. Let  = 5%, since 21 () = 384146,

we do not reject 0 at  = 5% in all the 3 tests.

Remark 2 Note that b is the restricted estimate under 0. For example,

if the null is 0 :  = 3, then imposing 0 gives b = 3. However, if the null
is 0 :   0, the we have to go through the ML estimation procedure and

find an estimator which is positive and maximizes the likelihood.

Exercise 0.89 The following table is the Labour Force Participation Rates

for male, using age group from 20 to 59, for the year 1994. The table is

adopted from Hong Kong Annual Digest of Statistics 1996 Edition, page 13,

Table 2.1.
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 (middle of the age group)  (%)

22 802

27 978

32 983

37 986

42 986

47 973

52 924

57 783

where

=Labour force participation rate;

=Middle age in each age group.

i) Plot (, ).

ii) Run the following regression model

 = 0 + 1 + 

Find the values of b0, b1. What is the meaning of b0 in this case?
Interpret b1.
iii) Test 0 : 1 = 0 against 1 : 1 6= 0 at  = 005 Is the labour force

participation rate stable for men? If not, is it increasing or decreasing with

age?

vi) Repeat part i) to iii) using the labour force participation rate for

female in the same year.

Exercise 0.90 In a judicial trial, suppose the null hypothesis is that “the

defendant is not guilty”.

(a) How to state the alternative hypothesis?

(b) What is the Type I Error in this case?

(c) What is the Type II Error in this case?

(d) How can you fully eliminate Type I Error in this case? How will this

affect the chance of committing Type II Error?
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(e) How can you fully eliminate Type II Error in this case? How will this

affect the chance of committing Type I Error?

(f) How can you fully eliminate both Errors in this case?

(g) Suppose the defendant is charged with the murder of first degree,

whose penalty is the capital punishment (death). From your point of view,

which type of error has a more serious consequence?

Exercise 0.91 A random sample of size  = 12 from a normal population

has the sample mean  = 28 and sample variance b2 = 3.
(a) Construct a 95% confidence interval for the population mean 

(b) Test the hypothesis 0 :  = 30 against 1 :  6= 30 at  = 5%

Exercise 0.92 Let  be the monthly total number of births in Hong Kong.

Assume that  ∼  ( 2). Consider a sample of  from April 1998 to

September 2003.

(a) Find  and b2
(b) Use t-test to test the hypothesis 0 :  = 4500 against 1 :  6= 4500

at  = 5%

(c) Construct a 95% confidence interval for the population mean 

Exercise 0.93 Let  be the monthly total number of deaths in Hong Kong.

Assume that  ∼  ( 2). Consider a sample of  from April 1999 to

September 2004.

(a) Find  and b2
(b) Use t-test to test the hypothesis 0 :  = 3000 against 1 :   3000

at  = 5%

Exercise 0.94 Let  be the monthly total number of marriages in Hong

Kong. Assume that  ∼  ( 2). Consider a sample of  from April

1999 to September 2004.

(a) Find  and b2
(b) Use t-test to test the hypothesis 0 :  = 3000 against 1 :   3000

at  = 5%
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Exercise 0.95 A random sample of size  = 100 from a population has the

sample mean  = 28 and sample variance b2 = 3.
(a) Construct a 95% confidence interval for the population mean 

(b) Test the hypothesis 0 :  = 30 against 1 :  6= 30 at  = 5%
(Note that we cannot apply the t-test as we do not assume that the

observations come from a normal distribution.)

Exercise 0.96 Let

=private consumption expenditure at constant (2000) market price;

=Expenditure-based GDP at constant (2000) market price.

i) Find the values of X and Y for the period 1999-2005

ii) Plot (, ).

iii) Run the following regression model

 = 0 + 1 + 

Find the values of b0, b1. What is the meaning of b0 in this case?
Interpret b1.
iv) Test 0 : 1 = 0 against 1 : 1 6= 0 at  = 005
v) Using the estimated model to predict the value of  in 2006 using 

in 2006.

Exercise 0.97 From the Hong Kong Annual Digest of Statistics 2005 Edi-

tion, find the Statistics of Results of Hong Kong Certificate of Education

Examination 2004.

Let

= % of student getting A.

=Number sat.

i) If a student want to get 10 straight A in HKCEE, which 10 subjects

will you recommend him/her to take?
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ii) If a student want to fail 10 subjects in HKCEE, which 10 subjects will

you recommend him/her to take?

iii) Run the following regression model

 = 0 + 1 + 

Find the values of b0, b1. What is the meaning of b0 in this case?
Interpret b1.
iv) Test 0 : 1 = 0 against 1 : 1 6= 0 at  = 005 Does the chance

of getting an A depend on the number of candidates in the exam? If so, in

which direction?

Exercise 0.98 Use 9/99 to 9/06 Hang Seng Index, End of Month, closing

price data to run a regression HSI on TIME, where HSI is the value of the

Hang Seng index, and TIME=1 for September 1999, 2 for October 1999,

and so on. Is the slope coefficient significantly different from 0 at  = 5%?

Predict the value of Hang Seng index for End of October 2006.

Now use the natural logarithm of Hang Seng index ln(HSI) as the depen-

dant variable, run the regression ln(HSI) on TIME. Is the slope coefficient

significantly different from 0 at  = 5%? Predict the value of ln(HSI) for

October 2006, and take the exponential of this predicted value, i.e. calculate

e
\ln() and use it as the predicted value for HSI.

Finally, get the actual value of HSI at the end of October 2006, and

compare your predicted values above with this actual value. Which one is

closer to the true value, and why?

Exercise 0.99 Let1 2   be independent random variables come from

 ( 1) distribution. Suppose  = 35, perform the Wald, LM and LR tests

on 0 :  = 0 versus 1 :   0

Exercise 0.100 If 1 and 2 are independent  (0 1) random variables.

a) What is the distribution of 2
1 +2

2?

b) Let  =
1 +2

2
, 1 = 1−, 2 = 2−, show that 2 = −1

c) What is the distribution of
¡
1 −

¢2
+
¡
2 −

¢2
?

102



Exercise 0.101 If  ( = 1 2   ) are  normal random variables

with  () =  and   () = 2. Show that  and 2 =

P

=1

¡
 −

¢2


are independent.

Exercise 0.102 Let 1 and 2 constitute a random sample of size 2 from

the population

 (; ) = −1 for 0    1;

= 0 elsewhere.

i) Sketch the graph of  (; 1)   (; 2) and  (; 3) 

ii) Find the joint density of 1 and 2.

iii) If the critical region 1 + 2 ≥ 3
2
is used to test 0 :  = 1 against

1 :   1. Show that the power function is

 () = 

Z 1

5

−1
Ã
1−

µ
3

2
− 

¶
!


iv) Find  (1)   (2)   (3) 

Exercise 0.103 Consider the following density function of a random vari-

able .

 (; ) = 1 for      + 1;

= 0 elsewhere.

i) Consider testing 0 :  = 0 against 1 :   0. Suppose we reject 0

when 1 +2 
3

2
. Find the power function  ()  Plot  (1)   (2)   (3)

and  (∞) 

Exercise 0.104 True/False.
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a. Rejection of the null hypothesis when it is true is called the Type I

Error.

b. A test is unbiased if it is consistent.

c. The Wald, LR and LM tests will give the same conclusion in finite

samples.

d. The LR test has no power when the log-liklelihood function is a flat

line.

e. The LM test does not apply when the log-likelihood function is always

increasing in parameters.

Exercise 0.105 Suppose we draw observations  independently from two

uniform distributions,  (0 1) and  (0 2) respectively, with 2  1  0.

However, we do not know which distribution an observation belongs to. Let

 be the chance that an observation is coming from  (0 1)  We would like

to estimate the three parameters 1, 2 and .

(a) Find the likelihood and log-likelihood functions.

(b) Find the score functions for 1, 2 and .

(c) Can we estimate the three parameters?

(d) Can we estimate 1 and 2 if we know  = 05?

(e) Can we estimate 1 and 2 if we know  = 05 and 1 = 1− 2?

(f) Show how to perform a LR test for (i)  = 05; (ii) 1 = 1− 2

Exercise 0.106 Consider a random sample of 10 observations from a Nor-

mal distribution 1 2  10. The density of  is


¡
; 

2
¢
=

1√
22

exp

Ã
−( − )

22

2
!

where  and 2 are unknown mean and variance of the population re-

spectively.

(a) Find the log-likelihood function.

(b) Find the score functions.

(c) Find the ML estimators for  and 2
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(d) Find the Fisher’s Information Matrix.

(e) Now let the observations be

1 2 3 4 5 6 7 8 9 10

0 1 2 2 2 2 3 3 3 4

Perform the Wald, Likelihood Ratio and Lagrange Multiplier tests for the

following hypothesis at  = 5%:

0 :  = 2

1 :   2

(From the Chi-square table with one degree of freedom and  = 5%, the

critical value is 21 () = 384146).

Exercise 0.107 Let  have a Poisson distribution with mean , i.e.

Pr ( = ) =
−

!

i) Show that
P∞

=0



!
= .

ii) Show that the moment generating function of  is equal to

 () =  (exp ()) = (
−1)

and find  () and   () 

iii) Let 1 12 denote a random sample of size 12 from this distribu-

tion. Find the moment generating function of  = 1+ +12. Show that

 is also a Poisson random variable with mean 12

iv) Consider the simple hypothesis0 :  =
1

2
and the alternative compos-

ite hypothesis 1 :  
1

2
. We reject 0 if and only if  =

1 + +12

12


3

4
 Let  () be the power function of the test. Find 

µ
1

2

¶
 

µ
3

4

¶
  (∞) 

v) Sketch the graph of  () 

vi) What is the significance level of the test?
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Exercise 0.108 Let  have a Poisson distribution with mean . Consider

the simple hypothesis 0 :  =
1

2
and the alternative composite hypothesis

1 :  
1

2
. Thus Θ =

½
 : 0   ≤ 1

2

¾
. Let 1  12 denote a random

sample of size 12 from this distribution. We reject 0 if and only if  =
1 + +12

12
≤ 1
6
 Let  () be the power function of the test. Find 

µ
1

2

¶




µ
1

3

¶
 

µ
1

4

¶
 

µ
1

6

¶
 

µ
1

12

¶
 Sketch the graph of  ()  What is the

significance level of the test?

Exercise 0.109 Suppose the random variable  ∼  (exp ()  1),  = 1 2  100,

 and  are independent for all  6= . Thus

 (; ) =
1√
2

−
(−)

2

2 

a) Derive the log-Likelihood function ln (; ) and the scores function

.

b) Derive the ML estimator b.
c) Show that the Fisher’s Information Matrix is

 () = 1002

d) Suppose we would like to test 0 :  = 0 versus 1 :   0.

Define a Wald test


³b´ = b2d  ³b´ =

b2
−1

³b´ = b2
³b´ 

where 
³b´ is the Fisher’s Information Matrix evaluated at b
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Since we have only one restriction, 
³b´ has an asymptotic chi-square

distribution with 1 degree of freedom. Thus at  = 5%, we reject 0 when


³b´  384146;

i) Suppose 0 is rejected when b = −2 at  = 5% Intuitively, whenb = −3, do you expect to reject or not to reject 0? Explain.

ii) Plot 
³b´ at b = 0−1−2−3−4−∞;

iii) Determine whether we should reject0 at  = 5%whenb = 0−1−2−3−4−∞

iv) Derive the power function of this test.

Exercise 0.110 Consider the following density function of a random vari-

able .

 (; ) =
1


for 0 ≤  ≤ ;

= 0 elsewhere.

i) Find the moment generating function of .

ii) Sketch the graph of  (; 1)   (; 2) and  (; 3) 

Let 12  constitute a random sample of size  from the above

population.

iii) Find the joint density of 12   

iv) Find the likelihood function  (; ) and the log-likelihood function

ln (; ) 

v) Find the score  =



ln (; )  does the score have zero expectation?
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vi) Find the ML estimator b. Is your estimator consistent? Explain.
vii) Find the Fisher’s information matrix using  () using

 () = −
µ

2

2
ln (; )

¶


viii) Suppose we would like to test 0 :  = 1 versus 1 :   1.

Define a Wald test


³b´ = ³b − 1´2  ³b´ 

where 
³b´ is the Fisher’s Information Matrix evaluated at b

Since we have only one restriction, 
³b´ has an asymptotic chi-square

distribution with 1 degree of freedom. Thus at  = 5%, we reject 0 when


³b´  384146;

Now consider the case where the sample size  = 1;

a) show that b = 1.

b) if b = 1

3
, intuitively, should we reject or not reject H0? Now compute


³b´ at b = 1

3
 Is 0 rejected at  = 5%?

c) if 0 is true, can b = 2? Intuitively, should we reject or not reject 0

if b = 2? Now compute  ³b´ at b = 2 Is 0 rejected at  = 5%?

d) plot 
³b´ at b = 1 2 3 4∞

ix) For  ≥ 1, plot the power functions of this test for  = 1 2 3 4∞

x) Explain why the test is not properly behaved. Design a test for above

hypothesis.

Exercise 0.111 Consider the following model:
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 = −1 +   = 1 2  

Suppose we estimate  via the MLE method by assuming  follows in-

dependent  (0 1).

(a) Derive the log-Likelihood function ln (; ) and the scores function

.

(b) Describe how to get the ML estimator b.
(c) Describe how to get the Information Matrix.

(d) Describe how to form a Wald test for  = 1

Exercise 0.112 Consider Section 17.5.4 in Greene 5th edition.

Perform the Wald, LM and LR tests on

a) 0 :  = 0 versus 1 :  6= 0
b) 0 :  = 0 versus 1 :  6= 0

Exercise 0.113 Greene, Chapter 17, Exercises 1-4.
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ECO5120: Econometric Theory and Application, Fall 2006

Prof. T.L. Chong

HANDOUT 6

NONLINEAR LEAST SQUARES ESTIMATION

Definition 136 A sequence of function  () converge to  () pointwise

in Θ, if for any given  ∈ Θ

| ()−  ()| =  (1) 

Definition 137 A sequence of function  () converge to  () uniformly

in Θ if

sup
∈Θ

| ()−  ()| =  (1) 

Uniform convergence implies pointwise convergence, but the not the other

way around.

Example 138 Θ = [0 2] 

 () =   ∈ [0 1
2
]

= 1−   ∈ ( 1
2


1


]

= 0  ∈ ( 1

 1]

=


 + 1
( − 1)  ∈ (1 15]

=


 + 1
(2− )  ∈ (15 2]

 () = 0  ∈ [0 1]
=  − 1  ∈ (1 15]
= 2−   ∈ (15 2]
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For any given  ∈ (0 2]

| ()−  ()| =  (1) ,

but

sup
∈Θ

| ()−  ()| = 1

2
6=  (1) 

Definition 139 A sequence of random variable  () converge to  () in

probability pointwise if for any given  ∈ Θ

| ()−  ()| =  (1) 

Definition 140 A sequence of random variable  () converge to  () in

probability uniformly if

sup
∈Θ

| ()−  ()| =  (1) 

Uniform convergence in probability implies pointwise convergence in prob-

ability, but not the other way around.

Example 141 Θ = (0∞)

 () =
1



X
=1

 +  for  ∈ (0 1
2
]

=
1



X
=1

 + (1− ) for  ∈ ( 1
2


1


]

= 0 for  ∈
µ
1


∞
¶

where {}=1 is an i.i.d. zero-mean, finite variance stochastic sequence,
 is a binary random variable which takes −1 with probability 05 and 1
with probability 05.
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 () = 0 for  ∈ Θ

For any given  ∈ Θ

| ()−  ()| =  (1)

However

sup
∈Θ

| ()−  ()| =
¯̄̄̄
¯ 1

X
=1

 +


2

¯̄̄̄
¯ 6=  (1)

since

Pr

µ
sup
∈Θ

| ()−  ()| ≥ 

¶
= Pr

Ã¯̄̄̄
¯ 1

X
=1

 +


2

¯̄̄̄
¯ ≥ 

!
→ Pr

µ¯̄̄̄


2

¯̄̄̄
≥ 

¶
= 1

Nonlinear Least Squares Estimation

Suppose the true relationship between  and  is

 =  (; 0) + 

where 0 is a vector of true parameters which are unknown. For a given

sample of size  , we want to construct an estimator to estimate 0. We use

the least squares estimation method which minimizes the sum of squared

errors, i.e.,

min


X
=1

2 

Or equivalently, we minimize 1


P

=1 
2
 . Let

 () =
1



X
=1

2 =
1



X
=1

( −  (; ))
2


Definition 142 The nonlinear least squares estimator is defined as
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b = min


 () 

where

 () =
1



X
=1

( −  (; ))
2


Definition 143 A nonlinear regression model is one for which the first-

order conditions for least squares estimation of the parameters are nonlinear

functions of the parameters.

The first order condition is

 ()


= 0

or

2



X
=1

( −  (; ))
 (; )


= 0

and this is a nonlinear function in .

Example 144 Consider the model

 = +  +   = 1 2  

This is a linear model, a special case of nonlinear model.

 (; 0) = 0 + 0

0 =

Ã
0

0

!


 () =
1



X
=1

( − − )
2


First-order conditions
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 ()


= − 2



X
=1

( − − ) = 0

 ()


= − 2



X
=1

( − − ) = 0

Thus we have

b =
P
=1

( − ) 

P
=1

( − )
2



b =  − b
Example 145 Consider the model

 = 

 +   = 1 2  

 (; 0) = 0
0
 

0 =

Ã
0

0

!


 () =
1



X
=1

³
 − 




´2


First-order conditions

 ()


= − 2



X
=1

³
 − 




´


 = 0

 ()


= − 2



X
=1

³
 − 




´


 ln = 0

From the first equation,
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b =
P
=1





P
=1


2




Putting this into the second equation gives

X
=1

⎡⎢⎢⎣ −
P
=1





P
=1


2






⎤⎥⎥⎦ ln = 0
Thus b solves

X
=1



 ln −

P
=1





P
=1


2
 ln

P
=1


2


= 0

Consistency of NLS Estimators

Definition 146 A set in  is compact if and only if it is closed and

bounded.

Since the nonlinear estimator usually does not have a closed form solution,

we need to verify the following assumptions for it to be consistent.

Assumptions:

(A1) The parameter space Θ is a compact subset of  

(B1)  () is continuous in  ∈ Θ.

(C1)  () converges to a non-stochastic function  () in probability

uniformly in  ∈ Θ as  →∞, and  () attains a unique global minimum
at 0. i.e.

sup
∈Θ

| ()−  ()| =  (1)
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and

0

= min

∈Θ
 () is unique.

The first and second assumptions guarantee the existence of a minimum

of  (). The last assumption is needed for the solution to be unique.

If all the three assumptions are satisfied, then the nonlinear least squares

estimator will be consistent. If any one of the assumptions is violated, it does

not mean the estimator is not consistent. It may still be consistent, but we

are not confident about it. If a nonlinear LS estimator is inconsistent, then

at least one of the assumptions must be violated.

Example 147 The following model satisfies assumptions (1) to (1):

 =  +  ( = 1 2  )

where

 are distributed uniformly in (0 1) ;

 () =
R 1
0
 =

1

1 + 
;

 ∼  (0 2)  2 ∞;
 and  are independent;

 ∈ Θ = [0 2] ;

0 = 1

Obvious Θ = [0 2] a compact subset of  Thus, (1) is satisfied.

 (; ) =  

 () =
1



X
=1

¡
 − 

¢2


For any given sample { }=1,  () is continuous in , since | ( + )−  ()|→
0 as  → 0 for all  ∈ Θ Thus, (1) is satisfied. Note that
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 () =
1



X
=1

¡
0 +  − 

¢2
→ 2 +

X
=1

¡
2 + 2 − 2+0

¢
= 2 +

¡
2
¢
+

¡
2
¢− 2 ¡+1¢

= 2 +
1

3
+

1

1 + 2
− 2

2 + 


Therefore, we let

 () = 2 +
1

3
+

1

1 + 2
− 2

2 + 


It is easily shown than  () attains a unique global minimum at  = 0 =

1

Now, consider

sup∈[02] | ()−  ()|
= sup∈[02]

¯̄̄̄
1


P
=1

¡
 − 

¢2 −  ()

¯̄̄̄
= sup∈[02]

¯̄̄̄
1


P
=1

¡
 +  − 

¢2 −  ()

¯̄̄̄
= sup∈[02]

¯̄̄̄
1


P
=1

2 +
1


P
=1

¡
 − 

¢2
+ 2



P
=1


¡
 − 

¢−  ()

¯̄̄̄

= sup∈[02]

¯̄̄̄
¯̄̄̄ 1



P
=1

2 +
1



P
=1

2 +
1



P
=1

2 −
2



P
=1

1+

+
2



P
=1


¡
 − 

¢− 2 − 1
3
− 1

1 + 2
+

2

1 +  + 0

¯̄̄̄
¯̄̄̄

≤ sup∈[02]{
¯̄̄̄
1


P
=1

2 − 2
¯̄̄̄
+

¯̄̄̄
1


P
=1

2 −
1

3

¯̄̄̄
+

¯̄̄̄
1


P
=1

2 −
1

1 + 2

¯̄̄̄
+

¯̄̄̄
2


P
=1

1+ − 2

2 + 

¯̄̄̄
+

¯̄̄̄
2


P
=1


¡
 − 

¢¯̄̄̄}
≤
¯̄̄̄
1


P
=1

2 − 2
¯̄̄̄
+

¯̄̄̄
1


P
=1

2 −
1

3

¯̄̄̄
+ sup∈[02]

¯̄̄̄
1


P
=1

2 −
1

1 + 2

¯̄̄̄
+sup∈[02]

¯̄̄̄
2


P
=1

1+ − 2

2 + 

¯̄̄̄
+ sup∈[02]

¯̄̄̄
2


P
=1


¡
 − 

¢¯̄̄̄
=  (1) +  (1) +  (1) +  (1) +  (1)

=  (1) 
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So (1) is satisfied.

Theorem 148 Under assumption (A1) to (C1), we haveb → 0

Proof. Let  be an open neighborhood in  containing 0, then   ∩ Θ

is compact. Therefore min
∈∩Θ

 () exists. Denote

 = min
∈∩Θ

 ()−  (0)  0

Let  be the event

− 

2
  ()−  () 



2
∀ ∈ Θ

Since  holds for all , which implies it holds for  = 0 and  = b .
Thus  implies

− 

2
≤  (0)−  (0) 



2

and

− 

2
≤ 

³b´− 
³b´ 



2


The above inequalities also imply

 (0)−  (0) 


2

and

− 

2
≤ 

³b´− 
³b´ 

Summing up of the above inequalities gives

 (0)−  (0)− 

2
≤ 

2
+ 

³b´− 
³b´


³b´−  (0)  + 

³b´−  (0)


³b´−  (0)  − 
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where

 =  (0)− 

³b´  0

due to the fact that  () is minimized at b .
Thus,


³b´−  (0)  −    = min

∈∩Θ
 ()−  (0) 

This implies


³b´  min

∈∩Θ
 () 

which in turn implies

b ∈   ∩Θ
or

b ∈ 

Thus,

 ⇒ b ∈ 

Pr ( ) ≤ Pr
³b ∈ 

´


Taking limit,

1 = lim
→∞

Pr ( ) ≤ lim
→∞

Pr
³b ∈ 

´
≤ 1

Thus,

lim
→∞

Pr
³b ∈ 

´
= 1

Thus, b converges to 0 in probability.
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Asymptotic Normality of NLS Estimators

An nonlinear estimator usually does not have a closed form solution.

Even it does, it is often highly complicated. How do we know that such a

complicated expression will have a normal distribution asymptotically? For

a nonlinear LS estimator to be asymptotically normal, we need to verified

the following assumptions.

Assumptions:

(A2) The parameter space Θ is an open subset of   0 belongs to the

interior of Θ

(B2)  () is continuous in an open neighborhood 1 (0) of the true

parameter 0.

(C2)  () converges to a non-stochastic function  () in probability

uniformly in an open neighborhood 2 (0) of 0 as  → ∞, and  ()

attains a strict local minimum at 0.

(D2)
 ()


exists and is continuous in an open neighborhood 1 (0)

of 0

(E2)
2 ()

0
exists and is continuous in an open, convex neighborhood

of 0

(F2)

µ
2 ()

0

¶
∗

→  (0) for any sequence 
∗


→ 0, where  (0) is

a finite non-singular matrix defined as

 (0) = lim
→∞



µ
2 ()

0

¶
0



(G2)
√


µ
 ()



¶
0

→  (0  (0)), where
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 (0) = lim
→∞



"µ
 ()



¶
0

µ
 ()

0

¶
0

#


It is sometimes very difficult to go through all these assumptions. To

have some practices, consider a linear model first, since a linear model is a

special case of a nonlinear model.

Example 149 The following model satisfies assumption (2) to (2):

 =  +  ( = 1 2  )

where

 are distributed uniformly in (0 1) ;

 () =
R 1
0
 = 1

1+
;

 ∼  (0 2)  2 ∞;
 and  are independent;

 ∈ Θ = (0 2) ;

0 = 1

The parameter space Θ = (0 2) is an open subset of  0 = 1 belongs

to the interior of (0 2) 

 (; ) = 

 () =
1



X
=1

( − )
2


For any given set of sample { }=1,  () is continuous in  in an

open neighborhood of 0 since

 ( + )−  () =
1



X
=1

¡
( − ( + ))

2 − ( − )
2
¢

= 
1



X
=1

( + 2 + 2)
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which tends to zero as  → 0 for all  in an open neighborhood of 0.

Thus, (2) is satisfied.

Note that

 () =
1



X
=1

(0 +  − )
2 → 2 + (0 − )

2

¡
2
¢
= 2 +

(1− )
2

3


Therefore, we let

 () = 2 +
(1− )

2

3


It is easily shown that  () attains a unique global maximum at  =

0 = 1 Also, since

sup∈2(0) | ()−  ()|
= sup∈2(0)

¯̄̄̄
1


P
=1

( − )
2 −  ()

¯̄̄̄
= sup∈2(0)

¯̄̄̄
1


P
=1

( +  − )
2 −  ()

¯̄̄̄
= sup∈2(0)

¯̄̄̄
1


P
=1

2 +
1

(1− )

2
P
=1

2 +
2(1−)



P
=1

 −  ()

¯̄̄̄
≤ sup∈2(0)

¯̄̄̄
1


P
=1

2 − 2
¯̄̄̄
+(1− )

2
sup∈2(0)

¯̄̄̄
1


P
=1

2 −
1

3

¯̄̄̄
+(1− ) sup∈2(0)

¯̄̄̄
2


P
=1



¯̄̄̄
=

¯̄̄̄
1


P
=1

2 − 2
¯̄̄̄
+ (1− )

2

¯̄̄̄
1


P
=1

2 −
1

3

¯̄̄̄
+ (1− )

¯̄̄̄
2


P
=1



¯̄̄̄
=  (1) +  (1) +  (1)

=  (1) 

So (2) is satisfied.

For any given sample { }=1 

 ()


= − 2



X
=1

( − ) = − 2


X
=1

 +

Ã
2



X
=1

2

!


which is a linear function of . Hence it exists and is continuous in an

open neighborhood 1 (0) of 0. So (2) is satisfied.
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For any given sample { }=1 

2 ()

2
=
2



X
=1

2

which exists. Also, it is independent of  and so it is always continuous

in an open, convex neighborhood of 0 Thus, (2) is satisfied.

2 ()

2

¯̄̄̄
∗

=
2



X
=1

2
→ 

¡
2
¢
=
1

3

for any sequence ∗
→ 0. So (2) is satisfied. Now, note that

√


µ
 ()



¶
0

=
√


"
− 2


X
=1

( − 0)

#
= − 2√



X
=1


→  (0  (0))

by the central Limit Theorem, where

 (0) = lim
→∞



⎡⎣Ã− 2


X
=1



!2⎤⎦ = lim
→∞



"
4

 2

X
=1


¡
2

2


¢#

= lim
→∞

4



X
=1


¡
2
¢

¡
2
¢
= lim

→∞
4



X
=1

µ
1

3

¶
=
42

3


Thus, (2) is satisfied.

Theorem 150 Let Θ be the set of roots of the equation
 ()


= 0 cor-

responding to the local minima, and
nbo a sequence obtained by choosing

one element from Θ . Then under assumptions (A2) to (G2), we have

√

³b − 0

´
→ 

¡
0  (0)

−1
 (0) (0)

−1¢
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Proof. Taking a Taylor expansion, we have

µ
 ()



¶
 =

µ
 ()



¶
0

+

µ
2 ()

0

¶
∗

³b − 0

´
0 =

µ
 ()



¶
0

+

µ
2 ()

0

¶
∗

³b − 0

´
√

³b − 0

´
= −

µ
2 ()

0

¶−1
∗

µ√

 ()



¶
0



Using assumption (F2), (G2) and Theorem 91(ii), we prove the above

theorem.

Exercise 0.114 Repeat the exercise of section 9.3.1 on page 171 of Greene

5 edition. You can use the nonlinear least squares estimation procedure in

Microfit window version for this problem.

Exercise 0.115 Consider the following data set on production

  

0228 0802 0257

0258 0249 0184

0821 0771 1213

0767 0511 0523

0495 0758 0848

0487 0425 0763

0678 0452 0623

0748 0817 1031

0727 0845 0569

0695 0958 0882

0458 0084 0108

0981 0021 0026

0002 0295 0004

0429 0277 0046

124



a) Estimate the Cobb-Douglas production function

 = 




 + 

b) Estimate the CES production function

 =  (

 + (1− )


 )


+ 

c) Estimate the following production function

 =  + 

You can use the nonlinear least squares estimation procedure in Microfit

window version for this problem.

Exercise 0.116 Consider the following model:

 = 

 +   = 1 2  

a) Let  = 10,  ∼  (0 1),  ∼  (0 1),  and  are independent. Let

the true parameter be 0 = 2. Write a GAUSS program to generate  Print

the values of 1  10

b) Write a GAUSS program to estimate the parameter 0 for  = 10.

Print the estimated value b.
c) Now repeat the program for  = 20 40 60  200. Plot the trend

of the estimators for  = 20 40 60  200. Is the nonlinear least squares

estimator consistent?

d) Use GAUSS to simulate the sampling distribution of the nonlinear

least squares estimator for  = 10 100 and 500, using 1000 replications. Is

the nonlinear least squares estimators asymptotically normal?

Exercise 0.117 True or False? Explain:
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(a) If a sequence of functions  () converge to  () uniformly in the

parameter space Θ, then  () converge to  () pointwise in Θ.

(b) In the nonlinear least squares estimation, if the parameter space is

Θ = [0 1] and the true parameter is  = 1, then the nonlinear least squares

estimator is asymptotically normally distributed.

(c) The nonlinear least squares estimation relies on the distribution of the

error term.

Exercise 0.118 Consider the model

 = ()

+   = 1 2  

 (; 0) = (0)
0 

0 =

Ã
0

0

!


 () =
1



X
=1

³
 − ()

´2


(a) Derive the First-order conditions

 ()


= 0

and

 ()


= 0

(b) Is the model solvable? explained.

Exercise 0.119 Consider the following model:

 = 

 +   = 1 2  
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a) Let  ∼  (0 1),  ∼  (0 1),  and  are independent. Let the true

parameters be 0 = 2, 0 = 2. Write a GAUSS program to estimate the

parameters 0, 0 for  = 20. Print the estimated values b and b.
b) Plot the trend of the estimators for  = 20 40 60  200. Are the

nonlinear least squares estimators consistent?

c) Use GAUSS to simulate the sampling distribution of the nonlinear least

squares estimators for  = 10 100 and 500, using 1000 replications. Are the

nonlinear least squares estimators asymptotically normal?

d) Repeat a) to c) if 0 = 0

e) Repeat a) to c) if 0 = 0

Exercise 0.120 Consider the following model:

 =  +   = 1 2  

a) Derive and simplify the first order conditions for the NLS estimator.

b) Let  ∼  (0 1),  ∼  (0 1),  and  are independent. Let the true

parameters be 0 = 2, 0 = 2. Write a GAUSS program to estimate the

parameters 0, 0 for  = 20. Print the estimated values b and b.
c) Now repeat the program for  = 20 40 60  200. Plot the trend of

the estimators for  = 20 40 60  200. Are the nonlinear least squares

estimators consistent? Why?

d) Use GAUSS to simulate the sampling distribution of the nonlinear

least squares estimators for  = 10 100 and 500, using 1000 replications.

Are the nonlinear least squares estimators asymptotically normal? Why?

Exercise 0.121 (Difficult) Consider the following model:

 = −1 +   = 1 2  

(a) Describe how to get the nonlinear least-squares estimator for .
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(b) If the true value of  = 1, what will be the asymptotic distribution of

the nonlinear least square estimator?

Now suppose we estimate  via the MLE method by assuming  follows

independent  (0 1).

(c) Derive the log-Likelihood function ln (; ) and the scores function

.

(d) Describe how to get the ML estimator b.
(e) Describe how to get the Information Matrix.

(f) Describe how to form a Wald test for  = 1

Exercise 0.122 Consider the model

 =



+   = 1 2  

 () =
1



X
=1

³
 − 



´2


(a) Derive the first-order condition

 ()


= 0

Is this a linear or nonlinear model?

(b) Solve the least square estimator for .

(c) Suppose we want to test the null hypothesis that y does not depends

on x, write down the null hypothesis in terms of .

(d) Suppose we construct a Wald test under the null 0 :  = 0
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 =

³b − 0

´2
d  ³b´

Discuss the problem associated with the test in this case, and suggest

some remedies for the test.

Exercise 0.123 The following GAUSS can not be executed, find out 5 mis-

takes in the program.

output file=5120.out reset;

“Simulate the distribution of nonlinear least square estimator”;

T=500;

N=1000;

“N=”;N;

“T=”;T;

beta0=2;

“beta0=”;beta0;

betahat=zeros(N,1);

range=4;

increment=0.1;

“increment=”;increment;

start=0;

“beta begins from”;start;

“beta ends at”;start+range;

y=zeros(T,1);

j=1;

do until jN;

beta=zeros(range/increment,1);

RSS=9^ 99.*ones(range/increment,1);

x=rndu(T,1);

u=rndn(T,1);

y=x^ beta0+u;
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m=1;

do until mrange*increment;

beta[m,1]=start+m*increment;

e=y-x^beta[m,1];

RSS[m,1]=e’e;

endo;

mstar=minindc(RSS);

betahat[j,1]=beta[mstar,1];

j=j+1;

endo;

library pgraph;

graphset;

begwind;

title(“T=500, N=1000, beta0=2”);

xlabel(“T^.5*(betahat-beta0)”);

ylabel(“frequency”);

hist(T^.5*(betahat-beta0),10)

endwind;
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ECO5120: Econometric Theory and Application, Fall 2006

Prof. T.L. Chong

HANDOUT 7

DISCRETE AND LIMITED DEPENDENT VARIABLE

MODELS

Linear Probability Model

In empirical studies, we often encounter variables which are qualitative

rather than quantitative. For example, we may be interested in whether

people participate in the labor force or not; whether people get married or

not; whether people buy a car or not, etc., all these yes-no decisions are not

easily quantifiable. In the case where the dependent variable is qualitative,

we normally use the technique that, if the dependent variable falls into a

certain category, we give it a value of 1, and assign a value of 0 to it if it falls

into another category.

Suppose  is a binary variable, consider a simple regression model

 = 0 + 1 + 

Note very carefully that we cannot simply assume  to be  (0 
2), as

 cannot be treated as a predicted value in a regression line plus an arbitrary

residual. This is because  only takes either 0 or 1, so the residuals also take

only two possible values for a given value of .

First, note that

 () = 1× Pr ( = 1) + 0× Pr ( = 0) = Pr ( = 1) 
Further, if  = 1, then  = 1−0−1, and if  = 0,  = −0−1
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 () = (1− 0 − 1) Pr ( = 1) + (−0 − 1) Pr ( = 0)

= (1− 0 − 1) Pr ( = 1) + (−0 − 1) (1− Pr ( = 1))
= Pr ( = 1)− 0 − 1

We can still assume  () = 0 in order to get an unbiased estimator.

This will imply

Pr ( = 1)− 0 − 1 = 0

or

Pr ( = 1) = 0 + 1

We call this a linear probability model, and 1 is interpreted as the mar-

ginal effect of  on the probability of getting  = 1 To give a concrete

example, suppose we have data on two groups of people, one group purchase

sport car while the other purchase family car.

We define  = 1 if a family car is purchased and  = 0 if a sport car is

purchased. Suppose  is the family size. Then 1 is interpreted as: if there

is one more member in the family, by how much will the chance of buying a

family car increase?

The advantage of using the linear probability model is that it is simple,

just run a regression and you will get the parameters of interest. However,

there are a lot of problems associated with the linear probability model.

Heteroskedasticity

The first problem is that we cannot assume   () to be a constant in

this framework. To see why, note that
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  () = 
¡
2
¢−2 () = 

¡
2
¢

= (1− 0 − 1)
2
Pr ( = 1) + (−0 − 1)

2
Pr ( = 0)

= (1− 0 − 1)
2
Pr ( = 1) + (0 + 1)

2
Pr ( = 0)

= (1− 0 − 1) (0 + 1) 

which is not a constant and will vary with . Further, it may even be

negative. Thus, we have the problem of heteroskedasticity, and the estimators

will be inefficient.

Now since the disturbance is heteroskedastic, the OLS estimator will be

inefficient, therefore we may use Generalized Least Squares to obtain efficient

estimates.

If 0  b  1 for all , we can get GLS estimators by dividing all the

observations by

r³
1− b0 − b1

´³b0 + b1

´
=

r³
1− b´ b.

Non-normality of the disturbances

An additional problem is that the error distribution is not normal. This is

because given the value of , the disturbance  only takes 2 values, namely,

 = 1−0−1 or  = −0−1. Thus,  actually follows the binomial

distribution.

We cannot apply the classical statistical tests to the estimated parameters

when the sample is small, since the tests depend on the normality of the

errors. However, as sample size increases indefinitely, it can be shown that

the OLS estimators tend to be normally distributed. Therefore, in large

samples, statistical inference of the LPM can be carried out as usual.

Questionable value of 2 as a measure of goodness of fit

The conventional 2 is of limited use in the dichotomous response models.

Since all the  values will either lie along the  axis or along the line

corresponding to 1, no linear regression line will fit the data well. As a
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result, the conventional 2 is likely to be much lower than 1 for such models.

In most cases, the 2 ranges from 02 to 06.

Nonfulfillment of 0  \Pr ( = 1) 1

The other problem is on prediction. Since

b = b0 + b1 = \Pr ( = 1)

is the predicted probability of  being equal to 1 given , which must

be bounded between 0 and 1 theoretically. However, the predicted value here

is unbounded as we do not impose any restrictions on the values of . An

obvious solution for this problem is to set extreme predictions equal to 1 or

0, thereby constraining predicted probabilities within the zero-one interval.

This solution is not very satisfying either, as it suggests that we might

have a predicted probability of 1 when it is entirely possible that an event

may not occur, or we might have a predicted probability 0 when an event

may actually occur. While the estimation procedure might yield unbiased

estimates, the predictions obtained from the estimation process are clearly

biased.

An alternative approach is to re-estimate the parameters subject to the

constraint that the predicted value is bounded between zero and one. Since

predicted value is the value in a regression curve, we must find a functionb =  ( ) such that 0 ≤  ( ) ≤ 1 for all  and  Clearly  ( )

cannot be linear in either  or , i.e.  ( ) = 0 + 1 will not work.

If we can find a function which is bounded between zero and one, then

we can solve the problem of unrealistic prediction. What kind of function

will be bounded between zero and one? Actually there are a lot of such

functions, one of them is the cumulative distribution function. For example,

a normal distribution has an increasing, S-shaped CDF bounded between

zero and one. Another example is

 ( ) =
1

1 + exp [− (0 + 1)]
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Note that as 1 → −∞,  ( )→ 0, and as 1 →∞,  ( )→
1. Since  ( ) is not linear in , we cannot use the linear least squares

method. Instead, the non-linear least squares or Maximum Likelihood esti-

mation methods should be used.

Random Utility Model

Suppose you have to make a decision on two alternatives, say, whether to

buy a sport car or family car. Given the characteristics  of individual  ,

for example, his/her family size, income, etc. Let

1 = 0 + 1 + 1

2 = 0 + 1 + 2

where 1 is the utility derived from a family car, and 2 is the utility

derived from a sport car. The individual will buy a family car if 1  2, or

1 − 2  0 Subtracting the second equation from the first equation gives

1 − 2 = 0 − 0 + (1 − 1) + 1 − 2

Suppose we define  ∗ = 1−2, 0 = 0−0, 1 = 1−1,  = 1−2
We can rewrite the model as

 ∗ = 0 + 1 + 

However, we cannot observe the exact value of  ∗ , what we observe is

whether the individual buy a family car or not. That is, we only observe

whether  ∗  0 or  ∗  0. If  ∗  0, the individual will buy a family car,

we assign a value  = 1 for this observation, and assign  = 0 otherwise.

Denote the density function and distribution function of  by  (·) and
 (·) respectively, and suppose it is symmetric about zero, i.e.,  () =
 (−), and  () = 1−  (−). We then have:
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Pr ( = 1) = Pr ( ∗  0)

= Pr (0 + 1 +   0)

= Pr (−  0 + 1)

= Pr (  0 + 1) since  is symmetrically distributed about zero,

=  (0 + 1) 

and

Pr ( = 0) = 1− Pr ( = 1) = 1−  (0 + 1) 

Note that the marginal effects of an increase in  in the probability is

nonlinear in 0, in particular,

 Pr ( = 0)



= − (0 + 1)1

 Pr ( = 1)



=  (0 + 1)1

Consider the case where 1  0, since  (·)  0, we have

 Pr ( = 0)



 0

 Pr ( = 1)



 0

Maximum Likelihood Estimation (MLE) of the Probit and Logit

Models

Let  (1 2   ;) be the joint probability density of the sample ob-

servations when the true parameter is . This is a function of 1 2  

and . As a function of the sample observation it is called a joint probability

density function of 1 2   . As a function of the parameter  it is called
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the likelihood function for . The MLE method is to choose a value of 

which maximizes  (1 2   ;).

Intuitively speaking, if you are faced with several values of , each of

which might be the true value, your best guess is the value which would have

made the sample actually observed have the highest probability.

Suppose we have  observations of  and , where  takes the value

zero or one. The probability of getting such observations is

 = Pr (1 = 1 2 = 2   =  )

= Pr (1 = 1) Pr (2 = 2) Pr ( =  )

by the independence of 

Since  only takes either zero or one, we can group them into two groups.

 =
Y
=1

Pr ( = 1)
Y
=0

Pr ( = 0)

=
Y
=1

 (0 + 1)
Y
=0

[1−  (0 + 1)]

=

Y
=1

[ (0 + 1)]
 [1−  (0 + 1)]

1− 

ln = ln

(
Y
=1

[ (0 + 1)]
 [1−  (0 + 1)]

1−
)

=

X
=1

ln
n
[ (0 + 1)]

 [1−  (0 + 1)]
1−

o
=

X
=1

 ln (0 + 1) +

X
=1

(1− ) ln [1−  (0 + 1)] 

We want to maximize , or equivalently, maximize ln since ln (·) is a
monotonic increasing function. The first order conditions are
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 ln

0
=

X
=1


 (0 + 1)

 (0 + 1)
−

X
=1

(1− )
 (0 + 1)

1−  (0 + 1)
= 0

 ln

1
=

X
=1



 (0 + 1)

 (0 + 1)
−

X
=1

(1− )

 (0 + 1)

1−  (0 + 1)
= 0

These two equations can be solved to obtain estimators for 0. However,

as ln is a highly nonlinear function of 0, we cannot easily get the estimator

of 0 by simple substitution. We may use the grid-search method and a

computer algorithm to solve the problem.

The MLE procedure has a number of desirable properties. When sample

size is large, all estimators are consistent and also efficient if there is no

misspecification on the probability distribution. In addition, all parameters

are known to be normally distributed when sample size is large.

If we assume  to be normally distributed  (0 2), i.e.,

 (0 + 1) =
1√
2

exp

Ã
−(0 + 1)

2

22

!


 (0 + 1) =

Z 0+1

−∞

1√
2

exp

µ
− 2

22

¶


then we have the Probit Model.

The first order condition can be simplified to

 ln

0
=
X
=1

exp

Ã
−(0 + 1)

2

22

!
R 0+1

−∞ exp

µ
− 2

22

¶


−
X
=0

exp

Ã
−(0 + 1)

2

22

!
R∞
0+1

exp

µ
− 2

22

¶


= 0
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 ln

1
=
X
=1

 exp

Ã
−(0 + 1)

2

22

!
R 0+1

−∞ exp

µ
− 2

22

¶


−
X
=0

 exp

Ã
−(0 + 1)

2

22

!
R∞
0+1

exp

µ
− 2

22

¶


= 0

Although the normal distribution is a commonly used distribution, its

distribution function is not a closed form function of . As the two first order

conditions above involve the integration operator, the computational cost will

be tremendous. For mathematical convenience, the logistic distribution is

proposed:

 (0 + 1) =
exp (0 + 1)

(1 + exp (0 + 1))
2


 (0 + 1) =
exp (0 + 1)

1 + exp (0 + 1)


If we assume  to have a logistic distribution, then we have the Logit

Model. The first order condition can be simplified to

 ln

0
=
X
=1

1

1 + exp (0 + 1)
−
X
=0

1

1 + exp (−0 − 1)
= 0

 ln

1
=
X
=1



1 + exp (0 + 1)
−
X
=0



1 + exp (−0 − 1)
= 0

Polychotomous Variables with Unordered Data: The Multinomial

Logit Model

Suppose there are  individuals and  categories, e.g., Occupational

choice. Define  = 1 if individual  choose category , and  = 0 oth-

erwise. Thus,
P

=1  = 1 for all .
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For a simple analysis, we assume  = 3. Assume that an individual 

whose utilities associated with three alternatives are given by

 =  0
 +   = 1 2 3

where  and  are vectors.

Assume that  are independent and identically distributed, each with

the extreme value distribution

 () = exp (− exp (−)) 

 () = exp (−) exp (− exp (−)) 
Now, suppose there are 3 categories, category 1, 2 and 3. The probability

that individual  will choose category 2 is

140



Pr (2 = 1)

= Pr (2  1 and 2  3)

= Pr ( 0
2 + 2   0

1 + 1 and  0
2 + 2   0

3 + 3)

= Pr (1  2 + 0
 (2 − 1) and 3  2 + 0

 (2 − 3))

=

Z ∞

−∞
 (2) Pr (1  2 + 0

 (2 − 1) and 3  2 + 0
 (2 − 3) |2) 2

=

Z ∞

−∞
 (2) Pr (1  2 + 0

 (2 − 1) |2) Pr (3  2 + 0
 (2 − 3) |2) 2

=

Z ∞

−∞

"Z 2+
0
(2−1)

−∞
 (1) 1

#"Z 2+
0
(2−3)

−∞
 (3) 3

#
 (2)

=

Z ∞

−∞
[exp (− exp (−2 − 0

 (2 − 1)))] [exp (− exp (−2 − 0
 (2 − 3)))]  (2)

=

Z ∞

−∞
exp [− exp (−2) exp (− 0

 (2 − 1))] exp [− exp (−2) exp (− 0
 (2 − 3))]  (2)

=

Z ∞

−∞
 (2)

exp(−0
(2−1))  (2)

exp(−0
(2−3))  (2)

=

Z ∞

−∞
 (2)

exp(−0
(2−1))+exp(−0

(2−3))  (2)

=

"
 (2)

1+exp(−0
(2−1))+exp(−0

(2−3))

1 + exp (− 0
 (2 − 1)) + exp (− 0

 (2 − 3))

#∞
−∞

=
1

1 + exp (− 0
 (2 − 1)) + exp (− 0

 (2 − 3))

=
exp ( 0

2)

exp ( 0
1) + exp (

0
2) + exp (

0
3)



Therefore, if there are  categories, the probability that individual i will

choose the j category will be

Pr ( = 1) =
exp

¡
 0


¢P

=1 exp (
0
)



One problem arises here, the  here cannot be identified as if we change all

the  to  + , where  is a vector of any constant, Pr ( = 1) will still be

the same since
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exp
¡
 0



¡
 + 

¢¢P

=1 exp (
0
 ( + ))

=
exp ( 0

) exp
¡
 0



¡
 + 

¢¢
exp ( 0

)
P

=1 exp (
0
 ( + ))

=
exp

¡
 0


¢P

=1 exp (
0
)



Therefore, for the parameter to be identified, we must impose some re-

strictions on . We can simply let 1 = 0, so that

Pr (1 = 1) =
1

1 +
P

=2 exp (
0
)



Pr ( = 1) =
exp

¡
 0


¢

1 +
P

=2 exp (
0
)

 = 2 3  

So the likelihood function is

 =

Y
=1

Y
=1

Pr ( = 1)
 =

Y
=1

Y
=1

"
exp

¡
 0


¢

1 +
P

=2 exp (
0
)

#

By using the conditions that 1 = 0 and
P

=1  = 1, we have

ln =

X
=1

X
=1

 ln

Ã
exp

¡
 0


¢

1 +
P

=2 exp (
0
)

!

=

X
=1

X
=1



Ã
 0

 − ln
"
1 +

X
=2

exp ( 0
)

#!

=

X
=1

Ã
X

=1


0
 −

Ã
X

=1



!
ln

"
1 +

X
=2

exp ( 0
)

#!

=

X
=1

Ã
X

=2


0
 − ln

"
1 +

X
=2

exp ( 0
)

#!


 ln


=

X
=1

Ã


0
 −

exp
¡
 0


¢

1 +
P

=2 exp (
0
)

 0


!
=

X
=1

Ã
 −

exp
¡
 0


¢

1 +
P

=2 exp (
0
)

!
 0
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Ordered Data

Some multinomial-choice variables are inherently ordered, e.g., Bond rat-

ings, opinion surveys, employment (unemployed, part time, or full time).

Consider the model

 ∗ = 0 + 1 + 

where  ∗ is unobserved. What we observe is

 = 1 if 0   ∗ ≤ 1

= 2 if 1   ∗ ≤ 2

= 3 if 2   ∗ ≤ 3

...

=  if −1   ∗ ≤  

where 0 = −∞ and  = ∞ Other 0 are unknown parameters to be

estimated with 0

Pr ( = ) = Pr
¡
−1   ∗ ≤ 

¢
= Pr

¡
−1  0 + 1 +  ≤ 

¢
= Pr

¡
 ≤  − 0 − 1

¢− Pr ¡ ≤ −1 − 0 − 1

¢
= 

¡
 − 0 − 1

¢− 
¡
−1 − 0 − 1

¢


We can either assume  is normally distributed, or has a logistic distri-

bution.

Suppose we have  observations of  and , where  takes the value

1 2   . The probability of getting such observations is

 = Pr (1 = 1 2 = 2   = ) = Pr (1 = 1) Pr (2 = 2) Pr ( = )
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by the independence of 

The likelihood function is

 =
Y
=1

Pr ( = 1)
Y
=2

Pr ( = 2) 
Y
=

Pr ( = ) 

=

Y
=1

Y
=1

£

¡
 − 0 − 1

¢− 
¡
−1 − 0 − 1

¢¤
where  = 1 if  =  and  = 0 otherwise.

ln =

X
=1

X
=1

 ln
©£

¡
 − 0 − 1

¢− 
¡
−1 − 0 − 1

¢¤ª


Consider a simple example:

Example 151 Suppose there are only 3 ordered categories, then

Pr ( = 1) =  (1 − 0 − 1) 

Pr ( = 2) =  (2 − 0 − 1)−  (1 − 0 − 1) 

Pr ( = 3) = 1−  (2 − 0 − 1) 

Consider the case where 1  0. For the three probabilities, the marginal

effects of changes in the regressors are

 Pr ( = 1)



= − (1 − 0 − 1)1  0

 Pr ( = 2)



= [ (2 − 0 − 1)−  (1 − 0 − 1)]1 =?

 Pr ( = 3)



=  (2 − 0 − 1)1  0
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Thus, in the general case, given the signs of the coefficients, only the

signs of the changes in Pr ( = 1) and Pr ( = ) are unambiguous. What

happens to the middle cell is ambiguous.

Truncation of data

Sometimes we cannot perfectly observe the actual value of the dependent

variable. In the previous section, when decisions are dichotomous (yes-no

decision), we only observe the sign of the dependent variable. If we only

observe a subpopulation such as individuals with income above a certain

level, then the data is said to be lower-truncated, in the sense that we can

never observe people with income below that level.

Let  be a random variable which takes values between −∞ and ∞,
with  ( ) ≥ 0 and

Z ∞

−∞
 ( )  = 1. Suppose  is being lower-truncated

at  = , and we can only observe those  that are bigger than . Now

since we only observe   , Pr (  ) =
R∞


 ( )  1, so we have to

change the unconditional density function  ( ) into a conditional density

function  ( |  ) such that
R∞


 ( |  )  = 1 Recall the definition

of conditional probability that Pr (|) =  ( ∩)
 ()

. Let  be the event

that   , and  be the event that   

Pr (  |  ) =
Pr (   ∩   )

 (  )
=

R 

 ( ) R∞


 ( ) 



 ( = |  ) =
Pr (  |  )


=

 ()R∞


 ( ) 


Example 152 Suppose  is uniformly distributed in the [0 1] interval, we

know that  ( ) = 1 and  ( ) =  . Thus, it is easy to find the uncondi-

tional probability Pr (  34) = 14. But suppose now we know that  must

be greater than 12, how will this re-adjust our prediction for Pr (  34)?
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Solution: Using the above rule

Pr

µ
 

3

4

¯̄̄̄
 

1

2

¶
=
Pr
¡
  3

4
∩   1

2

¢
Pr
¡
  1

2

¢ =
Pr
¡
  3

4

¢
Pr
¡
  1

2

¢ = 1
4
1
2

=
1

2


Moments of Truncated Distributions

Note that  ( ) is a weighted average of  ( |  ) and  ( |  )

since

 ( ) =

Z ∞

−∞
  ( ) 

=

Z 

−∞
  ( )  +

Z ∞



  ( ) 

=

Z 

−∞


 ( )

Pr (  )
 Pr (  ) +

Z ∞




 ( )

Pr (  )
 Pr (  )

=

Z 

−∞
  ( |  )  Pr (  ) +

Z ∞



  ( |  )  Pr (  )

=  ( |  ) Pr (  ) + ( |  ) Pr (  ) 

This implies

min { ( |  ) ,  ( |  )}   ( )  max { ( |  ) ,  ( |  )} 

Since  ( |  )   ( |  ), we have

 ( | ≥ ) =

Z ∞



  ( | ≥ )  ≥  ( ) 

 ( |  ) =

Z 

−∞
  ( |  )  ≤  ( ) 

If the truncation is from below, the mean of the truncated variable is

greater than the mean of the original one. If the truncation is from above,

the mean of the truncated variable is smaller than the mean of the original

one.
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Example 153 Find  (|  1) and   (|  1) if  () = exp (−),  

0 and compare them to their unconditional means and variances.

Solution:

 ( |   1) =

Z ∞

1

 ( |   1) 

=
1

1−  (1)

Z ∞

1

 () 

=
1

−1

Z ∞

1

 exp (−) 

=
1

−1

½
[− exp (−)]∞1 +

Z ∞

1

exp (−) 
¾

=
−1

−1
+
1−  (1)

1−  (1)

= 2

  () = 1

  ( |   1) = 
¡
2 |   1

¢− [ ( |   1)]
2

=

Z ∞

1

2 ( |   1) − 4

=
1

1−  (1)

Z ∞

1

2 () − 4

= 

Z ∞

1

2 () − 4

= 

Z ∞

1

2 exp (−) − 4

= 

∙£−2 exp (−)¤∞
1
+ 2

Z ∞

1

 exp (−) 
¸
− 4

= 
£
−1 + 2× 2−1¤− 4

= 1 =   () .
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Maximum Likelihood Estimation of the Truncated Model

Consider the simple model

 = 0 + 1 +   

Pr (  ) = Pr (0 + 1 +   )

= Pr (  − 0 − 1)

= 1−  (− 0 − 1) 

The Likelihood function is

 =  (1 = 1 2 = 2   =  |1   2      )

=  (1 − 0 − 11|1  )  (2 − 0 − 12|2  )  ( − 0 − 1 |  )

The Log-likelihood function is

ln = ln [ (1 − 0 − 11|1  )  (2 − 0 − 12|2  )  ( − 0 − 1 |  )]

=

X
=1

ln  ( − 0 − 1|  ) =

X
=1

ln
 ( − 0 − 1)

Pr (  )

=

X
=1

ln  ( − 0 − 1)−
X
=1

ln [1−  (− 0 − 1)] 

First order conditions:

 ln

0
= −

X
=1

 0 ( − 0 − 1)

 ( − 0 − 1)
−

X
=1

 (− 0 − 1)

1−  (− 0 − 1)
= 0

 ln

1
= −

X
=1



 0 ( − 0 − 1)

 ( − 0 − 1)
−

X
=1



 (− 0 − 1)

1−  (− 0 − 1)
= 0
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Maximum Likelihood Estimation of the Tobit Model

Sometimes data are censored rather than truncated. When the depen-

dent variable is censored, values in a certain range are all transformed to a

single value. Suppose we are interested in the demand for a certain hotel’s

accommodation, if the demand is higher than the hotel’s capacity, we will

never know the value of actual demand, and all this over-demand values are

reported as the total number of rooms in this hotel. We may also observe

people either work for a certain hour or not work at all. If people do not work

at all, their optimal working hour may be negative. But we will never observe

a negative working hour, we observe zero working hour instead. Suppose the

data is lower-censored at zero.

 ∗ = 0 + 1 + 

 = 0 if  ∗ ≤ 0
 =  ∗ if  ∗

  0

 ∗ is not observable, we can only observe  and . To fully utilize

the information, if the observation is not censored, we calculate the density

value at that point of observation  ( − 0 − 1). If the observation is

censored, we use the probability of observing a censored value Pr ( = 0).

Note that:

Pr ( = 0) = Pr (0 + 1 +  ≤ 0)
= Pr ( ≤ −0 − 1)

= 1−  (0 + 1) 

The Likelihood function is

 =
Y
0

 ( − 0 − 1)
Y
=0

Pr ( = 0) 
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The Log-likelihood function is

ln = ln

"Y
0

 ( − 0 − 1)
Y
=0

Pr ( = 0)

#
=

X
0

ln  ( − 0 − 1) +
X
=0

ln [1−  (0 + 1)] 

First order condition:

 ln

0
= −

X
0

 0 ( − 0 − 1)

 ( − 0 − 1)
−
X
=0

 (0 + 1)

1−  (0 + 1)
= 0

 ln

1
= −

X
0



 0 ( − 0 − 1)

 ( − 0 − 1)
−
X
=0



 (0 + 1)

1−  (0 + 1)
= 0

If  ∼  (0 2), and let  (·) andΦ (·) denote the density and distribution
functions of an  (0 1) respectively.

 ( − 0 − 1) =
1√
2

exp

Ã
−( − 0 − 1)

2

22

!
=
1




µ
 − 0 − 1



¶


 0 ( − 0 − 1) =
1

2
0
µ
 − 0 − 1



¶


 (0 + 1) =
1




µ
0 + 1



¶


 (0 + 1) = Φ

µ
0 + 1



¶


Then the log-likelihood can be rewritten as

ln =
X
0

ln
1




µ
 − 0 − 1



¶
+
X
=0

ln

∙
1−Φ

µ
0 + 1



¶¸
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Example 154 Consider the model  = 0 + 1 + . If the dependent

variable is upper-truncated at 1 and lower-censored at 2, for any 2 constants

2  1 ∞. Derive the log-likelihood function of such a model.

Solution: The likelihood function is given by

 =
Y
2

 ( − 0 − 1 |   1)
Y
=2

Pr ( = 2 |   1)

=
Y
2

 ( − 0 − 1)

Pr (  1)

Y
=2

Pr ( = 2)

Pr (  1)
.

where

Pr ( = 2) = Pr (0 + 1 +   2)

= Pr (  2 − 0 − 1)

=  (2 − 0 − 1)

and Pr (  1) = Pr (0 + 1 +   1)

=  (1 − 0 − 1) 

The log-likelihood function is given by

ln =
X
2

ln
 ( − 0 − 1)

Pr (  1)
+
X
=2

ln
Pr ( = 2)

Pr (  1)

=
X
2

ln
 ( − 0 − 1)

 (1 − 0 − 1)
+
X
=2

ln
 (2 − 0 − 1)

 (1 − 0 − 1)


Exercise 0.124 Consider the truncated model

 = 0 + 1 +   

where  are i.i.d. with density function and distribution function

 () = exp (−)
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and

 () = 1− exp (−)
respectively.

(a) Show that

Pr (  ) = exp (0 + 1 − )

(b) Suppose we have  observations of  and , find the log-likelihood

function.

(c) Find
 ln

0
and

 ln

1
. Discuss the identifiability of 0 and 1.

Exercise 0.125 Consider the Probit model

 ∗ = 0 + 1 + 

Suppose we can only observe the sign of  ∗ . If 
∗
  0, we assign a value

 = 1 for this observation, and assign  = 0 otherwise. Denote the density

function and distribution function of  by  (·) and  (·) respectively, where

 () =
1√
2

exp

µ
− 2
22

¶


 () =

Z 

−∞

1√
2

exp

µ
− 2

22

¶


(a) Show that

Pr ( = 1) =  (0 + 1) 

and
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Pr ( = 0) = 1−  (0 + 1) 

(b) Suppose we have  observations of  and , where  takes the

value zero or one. Assume  to be independent, show that the log-likelihood

function can be simplified to

ln =

X
=1

 ln

Z 0+1

−∞

1√
2

exp

µ
− 2

22

¶
+

X
=1

(1− ) ln

∙Z ∞

0+1

1√
2

exp

µ
− 2

22

¶


¸

(c) Let  =



, show that

ln =

X
=1

 ln

Z 0

+
1



−∞

1√
2
exp

µ
−

2

2

¶
+

X
=1

(1− ) ln

"Z ∞

0

+
1



1√
2
exp

µ
−

2

2

¶


#


(d) Given the data { }=1, suppose
³b0 b1 b´ = (1 2 3) maximizes

the log-likelihood function, will
³b0 b1 b´ = (2 4 6) also maximize the log-

likelihood function? Discuss the identifiability of 0 and 1.

Exercise 0.126 Consider the following linear probability model:

  = 0 + 1 + 2  + 3

+4 + 

where

  = 1 if couple  got divorce in the year of the survey, and

  = 0 if not.

 = family’s monthly income of couple  (in dollars).

  = years of marriage of couple .

 = 1 if the husband or the wife (or both) has an extramarital

affair, and  = 0 if not.

 = number of children of couple .
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a) Show that  ( ) = Pr (  = 1).

b) Interpret each of the above coefficients 0  4

c) Show that  () = 0 implies

Pr (  = 1) = 0 + 1 + 2  + 3

+4

d) Show that Var() = Pr (  = 1)Pr (  = 0).

e) Suppose the we estimate the model by OLS and get:

\  = 5− 0002 − 015  + 9

−03

What is the chance of getting divorce for:

i) a couple with 6 years of marriage, 2 children, family’s monthly income

of 1000 dollars, and no extramarital affair.

ii) a couple with 1 year of marriage, no children, family’s monthly income

of 2000 dollars, and the husband has an extramarital affair.

iii) a couple with 30 years of marriage, 3 children, family’s monthly income

of 4000 dollars, and the wife has an extramarital affair.

f) State an advantage and a shortcoming of the linear probability model.

Exercise 0.127 Consider the following linear probability model:

 = 0 + 1 + 2 + 3 

+4 + 5 + 6 + 
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where

 = 1 if individual  has an extramarital affair, and = 0 if not,

 = monthly income of individual  (in dollars),

 = monthly income of the spouse of individual ,

  =years of marriage of individual ,

 = number of children of individual ,

 =number of hours per week that individual  spends

with his/her spouse.

 = 1 if individual  is a male, and = 0 otherwise.

(a) Interpret each of the above coefficients 1  6, what are their ex-

pected signs? Explain.

(b) Show that  () = 0 implies

Pr ( = 1) = 0 + 1 + 2

+3  + 4

+5 + 6

(c) Show that Var() = Pr ( = 1)Pr ( = 0).

(d) Suggest a method to fix the problem of heteroskedasticity in part (c).

What is the advantage and shortcoming of your method?

(e) Suppose the we estimate the model by OLS and get:

\ = 5 + 008 − 009 − 015 

−03 − 004 + 007

What is the chance of having an extramarital affair for:
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i) a man with 6 years of marriage, 2 children, monthly income of 1000

dollars, wife’s income is 800 and he spends 100 hours per week with his wife.

ii) a woman with 1 years of marriage, 1 child, monthly income of 1000

dollars, husband’s income is 900 and she spends 56 hours per week with his

husband.

iii) a man with 30 years of marriage, 3 children, monthly income of 700

dollars, wife’s income is 500 and he spends 120 hours per week with his wife.

Exercise 0.128 Using the data in Table 19.1 in Greene, repeat the calcula-

tion of Table 19.2 using

(a) Linear probability model;

(b) Probit model;

(c) Logit model;

(b) Nonlinear regression model with

 =
1

1 + exp [− (0 + 11 + + )]
+ 

Exercise 0.129 Find  () and   () of the random variable  with

 () = exp (− exp (−)) 

 () = exp (−) exp (− exp (−)) 

Exercise 0.130 Find  (|  1) and   (|  1) if  ∼  (0 1), and

compare them to their unconditional means and variances.

Exercise 0.131 True/False. Explain.

(a) If we only observe a subpopulation such as individuals with income

above a certain level, then the data is said to be lower-truncated.
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(b) If we only observe a subpopulation, such as individuals with income

above a certain level, then the data are said to be lower-censored.

(c) When the dependent variable is censored, values in a certain range

are all transformed to a single value.

(d) When the dependent variable is truncated, values in a certain range

are all transformed to a single value.

(e) If X is a random variable which has an extreme value distribution

with density  () = exp (−) exp (− exp (−)) for −∞    ∞. Let

 = exp (−), then  ( ) = 1

Exercise 0.132 A Probit model assumes that the error term has a uniform

distribution. True/False.

Exercise 0.133 If we only observe a subpopulation, such as individuals with

income above a certain level, then the data are said to be lower-censored.

True/False.

Exercise 0.134   () ≥   (| = ) for any random variable  and

constant . True/False.

Exercise 0.135 Greene, 5th edition, Chapter 21, Exercises 1 & 3;.Chapter

22, Exercises 1 & 2.
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ECO5120: Econometric Theory and Application, Fall 2006

Prof. T.L. Chong

HANDOUT 8

AR(1) , I(1), NEARLY-I(1) PROCESSES and VAR Model

Definition 155 A process  is said to be weakly stationary (or covari-

ance stationary) if

 () =  ∞ for all 


¡
2
¢

 ∞ for all 

 ( − ) (− − ) = || ∞ for all  and any  = ±1±2 

Notice that if a process is covariance stationary, the covariance between

 and − depends only on , the length of time separating the observations.

Definition 156 A process is said to be strictly stationary if the joint dis-

tribution of

( +1 +2 +) depends only on (1 2  )  for all , and

any 1 2   . i.e. The joint density

 ( +1 +2 +) =  ( +1 +2 +)

for any  and .

Weakly stationarity and strictly stationarity do not imply each other, a

process can be strictly stationary but not weakly stationary. For example,

if the process has a Cauchy distribution, then its moments do not exist,

and it is not weakly stationary. However, as long as its distribution does not

change over time, it is strongly stationary. It is also possible to find a process

that is covariance-stationary but not strictly stationary, e.g., the mean and

covariance are not functions of time, but perhaps higher moments such as

 (4 ) and  (5 ) are.
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If a process is strictly stationary with finite second moments, then it must

be covariance-stationary.

AR(1) Process

Consider an autoregressive process of order 1,

 = −1 + 

||  1

 ∼ 
¡
0 2

¢


We are interested in finding the mean and variance of the process .

Assume that time starts from -∞, then by repeating substitution, we can
show that

 =  (−2 + −1) + 

= 2−2 + −1 + 

= 2 (−3 + −2) + −1 + 

= 

=  + −1 + 2−2 + 3−3 + + −11

=

∞X
=0

−

 () = 

Ã ∞X
=0

−

!
=

∞X
=0

 (−) = 0

  () =  

Ã ∞X
=0

−

!
=

∞X
=0

2  (−) = 2
∞X
=0

2

=
2

1− 2
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We are interested in the unknown parameter . For a data set {}=1,
the OLS estimator for  is given by

b =
P
=1

−1

P
=1

2−1

=  +

P
=1

−1

P
=1

2−1



Theorem 157 In an AR(1) model without intercept, if ||  1, and the

error terms are i.i.d., then the OLS estimator is consistent with an asymptotic

distribution given by

√

³b − 

´
=

P
=1

−1
√


P
=1

2−1

→ 
¡
0 1− 2

¢


Proof. Exercise.

Thus, in a stationary AR process, the OLS estimators is asymptotically

normally distributed.

Asymptotic Test for H0 :  = 0, where |0|  1.

Under the null 0 :  = 0, where |0|  1, the process is stationary and
as  →∞ the test statistic

 =
b − 0rd  ³b´

→  (0 1) 

where

d  ³b´ = b2P

=1 
2
−1
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b2 = 1

 − 1
X
=1

³
 − b−1´2 → 2

AR(1) process with AR(1) error term

Consider the process

 = −1 + 

 = −1 + 

where  is i.i.d. and independent of −1.

We know that the OLS estimator for  will be biased and inconsistent in

this case. What will it converge to?

Theorem 158 In an AR(1) model without intercept, if ||  1, and the

error terms are also an AR(1) process, then the OLS estimator is inconsistent

and

b →  +

¡
1− 2

¢
1 + 



Proof. Exercise.

I(1) Process

When  = 1, we call the process  an integrated process of order 1 ,

(1), or sometimes it is called the Unit-Root Process, RandomWalk process,

etc.. In the AR(1) model, as long as ||  1, the process  has a finite long
run variance, and it is covariance stationary. However, when  equals 1, the

variance of  explodes, and  is nonstationary as a result. The (1) process

is widely used in Economics and Finance. For example, in the stock market,

many people believe that the stock price is a random walk process. Given

the information set Ω in period , the prediction of tomorrow stock price is

today’s price, mathematically speaking,
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+1 =  + +1

 (+1|Ω) =  (|Ω) + (+1|Ω) =  + 0 = 

Consider the process

 = −1 + 

0 = 0

 ∼ 
¡
0 2

¢


 = −2 + −1 + 

= −3 + −2 + −1 + 

= 

=

−1X
=0

−

 () = 

Ã
−1X
=0

−

!
=

−1X
=0

 (−) = 0

  () =  

Ã
−1X
=0

−

!
=

−1X
=0

  (−) = 2

Thus

 ∼ 
¡
0 2

¢





√

∼  (0 1) 

Note that the OLS estimator is given by

b = 1 +P

=1 −1P

=1 
2
−1
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In an I(1) process, the term

P

=1 −1P

=1 
2
−1

behaves in a very strange way.

Let us study the numerator first. Note that

2 = (−1 + )
2
= 2−1 + 2−1 + 2 

Thus,

−1 =
1

2

¡
2 − 2−1 − 2

¢
X
=1

−1 =

X
=1

1

2

¡
2 − 2−1 − 2

¢
=

1

2

Ã
2 − 20 −

X
=1

2

!
1

2

X
=1

−1 =
1

22
2 −

1

22

X
=1

2

=
1

2

µ



√


¶2
− 1

22

X
=1

2

→ 1

2
( (0 1))

2 − 1
2


=
1

2

¡
21 − 1

¢


Therefore, the term in the numerator, after adjustment, will have a dis-

tribution related to a Chi-square random variable.

Definition 159 A Standard Brownian Motion  () is a continuous-

time stochastic process, associating each date  ∈ [0 1] such that:

1)  (0) = 0;

2) For any dates 0 ≤ 1  2     ≤ 1

 (1)   (2)− (1)   (3)− (2)    ()− (−1)   (1)− ()

are independent multivariate normal with [ ()− (−1)] ∼  (0  − −1) 
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Theorem 160 The asymptotic distribution of the OLS estimator when  =

1 is given by


³b − 1´ →  (1)

2 − 1
2
R 1
0
 ()

2




Note that both the rate of convergence and the asymptotic distribution

of b under  = 1 are different from the case where ||  1

Asymptotic Test for H0 :  = 1.

Under the null 0 :  = 1, the process is nonstationary, it will be shown

that the test statistic is not asymptotically normal. To see this, note that

 =
b − 1rd  ³b´ =

P

=1 −1P

=1 
2
−1s b2P

=1 
2
−1

=

P

=1 −1qP

=1 
2
−1 2√b2 →

1
2
2
¡
 (1)

2 − 1¢q
2
R 1
0
 ()

2



=

 (1)
2 − 1

2

qR 1
0
 ()

2




Theorem 161 Under 0 :  = 1, the asymptotic distribution of the t-

statistic is given by

 (1)
2 − 1

2

qR 1
0
 ()

2




which is a Dickey-Fuller distribution.

Vector Autoregression

Suppose we like to study the relation between a set of  economic variables

and their lags, we can run a p order vector autoregression (VAR()) model.

 = + Γ1−1 + + Γ− + 
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where

 = (1  )
0
is a  by 1 random vector of variables of interest.

For example,  = (2 ) represent the gross national income,

money demand and interest rate at time t.

 = (1  )
0
is a  by 1 random vector of uncorrelated disturbances

with zero mean and contemporaneous covariance matrix  (
0
) = Ω

 = (1  )
0
is a  by 1 fixed vector of intercept terms allowing for

possibility of nonzero  ().

Γ =

⎛⎜⎜⎜⎜⎝
Γ11 Γ12 · · · Γ1

Γ21 Γ22 · · · Γ2
...

...
. . .

...

Γ1 Γ2 · · · Γ

⎞⎟⎟⎟⎟⎠
are fixed  by  coefficient matrices,  = 1 2  .

Note that the system can be rewritten as


×1

= 
×1

+ Γ
×

−1
×1

+ 
×1



where

 =

⎛⎜⎜⎜⎜⎝


−1
...

−+1

⎞⎟⎟⎟⎟⎠   =

⎛⎜⎜⎜⎜⎝


0
...

0

⎞⎟⎟⎟⎟⎠ 

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Γ1 Γ2 · · · · · · Γ

 0 · · · 0 0

0  0 0
...

. . .
...

...

0 0 · · ·  0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
  =

⎛⎜⎜⎜⎜⎝


0
...

0

⎞⎟⎟⎟⎟⎠ 

A stable VAR can be written in infinite order Vector Moving Average

form. Note that
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 =  + Γ−1 + 

=  + Γ ( + Γ−2 + −1) + 

= 

= +

∞X
=0

Γ−

where

 =

∞X
=0

Γ

The matrix Γ can be interpreted as



 0
−

×

= Γ

A plot of the element of 
 0−

as a function of  is called the impulse-

response function.

More demanding materials

The Functional Central Limit Theorem

Define

 () =
1



[]X
=1

  ∈ [0 1] 

where [] stands for the largest integer less than or equal to . That

is
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 () = 0 for 0 ≤  
1



=
1


for

1


≤  

2


...

=



for  = 1

Note that  () is a step function of  in [0 1] 

√
 () =

1√


[]X
=1

 =

r
[]



⎛⎝ 1p
[]

[]X
=1



⎞⎠
It should be noted that, as  →∞r

[]


→ lim

→∞

r
[]


=
√


and

1p
[]

[]X
=1


→ 

¡
0 2

¢


Thus

√
 ()

→ 
¡
0 2

¢
and

√

 ()



→  (0 ) 

Note that, the asymptotic behavior of
√

 (·)


can be described by a

standard Brownian motion. To see this, note that,

1)
√

 (0)



→ 0;

2) For any 0 ≤ 1  2     ≤ 1

µ√

 (1)


−
√

 (0)



¶


µ√

 (2)


−
√

 (1)



¶
 

µ√

 (1)


−
√

 ()



¶
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are independent increments with

µ√

 ()


−√  (−1)



¶
→  (0  − −1) 

The functional central limit theorem states that

√

 (·)


→  (·)
Note that  (·) denotes a random function while  () denotes the

value that the function assumes at date , which is a random variable. Thus,

when the function is evaluated at  = 1, the conventional central limit theo-

rem is obtained, which is a special case of the functional central limit theorem,

i.e.

√

 (1)



→  (1) ∼  (0 1)

Theorem 162 The Continuous Mapping Theorem states that, if a se-

quence of random continuous functions,  :  ∈ [0 1] →  with  (·) →
 (·) where (·) is a stochastic function and  (·) is a continuous functional,
then  ( (·)) →  ( (·)) 

Remark 3 A functional is a function of function, for example the inte-

gral is a functional. Continuity of a functional  (·) means that for any
  0, there exists a   0 such that if  () and  () are any continuous

bounded functions on [0 1], such that | ()−  ()|   for all  ∈ [0 1],
then | ( (·))−  ( (·))|  

Therefore by the continuous mapping theorem, we haveZ 1

0

√
 () 

→ 

Z 1

0

 () 

Now define

 () =
h√

 ()
i2


That is
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 () = 0 for 0 ≤  
1



=
21


for
1


≤  

2


...

=
2


for  = 1

Note that  () is a step function of  in [0 1],

Z 1

0

 ()  =

−1X
=1

2


µ
1



¶


By the continuous mapping theorem, we also haveZ 1

0

 ()  =

Z 1

0

h√
 ()

i2


→ 2
Z 1

0

 ()
2


We have more results presented in the following proposition.

Proposition 163 If  follows an I(1) process

 = −1 + 

0 = 0

 ∼ 
¡
0 2

¢


Then

(a)
1√


P

=1 
→  (1) ;

(b)
1



P

=1 −1
→ 1

2
2
¡
 (1)

2 − 1¢ ;
(c)

1

 32
P

=1 
→  (1)− 

R 1
0
 () ;

(d)
1

 32
P

=1 −1
→ 

R 1
0
 () ;

(e)
1

 2
P

=1 
2
−1

→ 2
R 1
0
 ()

2
;

(f)
1

 52
P

=1 −1
→ 

R 1
0
 () ;
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(g)
1

 3
P

=1 
2
−1

→ 2
R 1
0
 ()

2
;

(h)
1

 +1

P

=1 
 → 1

1 + 


Proof. Exercise.

Nearly-I(1) Process

In an AR(1) model, when  is very close to 1 by a rate of 1

, we call the

process  a near-integrated or near unit-root process. Consider the process

 =
³
1− 



´
−1 +   = 1 2  

0 = 0

  0

 ∼ 
¡
0 2

¢
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 =
³
1− 



´
−1 + 

=
³
1− 



´2
−2 +

³
1− 



´
−1 + 

= 

=
³
1− 



´
0 +  +

³
1− 



´
−1 +

³
1− 



´2
−2 + +

³
1− 



´−1
1

=

−1X
=0

³
1− 



´
−

=

−1X
=0

− +
−1X
=0

µ³
1− 



´
− 1
¶
−

=

−1X
=0

− +
−1X
=1

µ³
1− 



´
− 1
¶
−

=

−1X
=0

− +
−1X
=1

Ã³³
1− 



´
− 1
´ −1X

=0

³
1− 



´!
−

=

−1X
=0

− − 



−1X
=1

−1X
=0

³
1− 



´
−

=

−1X
=0

− − 



−1X
=1

³
1− 



´−1 −X
=1



=

X
=1

 − 



−1X
=1

∙³
1− 



´¸(−1) −X
=1



Therefore,

1√

 =

1√


X
=1

 − 

−1X
=1

∙³
1− 



´¸(−1) 1√


−X
=1


1




Let

 = [ ] 

−  = [ ] 

 = [( − ) ] 
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1√

[ ] =

1√


[ ]X
=1

 − 

[ ]−1X
=1

∙³
1− 



´¸([ ]−[ ]−1) ⎛⎝ 1√


[ ]X
=1



⎞⎠ 1



⇒ 

∙
 ()− 

Z 

0

exp (− ( − )) () 

¸

=  () 

Proposition 164 If  follows a near I(1) process

 =
³
1− 



´
−1 + 

0 = 0   0

 ∼ 
¡
0 2

¢


Then

(a)
1√

[ ] ⇒  () ;

(b)
1



P

=1 −1 ⇒ 2
R 1
0
 ()  () ;

(c)
1

 2
P

=1 
2
−1 ⇒ 2

R 1
0
 ()

2


Proof. Exercise.

Theorem 165 Using (b) and (c) in the above proposition, the asymptotic

distribution of the OLS estimator when  = 1− 

is given by


³b − 

´
=

P

=1 −1P

=1 
2
−1 2

→ L () 

L () =

R 1
0
 ()  ()R 1
0
 ()

2




Proof. Exercise.
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L (0) =

R 1
0
 ()  ()R 1
0
 ()

2


=
 (1)

2 − 1
2
R 1
0
 ()

2




Proof. Exercise.

Theorem 166 As  →∞ and  → ∞, 

 1, the asymptotic distribution

of the OLS estimator when  = 1− 

is given by

vuut X
=1

2−1
³b − 

´
=

P

=1 −1
√
qP

=1 
2
−1

→ 
¡
0 2

¢


Proof. Exercise.

Exercise 0.136 Explain why the long-run variance of an I(1) process does

not exist.

Exercise 0.137 True/False. Explain.

(a) If a process is covariance stationary, then the covariance between 

and − depends only on .

(b) If a process is covariance stationary, then the covariance between 

and − depends only on .

(c) Weak stationarity is implied by strict stationarity.

(d) In an AR(1) model without an intercept, if ||  1, and the error

terms are i.i.d. with zero mean and finite variance, then
√

³b − 

´
→

 (0 1− ) 

(e) In an AR(1) model without an intercept, if ||  1, and the error

terms are i.i.d. with zero mean and finite variance, then
√

³b − 

´
→


¡
0 1− 2

¢


(f) In an AR(1) model without an intercept, if  = 1, and the error

terms are i.i.d. with zero mean and finite variance, then the test statisticb − 1rd  ³b´
→  (0 1) 

173



Exercise 0.138 Define = −−1,  =

P

=1


 Find 

¡

¢
  

¡

¢

and examine whether the Central Limit Theorem applies to  in the following

cases:

a)  = −1 +  where {}=0 ∼  (0 2)  
2
 ∞

b) {}=0 ∼  (0 2)  
2
 ∞

Exercise 0.139 Consider the following process

 = −1 + 

0 = 0

 ∼  (0 1) 

a) Write a Gauss program to simulate the above process  for  = 05

and  = 1, using a sample size  = 100.

b) Use Gauss to simulate the distribution of
√

³b − 05´ for  = 05,

and 
³b − 1´ for  = 1, where b = P

=1 −1P

=1 
2
−1

, using a sample size

 = 100, with the number of replications  = 10000.

c) Use Gauss to simulate the distribution of the test statistic

 =
b − 05rd  ³b´ for  = 05

and

 =
b − 1rd  ³b´ for  = 1

where

d  ³b´ = b2P

=1 
2
−1
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b2 = 1

 − 1
X
=1

³
 − b−1´2 

using a sample size  = 25 50 100 250 500 1000, with the number of

replications  = 10000. Calculate the 1%, 2.5%, 5%, 10%, 50%, 90%, 95%,

97.5% and 99% critical values. Compare your results to a t-table and a

Dickey Fuller table.

Exercise 0.140 Test whether the Hang Seng Index follows a unit root process,

using year 2006 daily closing price data from January to October.

Exercise 0.141 Suppose in GNP and Consumption are related as in the

following VAR(2) model:

Ã




!
=

Ã
2

1

!
+

Ã
7 1

0 4

!Ã
−1
−1

!
+

Ã
−2 0

0 1

!Ã
−2
−2

!
+

Ã
1

2

!


(a) Write the process  =

Ã




!
in VAR(1) form of


4×1

= 
4×1
+ Γ
4×4

−1
4×1

+ 
4×1



where  =

Ã


−1

!
  =

Ã


0

!
Γ =

Ã
Γ1 Γ2

2 0

!
  =

Ã


0

!


(b) Calculate Γ
4×4

 for  = 2 3.

Exercise 0.142 Suppose in China the growth rate of income and money

demand and the interest rate are related as in the following VAR(2) model:

⎛⎜⎝ 

2



⎞⎟⎠ =

⎛⎜⎝ 2

1

0

⎞⎟⎠+
⎛⎜⎝ 7 1 0

0 4 1

9 0 8

⎞⎟⎠
⎛⎜⎝ −1

2−1
−1

⎞⎟⎠

+

⎛⎜⎝ −2 0 0

0 1 1

0 0 0

⎞⎟⎠
⎛⎜⎝ −2

2−2
−2

⎞⎟⎠+
⎛⎜⎝ 1

2

3

⎞⎟⎠ 
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Ω =

⎛⎜⎝ 26 03 0

03 09 0

0 0 81

⎞⎟⎠ 

a) Write the process  =

⎛⎜⎝ 

2



⎞⎟⎠ in VAR(1) form.

b) Calculate


 0
−

6×6

= Γ

for i=0,1 and 2. What is the limit as →∞?

Exercise 0.143 Consider the process

 = −1 + 

0 = 0

 ∼ 
¡
0 2

¢


a) Find the asymptotic distribution of the OLS b if the true value of 
is

i)  = 05

ii)  = 1;

ii)  = −1;
iv)  = 1− 1




b) Use Gauss to simulate the distribution of b for the 2 cases in part a),
with T=100,1000, with N=10000,  ∼  (0 1) 

c) Redo parts a) and b) if the true process is
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 = + −1 + 

0 = 0

 6= 0

 ∼ 
¡
0 2

¢


d) Redo parts a) and b) if the true process is

 = + −1 + + 

0 = 0

 6= 0

 6= 0

 ∼ 
¡
0 2

¢


Exercise 0.144 Consider the process

 = (−1) −1 + 

0 = 0

 ∼ 
¡
0 2

¢


a) Show that

1 = 1

2 = 1 + 2

3 = −1 − 2 + 3

4 = −1 − 2 + 3 + 4

5 = 1 + 2 − 3 − 4 + 5

b) Let b = P

=2 −1P
=2 

2
−1

, show that

b = P

= 
2
−1 −

P

= 
2
−1 +

P

=1 −1P

=1 
2
−1
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c) Find  (21 − 22)   (
2
3 − 24)  

³P

= 
2
−1 −

P

= 
2
−1
´


d) Find plim b 
e) Write a Gauss program to simulate the distribution of b for the

T=100000, and N=10000,  ∼  (0 1) 

Exercise 0.145 Consider the following model:

 = 1−1 +   = 1 2  0

 = 2−1 +   = 0 + 1 0 + 2  

We let  =



and make the following assumptions:

(1) 0 = 0;

(2)  ∼  (0 2) ∀ 0  2 ∞ and  (4 ) ∞;
(3)  0 =

0


∈ [   ] ⊂ (0 1) 

For any given constant  , the  estimators are given by:

b1 () =

[ ]P
=1

−1

[ ]P
=1

2−1



b2 () =

P
=[ ]+1

−1

P
=[ ]+1

2−1



(a) Suppose |1|  1 and |2|  1. Show that:
For 0   ≤  0

(i) b1 () → 1

(ii) b2 () → ( 0 − )
¡
1− 22

¢
1 + (1−  0)

¡
1− 21

¢
2

( 0 − )
¡
1− 22

¢
+ (1−  0)

¡
1− 21

¢ 

For  0    1
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(iii) b1 () →  0
¡
1− 22

¢
1 + ( −  0)

¡
1− 21

¢
2

 0
¡
1− 22

¢
+ ( −  0)

¡
1− 21

¢ 

(iv) b2 () → 2

(b) Suppose |1|  1 and 2 = 1. Show that:

For 0   ≤  0

(i) b1 () → 1

(ii) b2 () → 1

For  0    1

(iii) b1 () → 1

(iv) b2 () → 1

c) Suppose 1 = 1 and |2|  1. Show that:
For 0   ≤  0

(i) b1 () → 1

(ii) b2 () → 1

For  0    1

(iii) b1 () → 1

(iv) b2 () → 2

(d) Assume |1|  1 and 2 = 1. Find probability limit of

[0 ]P
=1

2−1

P
=[0 ]+1

2−1

as  goes to infinity.

Exercise 0.146 Consider the process

∗ = ∗−1 + 

∗0 = 0

 ∼ 
¡
0 2

¢
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Suppose ∗ is not observable and we only observe , where  = ∗ + ,

 ∼  (0 2). {∗ }=1, {}=1and {}=1 are independent.

a) Suppose ||  1, show that as →∞


¡
∗2
¢ 
= 2∗ =

2

1− 2


b) Let

 =
2∗

2∗ + 2

and

b = P

=2 −1P

=2 
2
−1



Show that

b → 

c) Suppose  = 1, show that plim b = 1
d) Write a Gauss program to simulate the distribution of b for  =

100000,  = 10000,  ∼  (0 1) and  ∼  (0 1)

Exercise 0.147 Consider the process

 = −1 + 

0 = 0

 = 1

Suppose  takes values between 0 and 1. (e.g. if  is the unemployment

rate at time , then it takes values between zero and 1.)
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(a) Given −1, let  be the lower bound of , and  be the upper bound

of . Find  and .

(b) Given −1, Let  be uniformly distributed in [ ] , find  (|−1)
and   (|−1).
(c) Find the asymptotic distribution of

b = P

=1 −1P

=1 
2
−1



Exercise 0.148 Consider the following model:

 = −1 +   = 1 2  

(a) Describe how to get the nonlinear least-squares estimator for .

(b) If the true value of  = 1, what will be the asymptotic distribution of

the nonlinear least square estimator?

Now suppose we estimate  via the MLE method by assuming  follows

independent  (0 1).

(c) Derive the log-Likelihood function ln (; ) and the scores function

.

(d) Describe how to get the ML estimator b.
(e) Describe how to get the Information Matrix.

(f) Describe how to form a Wald test for  = 1

Exercise 0.149 Let  = −1 +  be an I(1) process with 0 = 0 and

{}=1 follow an i.i.d. (0 1) distribution with density function  () =

1√
2
exp

µ
−

2

2

¶
. Suppose we run the following regression:
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max { − −1 −1 − −2} = +min { − −1 −1 − −2}+ ( = 2 )

i.e., we regressmax { − −1 −1 − −2} onmin { − −1 −1 − −2}
with an intercept. Let b be the OLS estimator for the slope parameter .
Find

 lim
b + 1b 

Exercise 0.150 Consider the following time series model

 = ((−1)

+  )

1
 for  = 1 2   = 1 2 3 

(a) Simplify the model for  = 1 and  =∞

Now consider the following model:

 = max {−1 } for  = 1 2  

where   0  are constant mean and finite variance i.i.d. positive

valued random variables.

Suppose the true  = 1 and 0 = 0.. Define the estimator for  as

b = min½2
1

3

2
 



−1

¾

(b) Show that the model can be rewritten as

 = max {1 2  } for  = 1 2  

(c) Show that Pr
³b = 1´ = 1− 1

 !
.

(d) Is b a consistent estimator for  when  = 1?

182



Exercise 0.151 Consider the following time series process:

 = −1 + 

 = + 

where {}∞=0 and {}∞=0 are two independent random variable with zero
mean and finite variance 2 and 2, i.i.d. random variables. We let 0 = 0

(a) Show, by successive substitution, that

 =  +

−1X
=1

Ã
−1Y
=0

−

!
−.

(b) Find  () and   ().

(c) Under what condition will   () be finite? Under what condition

will it be infinite as  goes to infinity?

(d) Let 1


P

=1 ( − )
2
be the sample variance of . As the sample size

tends to infinity, compare the sample variance for the following three cases:

(i)  = 1 2 = 0;

(ii) 2 = 05 2 = 05;

(iii)  = −1 2 = 0

Exercise 0.152 Show that L () can also be written as

L () =

R 1
0
(1 + )

−1
 ()  ()R 1

0
(1 + )

−2
 ()

2




 = (exp (2)− 1) 

Exercise 0.153 (Difficult) Suppose the true process  ∗ is an AR(1) process

183



 ∗ =  ∗−1 + 

 ∗0 = 0

 ∼  (0 1) 

But we only observe

 = 0 if  ∗ ≤ 0
 =  ∗ if  ∗

  0

(a) Find the probability limit of the OLS estimator b =
P
=2

−1

P
=2

 2
−1



(b) Describe how to use MLE to estimate  consistently based on the

observed data {}=1.
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SOME TIME SERIES MODELS

Cointegration Model

An (× 1) vector time series is said to be cointegrated if each of the
series taken individually is I(1), while some linear combinations of the series

is stationary. For example, consider the model

1 = 2 + 1

2 = 2−1 + 2

while 1 and 2 are uncorrelated white noise processes. Thus we have

∆2 = 2

∆1 = ∆2 +∆1

= 2 + 1 − 1−1

= 

with

 () = 0;

  () = 2  (2) +   (1) +   (1−1) ∞;
 ( −) = −  (1−) for k=± 1

= 0 for k=± 2±3 
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Thus,  is a stationary process and hence 1 is also an  (1) process.

Hence, although both 1 and 2 are  (1) processes, their linear combi-

nations (1 − 2) can be an  (0) process. In this case, we say 1 and 2

are cointegrated with the cointegrating vector (1−) 

Structural Break Model

Consider the sequence of random variables

 = 1 +   = 1 2  0

 = 2 +   = 0 + 1 0 + 2  

 =  (0 2)  1 2 and 0 are unknown.

Estimation

For any given k, the pre- and post-shift estimators are

b1 () = P

=1 




b2 () = P

=+1 

 − 


The residual sum of squares at  is

 () =

X
=1

³
 − b1 ()´2 + X

=+1

³
 − b2 ()´2 

The least square estimator for 0 is defined as

b =   () 
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Testing for structural break with unknown break date

We want to test if there is a break in coefficient, i.e.,

0 : 1 = 2

or equivalently

0 : 2 − 1 = 0

Note that under the null hypothesis the parameter 0 does not exist.

For any given , the Wald test statistic is

 () =

³b2 ()− b1 ()´2d  ³b2 ()− b1 ()´ 
where b1 () and b2 () are the least squares estimators for 1 and 2.

 
³b2 ()− b1 ()´ =  

³b1 ()´+  
³b2 ()´− 2 ³b1 ()  b2 ()´

=  
³b1 ()´+  

³b2 ()´ by the independence of 

=  

Ã
1



X
=1



!
+  

Ã
1

 − 

X
=+1



!

=  

Ã
1



X
=1



!
+  

Ã
1

 − 

X
=+1



!

=
2


+

2

 − 

=
2

 ( − )


Thus

d  ³b2 − b1´ = b2
 ( − )

=
 ()

 ( − )
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Hence, the Wald test becomes

 () =  ( − )

³b2 ()− b1 ()´2
 ()



The Wald test above is only for a particular . Under the null hypothesis,

there is no break at all . Thus, we have to form a test which can incorporate

the case for all . To avoid the boundary case, we restrict the set of  to be

such that 

∈ [ ] ⊂ (0 1). We use the Sup-Wald test defined as

sup


∈[]⊂(01)

 () = sup


∈[]⊂(01)

 ( − )

³b2 ()− b1 ()´2
 ()



 ()
→ ( ()−  (1))

2

 (1− )


and

sup


∈[]⊂(01)

 ()
→ sup

∈[]⊂(01)

( ()−  (1))
2

 (1− )


where  () is a standard Brownian motion on [0 1] 

Fractionally Integrated Model

Definition 167 A time series process {} is said to be integrated of order
 if (1− ) is stationary, where  is a lag operator such that  = −1.

If  is not an integer, then the process is said to be fractionally integrated.

Consider the following model:

(1− )

 =   = 1 2  

where  is the lag operator and  is white noise.

 = (1− )
−
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 (1− )
−


=  (1− )

−−1

2 (1− )
−

2
=  (+ 1) (1− )

−−2

and

 (1− )
−


= (+  − 1) (+  − 2)  (+ 1)  (1− )

−−

A power serious expansion for (1− )
−
around  = 0 is given by

(1− )
−

= 1 + +
1

2!
(+ 1) 2 +

1

3!
(+ 2) (+ 1) 3 + · · ·

=

∞X
=0

Γ ( + )

Γ ()Γ ( + 1)


where Γ () is the gamma function defined as

Γ () =

Z ∞

0

−1 exp (−)  for   0

Γ () =

∞X
=0

(−1)
(+ ) !

+

Z ∞

1

−1 exp (−)  for   0  6= 0−1−2−3 

Thus,

 = (1− )
−

 =

∞X
=0

Γ ( + )

Γ ()Γ ( + 1)
−

The  autocorrelation of this (0  0) process is given by

 () =

Y
=1

+ − 1
− 



Definition 168 A time series process is said to have long memory if
P∞

=−∞
¯̄

¯̄
=

∞
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Fractionally integrated process has the following properties:

(i) A fractionally integrated process with   0 is a long memory process.

(ii) A fractionally integrated process with  ≥ 05 is a nonstationary

process.

Estimating d via the Autocorrelation Function

The parameter of interest in the model is . There are a number of ways

to estimate the parameter d. Tieslau, Schmidt and Baillie (1996) propose a

minimum distance estimator of  defined to be

b = 
∈(−525)

[bρ− ρ ()]0−1 [b− ρ ()] 
where

ρ () is a  by 1 vector with the  element  ().bρ is a  by 1 vector with the  element b.
Since  () = 0, the sample autocorrelations can be defined as:

b =
P

=+1

−

P
=1

2



 is the asymptotic variance covariance matrix of bρ
 is given by

 =

∞X
=1

¡
+ + − − 2

¢ ¡
+ + − − 2

¢


The Shortcoming of TSB’s Estimator

In Tables 2,3 and 4 of TSB’s paper, a substantial efficiency loss occurs

when the first-order correlation is not used for the estimation of . This
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implies that the first-order autocorrelation carries most of the information

needed for the estimation of . This is due to the fact that the mapping

between  () and  is not one to one for all  ≥ 2.
Note that when  = 1

1 () =


1− 


In this instance, the mapping between  and 1 () is one to one. However,

for  ≥ 2, different values of  may generate the same  (). Consider the
values of  used in Table 2 of TSB’s paper. Table A shows all others values

of  which share the same  order autocorrelation for  = 2 3

Table A: Values of  which share the same  order autocorrelation for

 = 2 3

  = 2  = 3

−49 −2576 −1392−26410
−45 −2895 −1608−26801
−4 −3333 −1917−27213
−3 −4375 −2714−27665
−2 −5714 −3879−27298
−1 −75 −5772−25430
0 −1 −1−2
1 −1375 −13497± 9213

2 −2 −10789± 15197
24 −23846 −9317± 17192

For example, consider the case where  = 2, we have

2 () =

2Y
=1

+ − 1
− 



In this case, 2 (−04) = 2 (−3333) = −00714
Thus, if the true  is 0 = −04, and if we estimate 0 by using the second

order autocorrelation only, the estimator converges to the set {−04−3333} 
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Obviously, for  = 1, the criterion function is U-shape and thus it has a

unique minimum. However, for  ≥ 2, the shape changes with the true value
of .

The existence of multiple solution widens the variation of b. This will
make the variance of

√

³b− 

´
diverge to infinity as the sample size in-

creases.

Estimating d via the Partial Autocorrelation Function

Chong (2000) proposes another estimation method for d. The estimator

differs from TSB’s estimator in that it uses the sample partial correlation

function to form the moment conditions. The  order partial autocorrela-

tion function of a fractionally integrated process is:

 () =


− 


Since the mapping of  () and  is one to one for all , we can either

use a single  () or a combination of them to form an estimator of .

To obtain the estimate of  (). Let

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

1 0 · · · 0

2 1 · · · 0
... 2 · · · 0
...

... · · · ...
...

... · · · 1
...

... · · · ...

−1 −2 · · · −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


 = (1 2   )
0


bβ () = ³ b1 b2 · · · b−1 b ´0 = ( 0
)

−1


→ Φ (− 1)−1 ρ () 
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where Φ (− 1) is a ×  Toeplitz matrix defined as

Φ (− 1) =

⎛⎜⎜⎜⎜⎝
1 1 · · · −1
1 1 · · · −2
...

...
. . .

...

−1 −2 · · · 1

⎞⎟⎟⎟⎟⎠ 

ρ () =
³
1 2 · · · −1 

´0


The element of bβ () will converge in probability to a function of , in
particular,

bβ (2) → Φ (1)
−1
ρ (2) =

³
1
1−2
1−21

21−2
21−1

´0
=
³

2
2−


2−

´0


bβ (3) → Φ (2)
−1
ρ (3) =

³
3
3−

3(1−)
(3−)(2−)


3−

´0


bβ (4) → Φ (3)
−1
ρ (4) =

³
4
4−

6(1−)
(4−)(3−)

4(1−)
(4−)(3−)


4−

´0


Thus,

b → 

− 
=  () 

Hence, the  order sample partial autocorrelation can be obtained from

the estimated coefficient of − in the regression of  on −1 −2  −.

Chong’s estimator of  is defined to be

b = 
∈(−525)

 () 

where

 () = [bα−α ()]0Ω−1 [bα−α ()] 
α () is a  by 1 vector with the  element



 − 
.

bα is a  by 1 vector with the  element b.
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The ()

element of Ω is given by

Ω = lim
→∞


³b b

´
= lim

→∞


∙
 ()

³bβ ()− β ()´³bβ ()− β ()´0  ()0¸ 
where

 () = (0 0  0 1)| {z }
 terms

To find 
³bβ ()− β ()´³bβ ()− β ()´0. Note that

bρ ()− ρ () = bΦ (− 1) bβ ()− Φ (− 1)β ()
= Φ (− 1)

³bβ ()− β ()´+ ³bΦ (− 1)−Φ (− 1)
´
β () +

¡
−1

¢


we have

bβ ()− β () = Φ (− 1)−1∆ () 
where

∆ () = (bρ ()− ρ ())− ³bΦ (− 1)−Φ (− 1)
´
β () +

¡
−1

¢


Hence, Ω is reduced to

lim
→∞


£
 ()Φ ( − 1)−1 ¡∆ ()∆ ()0¢Φ (− 1)−1  ()0¤ 

Note that

lim
→∞


¡
∆ ()∆ ()

0¢
=  ()− lim

→∞

³bΦ ( − 1)−Φ ( − 1)

´
β () (bρ ()− ρ ())0

− lim
→∞

 (bρ ()− ρ ())β ()0 ³bΦ (− 1)−Φ (− 1)
´0

+ lim
→∞


³bΦ ( − 1)−Φ ( − 1)

´
β ()β ()

0
³bΦ (− 1)−Φ (− 1)

´
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where  () is a  by  matrix with the ( )

element .

The ( )

element of the matrix lim→∞ 

¡
∆ ()∆ ()

0¢
is given by

lim→∞ 
¡
∆ ()∆ ()

0¢

= −

P

=16= |−|−
P

=1 6= |−|+P

=16=
P

=1 6= |−||−|

Hence, the matrix Ω−1 can be constructed, and we can evaluate  () at

various values of  and find a  to minimize  ().
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Exercise 0.154 Verify the values in Table 1 of Andrews 1993, (Economet-

rica, pp.821-856). Use sample size T=100,1000,3600, number of repetitions

N=10000.

Exercise 0.155 True/False?

(a) If two variables  and  are cointegrated, then they are both non-

stationary.

(b) A Brownian motion has independent increments.

Exercise 0.156 Consider the following model.

 = 1 +   = 1 2  0

 = 2 +  0 + 1 0 + 2  

 = 1 2   ,  ∼  (0 1),  ∼  (0 1), {}=1 and {}=1 are inde-
pendent.

a) Derive the Least Squares estimators for b1, b2.
b) Construct a Sup-Wald Test for the hypothesis that 0 : 1 = 2

c) Derive the asymptotic distribution for the Sup-Wald test.

d) Under 0 : 1 = 2 (= 2, say), use GAUSS to simulate the sampling

distribution of b1, b2, b and SupWald for T=50, 100, 1000, using 20000
replications.

Exercise 0.157 Consider the model:

196



 = 1 +   ≤ 0

 = 2 +    0

( = 1 2   ) 

where 1 and 2 are the pre-shift and post-shift regression slope parame-

ters respectively, and let
0


=  0 be fixed.

(a) For any given , find the OLS estimators of b1 ()  b2 () and b
(b) If the true  is misspecified as 

2
 , will the OLS estimators of b = b


be consistent? Will the OLS estimators of 1 2 be consistent? Explain.

(c) If the true model has two breaks

 = 1 +   ≤ 1

 = 2 +  1   ≤ 2

 = 3 +    2

but we estimate a one-break model, plot a graph to approximate the

behavior of
1


 () when  is large, where  () is the residual sum

of squares for any given  ∈ [0 1]. What will  converge to? What factor(s)
will affect the probability limit b?
Exercise 0.158 Consider the following model.

 = 1
∗
 +   = 1 2  0

 = 2
∗
 +  0 + 1 0 + 2  

Suppose ∗ is not observable and we only observe 

a) Let  = 

,  = 1 2   . For any given  , derive the Least squares

estimators b1 , b2 .
b) Suppose  = ∗ + , where {∗}=1, {}=1and {}=1 are indepen-

dent.
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¡
∗2
¢
= 2∗

 ∼ 
¡
0 2

¢


Let

 =
2∗

2∗ + 2


Γ1 = 1
 0


+ 2

 −  0




Γ2 = 1
 0 − 

1− 
+ 2

1−  0

1− 


Show that for  ∈ [   0] 

b1 → 1b2 → Γ2

and for  ∈ ( 0  ]

b1 → Γ1b2 → 2

c) Let

 () =

[ ]X
=1

³
 − b1´2 + X

=[ ]+1

³
 − b2´2 

Show that 1

 ()

→  () where for  ∈ [   0)

 () = 2 + (1−  0)
¡
22 − 21

¢
2∗ + 21 (1−)2∗ + (1− )

¡
21 − Γ22

¢
2∗

 ()


≤ 0

2 ()

 2
≤ 0
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For  =  0

 ( 0) = 2 +
¡
 0

2
1 + (1−  0)

2
2

¢
(1−)2∗

For  ∈ ( 0  ]

 () = 2 +  0
¡
21 − 22

¢
2∗ + 22 (1−)2∗ + 

¡
22 − Γ21

¢
2∗

 ()


≥ 0

2 ()

 2
≤ 0

d) Construct a Sup-Wald Test for the hypothesis that 0 : 1 = 2

e) Under 0 : 1 = 2 (= 2, say), write a GAUSS program to simulate

the sampling distribution of the SupWald test for  = 1000, using 20000

replications,  ∼  (0 1), ∗ ∼  (0 1),  ∼  (0 1), {∗}=1, {}=1and
{}=1 are independent.

Exercise 0.159 Find two text books which give the definition of the gamma

function Γ () for   0.

Exercise 0.160 Consider the following model:

(1− )

 =   = 1 2  

where  is the lag operator and  follows an i.i.d.(0 
2) process for

0  2 ∞

a) Suppose

(1− )

=

∞X
=0

Γ ( − )

Γ (−)Γ ( + 1)


Show that

i)

 =

∞X
=0

Γ ( + )

Γ ()Γ ( + 1)
−
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ii)

+ =

∞X
=−

Γ ( + + )

Γ ()Γ ( + + 1)
−

iii)

 (+) = 2
∞X
=0

Γ ( + )Γ ( + + )

(Γ ())
2
Γ ( + 1)Γ ( + + 1)



iv)


¡
2
¢
= 2

∞X
=0

µ
Γ ( + )

Γ ()Γ ( + 1)

¶2


b) Using

∞X
=0

Γ ( + )Γ ( + + )

(Γ ())
2
Γ ( + 1)Γ ( + + 1)

=
Γ (+ )Γ (1− 2)

Γ ()Γ (1− )Γ (+ 1− )

and

∞X
=0

µ
Γ ( + )

Γ ()Γ ( + 1)

¶2
=

Γ (1− 2)
Γ2 (1− )



Show that the  autocorrelation of this process is given by

 =
Γ (1− )Γ (+ )

Γ ()Γ (+ 1− )


c) Show that the  can also be written as

 =

Y
=1

+ − 1
− 



Now suppose we run a regression of  on −1 −2  −, the estimated

coefficients are

bβ () = ³ b1 b2 · · · b−1 b ´0 
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d) Show that

bβ () → Φ (− 1)−1 ρ () 
where

Φ (− 1) =

⎛⎜⎜⎜⎜⎝
1 1 · · · −1
1 1 · · · −2
...

...
. . .

...

−1 −2 · · · 1

⎞⎟⎟⎟⎟⎠ 

ρ ()=
³
1 2 · · · −1 

´0


e) Show that, as  →∞,

bβ (2) →
µ

2

2− 



2− 

¶0


f) Suppose we also have the results thatbβ (3) → Φ (2)
−1
ρ (3) =

µ
3

3− 

3 (1− )

(3− ) (2− )



3− 

¶0


bβ (4) → Φ (3)
−1
ρ (4) =

µ
4

4− 

6 (1− )

(4− ) (3− )

4 (1− )

(4− ) (3− )



4− 

¶0


and that, in general, as  →∞,

b1 = 
³
b´ 

for  belongs to (−05 025).

Discuss how to use the above information to derive a test for the hypoth-

esis that

0 : ∃ ∈ (−5 25) such that  ∼  (0  0) 

1 : 0 is not true.

Exercise 0.161 Using GAUSS to generate an  (0  0) process

with  = 5 −1 0 −1 −25 −5.
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Exercise 0.162 Using GAUSS to recompute the values of Table 1 and Table

3 of TSB’s paper, approximate  by

 =

X
=1

¡
+ + − − 2

¢ ¡
+ + − − 2

¢


where  = 100000.

Show that there are some typos in TSB’s paper. In their Table 1, for

 = 0 and  = 3, the value should be 07347 instead of 07437. In the same

table, for  = −03 and  = 20, the correct value should be 07426 instead

of 08625. In Table 3, for  = 0 and  = 2 − 6,  = 3 − 7, the true values
should be 2035 and 38198 respectively instead of 15866 and 24957.

Exercise 0.163 Suppose the true model is an  (1  0) process of

the form

(1− )

(1− )  = 

Show that

 = (1− )
−1
(1− )

−
 =

∞X
=0

 ()

where

 () =

X
=0

µ
Γ (+ )

Γ ()Γ (+ 1)
−

¶


and b →
P∞

= ( () ( − ))P∞
=0 ( ())

2


If the true model is an  (0  1) process of the form

(1− )

 = (1 + ) 

Show that
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 =

∞X
=0

Γ ( + )

Γ ()Γ ( + 1)
 (1 + )  =

∞X
=0

 ()

where

 (0) = 1

 () =
Γ ( − 1 + )

Γ ()Γ ()
 +

Γ ( + )

Γ ()Γ ( + 1)
  ≥ 1

b →
P∞

= ( () ( − ))P∞
=0 ( ())

2

=

¡
1 + 2

¢
Γ (+ )

Γ (+ 1− )
+

Γ (+ 1 + )

Γ (+ 2− )
+

Γ (− 1 + )

Γ (− )¡
1 + 2

¢
Γ ()

Γ (1− )
+
2Γ (1 + )

Γ (2− )



Exercise 0.164 Consider the following model:

(1− )

∗ =   = 1 2  

where  is a lag operator such that ∗ = ∗−1.

Suppose the true values of {∗ }=1 are not observable. Instead, we observe

 = ∗ +   = 1 2  

where {}=1 is the measurement error process.
(a) Show that

b =
−P
=1

( − ) (+ − )

P
=1

( − )
2

→ 

µ
 +



2∗

¶

where
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 =
2∗

2∗ + 0


2∗ =   (∗ ) = 2
Γ (1− 2)
Γ2 (1− )



 =  ( +) 

(b) Suppose we run a regression of  on −1 −2  −, show that the

estimators converge in probability to:

bβ () → Φ ()
−1 ¡

ρ () + −2∗ γ ()
¢


where

bβ () = ³ b1 b2 · · · b−1 b ´0 
ρ () =

³
1 2 · · · −1 

´0


γ () =
³
1 2 · · · −1 

´0


Φ () =

⎛⎜⎜⎜⎜⎜⎝
−1 1 +

1
2∗

· · · −1 +
−1
2∗

1 +
1
2∗

−1 · · · −2 +
−2
2∗

...
...

. . .
...

−1 +
−1
2∗

−2 +
−2
2∗

· · · −1

⎞⎟⎟⎟⎟⎟⎠ 

Exercise 0.165 Consider the following model:

(1− )
1  =  for  = 1 2  0

(1− )
2  =  for  = 0 + 1 0 + 2 

where
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(1− )

=

∞X
=0

Γ ( − )

Γ (−)Γ ( + 1)


Γ () is the gamma function such that Γ () = (− 1)Γ (− 1), and  is
the lag operator such that  = −1 for any time series variable .

(a) Show that the model can be rewritten as

 =

∞X
=0

Γ ( + 1)

Γ (1)Γ ( + 1)
− for  ≤ 0

 =

∞X
=0

Γ ( + 2)

Γ (2)Γ ( + 1)
− for   0

Assume that

(1)  ∼  (0 2) ∀ 0  2 ∞ and  (4 ) ∞;
(2)  0 =

0


∈ [   ] ⊂ (0 1) ;

(3) (1 2) ∈ (−5 25)× (−5 25) 

If there is no structural change such that 1 = 2 = , the  ( = 1 2 3 )

order autocovariance and autocorrelation of the process  are given by

 () =  ( −) =  () 0 ()

and

 () =
 ( −)

  ()  (−)
=

Γ (+ )Γ (1− )

Γ (+ 1− )Γ ()

respectively, where

0 () = 2
Γ (1− 2)
Γ2 (1− )



(b) Show that 1 () =


1− 
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(c) Since we have two regimes in our model, let  = − , show that for

any  ≤ 0   , we have

 ( ) = 2
Γ (+ 2)Γ (1− 1 − 2)

Γ (+ 1− 1)Γ (2)Γ (1− 2)

and

 ( ) =
Γ (+ 2)Γ (1− 1)Γ (1− 1 − 2)

Γ (+ 1− 1)Γ (2)
p
Γ (1− 21)Γ (1− 22)



Now let  = [ ], where [·] is the greatest integer function. We define

b = max
∈[ ]

 () 

where

 () = [b1 (1 [ ])− b1 ([ ] + 1  )]2 ,

b1 ( ) =
P

=+1

−1

P
=+1

2−1



Thus, the break-point estimate is defined to be the time when the differ-

ence between the two first-order autocorrelations is maximized.

(d) Show that for  ≤  0 we have

 ()
→ (1 − 2)

2

(1− 1)
2
(1− 2)

2
21 () 

where

1 () =
(1−  0)Γ (1− 22)Γ2 (1− 1)

( 0 − )Γ (1− 21)Γ2 (1− 2) + (1−  0)Γ (1− 22)Γ2 (1− 1)
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and for    0

 ()
→ (1 − 2)

2

(1− 1)
2
(1− 2)

2
22 () 

where

2 () =
 0Γ

2 (1− 2)Γ (1− 21)
 0Γ (1− 21)Γ2 (1− 2) + ( −  0)Γ (1− 22)Γ2 (1− 1)



(e) Is b is a consistent estimator for  0? Explain in words.
(f) After getting the estimate of the change point, write down the consis-

tent estimators for 1 and 2.

Exercise 0.166 In the threshold model, verify that

(i)  () = 3;

(ii) The moment generating function of  ( = 1 2) is
1

(1− ) (1− 2);
(iii)  () = 6;

(iv) The m.g.f. of  is

µ
1

(1− ) (1− 2)
¶2
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ECO5120: Econometric Theory and Application, Fall 99

Prof. T.L. Chong

HANDOUT 8

FRACTIONALLY INTEGRATED PROCESSES

A time series process {} is said to be integrated of order  if (1−)

is stationary, where  is a lag operator such that  = −1. If  is not an

integer, then the process is said to be fractionally integrated. Consider the

following model:

(1− )

 =   = 1 2  

where  is the lag operator and  is white noise.

 = (1− )
−



 (1− )
−


=  (1− )

−−1

2 (1− )
−

2
=  (+ 1) (1− )

−−2

and

 (1− )
−


= (+  − 1) (+  − 2)  (+ 1)  (1− )

−−

A power series expansion for (1− )
−
around  = 0 is given by

(1− )
−

= 1 + +
1

2!
(+ 1) 2 +

1

3!
(+ 2) (+ 1) 3 + · · ·

=

∞X
=0

Γ ( + )

Γ ()Γ ( + 1)


where Γ () is the gamma function defined as
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Γ () =

Z ∞

0

−1 exp (−)  for   0

Γ () =

∞X
=0

(−1)
(+ ) !

+

Z ∞

1

−1 exp (−)  for   0  6= 0−1−2−3 

Thus,

 = (1− )
−

 =  =

∞X
=0

Γ ( + )

Γ ()Γ ( + 1)
−

Estimating d via the Autocorrelation Function

In a recent study, Tieslau, Schmidt and Baillie (1996) propose a minimum

distance estimator of  defined to be

b = 
∈(−525)

[bρ− ρ ()]0−1 [b− ρ ()] 
where

ρ () is a  by 1 vector with the  element  ().

The  autocorrelation of this (0  0) process is given by

 () =

Y
=1

+ − 1
− 



bρ is a  by 1 vector with the  element b.
Since  () = 0, the sample autocorrelations can be defined as:

b =
P

=+1

−

P
=1

2



 is the asymptotic variance covariance matrix of bρ
 is given by

 =

∞X
=1

¡
+ + − − 2

¢ ¡
+ + − − 2

¢
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The Shortcoming of TSB’s Estimator

In Tables 2,3 and 4 of TSB’s paper, a substantial efficiency loss occurs

when the first-order correlation is not used for the estimation of . This

implies that the first-order autocorrelation carries most of the information

needed for the estimation of . We argue that their findings are due to the

fact that the mapping between  () and  is not one to one for all  ≥ 2.
Note that when  = 1

1 () =


1− 


In this instance, the mapping between  and 1 () is one to one. However,

for  ≥ 2, different values of  may generate the same  (). Consider the
values of  used in Table 2 of TSB’s paper. Table A shows all others values

of  which share the same  order autocorrelation for  = 2 3

Table A: Values of  which share the same  order autocorrelation for

 = 2 3

  = 2  = 3

−49 −2576 −1392−26410
−45 −2895 −1608−26801
−4 −3333 −1917−27213
−3 −4375 −2714−27665
−2 −5714 −3879−27298
−1 −75 −5772−25430
0 −1 −1−2
1 −1375 −13497± 9213

2 −2 −10789± 15197
24 −23846 −9317± 17192

For example, consider the case where  = 2, we have
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2 () =

2Y
=1

+ − 1
− 



In this case, 2 (−04) = 2 (−3333) = −00714
Thus if the true  is 0 = −04, and if we estimate 0 by using the second

order autocorrelation only, the estimator converges to the set {−04−3333} 

Obviously, for  = 1, the criterion function is U-shape and thus it has a

unique minimum. However, for  ≥ 2, the shape changes with the true value
of .

The existence of multiple solution widens the variation of b. This will
make the variance of

√

³b− 

´
diverge to infinity as the sample size in-

creases.

Estimating d via the Partial Autocorrelation Function

The following results are based on my recent study. I propose another

estimation method for d. My estimator differs from TSB’s estimator in that

I use the sample partial correlation function to form the moment conditions.

The  order partial autocorrelation function of a fractionally integrated

process is:

 () =


− 


The expression can be found in Brockwell and Davis (1991, p. 522,

Eq.13.2.10). A salient feature of  () is that its relationship with  is

one to one for all . Hence we can either use a single  () or a combination

of them to form an estimator of .

Next, let’s discuss how to obtain an estimate of  (). Let

211



 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

1 0 · · · 0

2 1 · · · 0
... 2 · · · 0
...

... · · · ...
...

... · · · 1
...

... · · · ...

−1 −2 · · · −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


 = (1 2   )
0


ρ () =
³
1 2 · · · −1 

´0


bβ () = ³ b1 b2 · · · b−1 b ´0 = ( 0
)

−1


=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
=2

2−1
P
=3

−1−2 · · ·
P

=+1

−1−

P
=3

−1−2
P
=3

2−2 · · ·
P

=+1

−2−

...
...

. . .
...

P
=+1

−1−
P

=+1

−2− · · ·
P

=+1

2−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
=2

−1
P
=3

−2
...

P
=+1

−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


Dividing each element by
P
=1

2 and take probability limit, we have:

bβ () → Φ (− 1)−1 ρ () 
Since  () is assumed to be 0 for all , if we divide each element in the

above matrix by
P
=2

2−1 and take probability limit, we have:

bβ () → Φ (− 1)−1 ρ () 
where Φ (− 1) is a ×  Toeplitz matrix defined as
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Φ (− 1) =

⎛⎜⎜⎜⎜⎝
1 1 · · · −1
1 1 · · · −2
...

...
. . .

...

−1 −2 · · · 1

⎞⎟⎟⎟⎟⎠ 

The element of bβ () will converge in probability to a function of , in
particular,

bβ (2) → Φ (1)
−1
ρ (2) =

³
1
1−2
1−21

21−2
21−1

´0
=
³

2
2−


2−

´0


bβ (3) → Φ (2)
−1
ρ (3) =

³
3
3−

3(1−)
(3−)(2−)


3−

´0


bβ (4) → Φ (3)
−1
ρ (4) =

³
4
4−

6(1−)
(4−)(3−)

4(1−)
(4−)(3−)


4−

´0


Thus,

b → 

− 
=  () 

Hence, the  order sample partial autocorrelation can be obtained from

the estimated coefficient of − in the regression of  on −1 −2  −.

Our estimator of  is defined to be

b = 
∈(−525)

 () 

where

 () = [bα−α ()]0 [bα−α ()] 
α () is a  by 1 vector with the  element



 − 
.

bα is a  by 1 vector with the  element b.
 is a symmetric, positive-definite weighting matrix.

Let

 =
α ()


=

µ
1

(1− )
2

2

(2− )
2
· · · 

(− )
2

¶0


213



Note that

 ()


= −20 [b−  ()] 

2 ()

2
= 20−1 +  (1) 

√
 [bα−α ()] →  (0Ω) 

where

Ω = lim
→∞



⎛⎜⎜⎜⎜⎜⎜⎝
 

³b11´ 
³b11 b22´ · · · 

³b11 b´


³b22 b11´  
³b22´ · · · 

³b22 b´
...

...
. . .

...


³b b11´ 

³b b22´ · · ·  
³b´

⎞⎟⎟⎟⎟⎟⎟⎠ 

Note also that

 ()

 b =
 ()


+

2 ()

2∗

³b− 
´
= 0

b−  = −
∙
2 ()

2∗

¸−1
 ()




√

 ()



→  (0 40Ω) 

√

³b− 

´
→ 

³
0 [0]

−1
0Ω [0]

−1
´


Thus, the optimal weighting matrix is

 = Ω−1

and

√

³b− 

´
→ 

³
0
£
0Ω−1

¤−1´
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Note that the ()

element of the variance-covariance matrix Ω is given

by

Ω = lim
→∞



∙
 ()

³bβ ()− β ()´³bβ ()− β ()´0  ()0¸ 
where

 () = (0 0  0 1)| {z }
 terms

The remaining conundrum is to find 
³bβ ()− β ()´³bβ ()− β ()´0.

Since

bρ ()− ρ () = bΦ (− 1) bβ ()− Φ (− 1)β ()
= Φ (− 1)

³bβ ()− β ()´+ ³bΦ (− 1)−Φ (− 1)
´
β ()

+
³bΦ (− 1)− Φ (− 1)

´³bβ ()− β ()´
= Φ (− 1)

³bβ ()− β ()´+ ³bΦ (− 1)−Φ (− 1)
´
β () +

¡
−1

¢


we have

bβ ()− β () = Φ (− 1)−1∆ () 
where

∆ () = (bρ ()− ρ ())− ³bΦ (− 1)−Φ (− 1)
´
β () +

¡
−1

¢


Hence, Ω is reduced to

lim
→∞


£
 ()Φ ( − 1)−1 ¡∆ ()∆ ()0¢Φ (− 1)−1  ()0¤ 

Note that
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lim
→∞


¡
∆ ()∆ ()

0¢
=  ()− lim

→∞

³bΦ ( − 1)−Φ ( − 1)

´
β () (bρ ()− ρ ())0

− lim
→∞

 (bρ ()− ρ ())β ()0 ³bΦ (− 1)−Φ (− 1)
´0

+ lim
→∞


³bΦ ( − 1)−Φ ( − 1)

´
β ()β ()

0
³bΦ (− 1)−Φ (− 1)

´


where  () is a  by  matrix with the ( )

element .

Lastly, the ( )

element of the matrix lim→∞ 

¡
∆ ()∆ ()

0¢
is

given by

lim→∞ 
¡
∆ ()∆ ()

0¢


=  −
P

=16= |−| −
P

=1 6= |−|

+
P

=16=
P

=1 6= 
³bΦ ( − 1)−Φ ( − 1)

´


³bΦ (− 1)−Φ (− 1)
´




= −
P

=16= |−|−
P

=1 6= |−|+
P

=16=
P

=1 6= |−||−|

Thus, all the elements of the variance-covariance matrix Ω are uncovered.

Hence, the matrix  (= Ω−1) can be constructed, and we can now evaluate

 () at various values of .

Comparison of Asymptotic variance of
√

³b− 

´
We now compare the efficiency of our estimator to the TSB’s estimator.

In all the tables below,  is approximated by

 =

X
=1

¡
+ + − − 2

¢ ¡
+ + − − 2

¢
where  = 5× 106.
Tables 1 to 5 below are the counterpart of tables 1 to 5 in TSB’s paper

respectively. We compare the performance of the asymptotic variance of√

³b− 

´
of our estimator using partial autocorrelation with that using

pure autocorrelation in TSB’s paper.
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Table 1: Asymptotic variance of
√

³b− 

´
, using partial autocorrela-

tion 1  .

  = 1  = 2  = 3  = 5  = 10  = 20

−49 34012 20663 16214 12305 09776 08226

−45 31351 19356 15338 12063 09481 08058

−4 28205 17789 14277 11399 09115 07848

−3 22506 14873 12273 10122 08395 07426

−2 17578 12255 10431 08917 07697 07013

−1 13405 09948 08772 07803 07034 06614

0 10000 08000 07347 06832 06453 06265

1 07492 06590 06344 06187 06108 06089

2 07181 07107 07105 07060 06908 06709

24 10765 10535 10103 09373 08372 07582

For  = 1, the partial correlation function and the autocorrelation are

identical. Thus the values in this column should not be much different from

that of TSB’s table 1.

The asymptotic variance of
√

³b− 

´
generated by our estimator does

differ from that of TSB’s but not in a uniform fashion. Table 1 makes it clear

that for negative values of , the asymptotic variance using partial autocor-

relation is smaller than that using autocorrelation. However, for positive ,

partial autocorrelation yields a larger asymptotic variance.
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Table 2: Asymptotic variance of
√

³b− 

´
, using  partial autocor-

relation only

  = 1  = 2  = 3  = 5  = 10

−49 34012 79649 14562 33775 11683

−45 31351 75739 14039 32986 11537

−4 28205 71015 13402 32015 11356

−3 22506 62111 12181 30127 11000

−2 17578 53939 11034 28315 10652

−1 13405 46530 99660 26593 10316

0 10000 40000 90000 25000 10000

1 07492 34821 82162 23685 97359

2 07181 34821 83006 23903 97897

24 10765 45826 10111 27129 10444

The asymptotic variance can just be read off Table 2. Roughly speaking,

the asymptotic variance is about 2 for any given value of . For   0, a

switch from TSB’s estimator to our estimator reduces the asymptotic vari-

ance by as large as a factor of 350. Also, the asymptotic variance grows

monotonically and stably with , a feature which the TSB’s estimator lacks.

Thus, the statistical inference based on partial autocorrelation function esti-

mator should be more reliable.

Table 3: Asymptotic variance of
√

³b− 

´
, using five partial autocor-

relations
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\ 1− 5 2− 6 3− 7 5− 9 10− 14
−49 12305 26125 44028 92274 28378

−45 12063 25530 43376 91503 28270

−4 11399 24806 42583 90569 28139

−3 10122 23425 41088 88829 27897

−2 08917 22159 39756 87328 27694

−1 07803 21075 38693 86247 27564

0 06832 20350 38198 86091 27603

1 06187 20669 39412 88813 28192

2 07060 27407 51597 11044 32426

24 09373 42363 78733 15785 41386

Notice, too, that for  ≥ 2, the increases in  stimulate the decreases in

the asymptotic variance, up to the point where  = 0. For positive , partial

autocorrelation yields a larger asymptotic variance.

Table 4: Asymptotic variance of
√

³b− 

´
, using ten partial autocor-

relations

\ 1− 10 2− 11 3− 12 5− 14 10− 19
−49 09776 19036 30681 60495 17134

−45 09481 18827 30563 60566 17190

−4 09115 18581 30440 60696 17266

−3 08395 18146 30294 61128 17448

−2 07697 17818 30337 61880 17685

−1 07034 17674 30704 63177 18016

0 06453 17920 31748 65623 18554

1 06108 19309 31436 63321 19733

2 06908 27321 50047 99176 25045

24 08372 41292 78532 15264 35234

Misspecification
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Thus far, we have assumed a fractionally integrated white noise process.

We would like to examine how robust is our estimator to serial correlation.

We will discuss the asymptotic bias in our estimator of  obtained from the

(0  0) model caused by ignoring short-run dynamics. For comparison, we

will consider estimators of  based on a single partial autocorrelation . 
∗

is the value of  that generates the same value of  for  (0  0)

model.

We consider the case where the true model is an (1  0) process

of the form

(1− )

(1− )  = 

as well as the case where the true model is an  (0  1) process

of the form

(1− )

 = (1 + ) 

Table 5 gives values of ∗ for  = 01, 02, and 024, for the (1  0) and

(0  1) models. For the (1  0) model we consider  = 04 and 08, whereas

for the (0  1) model we consider  = 04 and 08.

Table 5: Asymptotic bias |∗ − | for the MDE from the (0  0) model
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True model is ARFIMA (1  0) model

  Lag 1 Lag 2 Lag 5 Lag 10 Lag 20 Lag 50

1 04 0238 0068 0024 0013 0009 0008

2 04 0185 0145 0052 0033 0027 0034

24 04 0162 0180 0065 0044 0039 0052

1 08 0364 0186 0082 0052 0032 0019

2 08 0278 0412 0168 0108 0073 0056

24 08 0242 0517 0203 0133 0094 0078

True model is ARFIMA (0  1) model

  Lag 1 Lag 2 Lag 5 Lag 10 Lag 20 Lag 50

1 04 0208 0343 0035 0006 0003 0001

2 04 0158 0374 0027 0012 0006 0002

24 04 0137 0387 0024 0014 0007 0003

1 08 0263 0915 0541 0415 0089 0002

2 08 0197 0922 0521 0426 0094 0004

24 08 0171 0925 0512 0430 0096 0004

If the true model is an  (1  0) model, our estimator yields a

smaller bias for the number of lags more than or equal 5. If the true model

is  (0  1) model, our estimator has a larger bias for  = 08 and

for the number of lags less than or equal 20. Generally speaking, the TSB’s

estimator performs better if the true model is  (0  1) while our

estimator is better if the true model is  (1  0)  Therefore our

estimator is more robust to misspecification in the autoregressive component

whereas the TSB’s estimator is more robust to misspecification in the moving

average component.

Reference:

1. Brockwell, P.J. and R.A. Davis (1991), Time series: Theory and meth-

ods, 2nd ed., Springer-Verlag.
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3. Tieslau, M.A., P. Schmidt and R.T. Baillie (1996)“A Minimum Dis-

tance Estimator for Long-Memory Processes,” Journal of Economet-

rics, 71, 249-64.
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MEASUREMENT ERRORS AND MISSCLASSIFICATION

Most studies in economics implicitly assume that the variables of interest

are perfectly observed and measured. Little effort, however, is devoted to

the issue of measurement errors. Many economic variables may be of im-

perfect quality, either because the true variables of interest are simply not

observable(e.g. ability), or the observable data are suffered from a wide va-

riety of errors including those resulting from poor sampling techniques. The

consequences of errors in variables have been well established. It has been

shown that measurement error in the dependent variable will not affect the

consistency of the OLS estimator. However, measurement error in the inde-

pendent variable usually introduces complications into the analysis. If the

explanatory variables are suffered from errors, the parameters cannot be con-

sistently estimated and will be biased toward zero. Various methods, such as

finding a bound for the estimate and using instrumental variables have been

suggested to fix the problem.

The problem of measurement error (or misclassification) occurs due to

two major reasons. The first is that the person who conducts the survey

commits a systematic mistake. The second reason is that the respondents of

the survey have an incentive to lie. In order to make the model interpretable,

we should know what kind of information we can still get in the presence of

measurement errors.

The earliest studies on the consequences of measurement errors were done

by Adcock (1877, 1878) and Madansky (1959), who considered the problem

of fitting a straight line when both variables are subject to errors. Levi

(1973) showed that in a simple linear regression model without intercept, if

the explanatory variable is suffered from errors, the structural parameter will
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be biased toward zero. Nelson (1995) obtained a similar result for the case

where more than one independent variable are measured with errors. The

phenomenon that the impact of the regressor on the dependent variable is di-

luted by measurement errors is called attenuation bias. The attenuation bias

is usually linear, in the sense that the probability limit of the estimator is the

true parameter multiplied by a positive constant less than 1. Chong and Lui

(1998) show that the attenuation bias is nonlinear when measurement errors

exist in a fractionally integrated model. Other studies on measurement errors

include Stefanski (2000), Lee and Sepanski (1995), Nowak (1992), Hausman,

Newey, Powell and Ichimura (1991), Whittemore and Keller (1988), Schafer

(1986), Hausman (1977, 1995, 2001), Hausman and Griliches (1986).

Inconsistency of the OLS Estimator

As a simple exposition, suppose the true model is

 = ∗ +   = 1 2  

Because the true values of ∗ is not observable, it is proxied by an ob-

servable  where

 = ∗ + 

If {}∞=1 and {}∞=1 are i.i.d. zero mean finite variance random variables,
and if  and  are independent, the least squares estimator of  based on

the observable { }=1 is given by

b =
P
=1



P
=1

2

→ 
2∗

2∗ + 2


where 2∗ =  (∗2 ), 
2
 =  (2 )  Thus the OLS estimate will be biased

towards zero. The estimator for the variance of  is inconsistent too since

b2 =
P
=1

b2
 − 1

→ 2 +
22

2
∗

2∗ + 2
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Thus, the true parameters cannot be consistently estimated, unless there

is no measurement error (2 = 0), or unless we have additional information

on the “signal to noise ratio”
2∗
2
.

Although measurement errors usually result in inconsistent estimates,

there are exceptional cases where the parameters can still be consistently

estimated. We will study two of these cases. The first one is the consistency

of the break-point estimator in a structural-break model. The second is the

unit-root model.

Missclassification of the dependent variable

Here study a regression model with the regressor being a dummy variable

measured with errors.

Suppose the true model is

 =  (1− ∗ ) + ∗ + 

 = 1 2  

∗ is a zero-one dummy variable, (1− ∗ ) is the dummy variable of an-

other category.

( ) are true structural parameters.

Model (1) is more easily explained and understood in an alternative rep-

resentation:

 = + ∗ + 

where

 =  − 

Note that  denotes the difference between the coefficients of the two

groups.

Now, suppose the true value of ∗ is not perfectly measured and is ap-

proximated by an observable  where
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 = ∗ + 

and  is the measurement error.

We regress  on  with an intercept. In the conventional case where 
∗


and  are continuous variables, they are usually assumed to be independent

of each other. However, an interesting feature of our model when ∗ is a

dummy variable is that ∗ and  will not be independent anymore.

We define

 = Pr ( = 0|∗ = 1) 
and

 = Pr ( = 1|∗ = 0) 
We assume the following:

(1)  ∼  (0 2), 
2
 ∞

(2) ∗ ∼  which takes 1 with probability  and 0 with 1− , where

0 ≤  ≤ 1.
(3)  is dependent on ∗ and has following distribution:

If ∗ = 1 then  = −1 with probability  and  = 0 otherwise

if ∗ = 0 then  = 1 with probability  and  = 0 otherwise

(4) ∗ and  are independent of 

Assumptions (1) − (4) describe the nature of the dummy variable,
disturbance term and measurement errors.

Lemma 169 Under assumptions (1) to (4), we have

(∗ ) = 
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  (∗ ) =  (1− ) 

() = −+ (1− )

  () = 2− (−  (1− )) ( (+ ) + 1− ) 

 (∗  ) = − (+ ) (1− ) 

() =  (1− ) + (1− )

 () = −+ + (1− ) = (1− )

  () = (+ (1− ) (1− )) ( (1− ) + (1− ) ) 

Proof. Exercise.

It is worth noting that, unlike the case of continuous variable, the mea-

surement error and the latent variable are not independent but negatively

correlated in the dummy variable case.

Asymptotic Behavior of the Least-Squares Estimators

As already mentioned, we cannot treat the problem like the conventional

case of measurement error without an intercept. It is because if we allow

only one dummy regressor, we must include an intercept for the model to be

identifiable. Also, the latent dummy variable and the measurement error are

not independent in this case as shown in Lemma 1. The OLS estimators are

defined as

b =
P
=1

( − ) 

P
=1

( − )
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b = 1



Ã
X
=1

 − b X
=1



!
and

b = b+ b
The followings are the asymptotic properties of the OLS estimators. The

proofs are provided in the Appendix.

b →  (1−Φ1) + Φ1

b →  (1−Φ2) + Φ2

where

Φ0 =
 ( 

∗
 )

  ()
=

  (∗ ) +  ( 
∗
 )

  ()

=
 (1− ) (1− − )

(+ (1− ) (1− )) ( (1− ) + (1− ) )


0 ≤ Φ1 =


+ (1− ) (1− )
≤ 1

0 ≤ Φ2 = Φ0 + Φ1 =
 (1− )

 (1− ) + (1− ) 
≤ 1

Thus, b will be consistent if Φ1 = 0, i.e.,  = 0 or  = 0. For  = 0,

∗ always equals 0. For  = 0, there is no measurement error in the case of

∗ = 1b will be consistent if Φ2 = 1, i.e.,  = 1 or  = 0. For  = 1 ∗ always
equals 1. For  = 0, there is no measurement error in the case of ∗ = 0

Note that Φ0 can be negative if  +   1, but will be less than 1 in

absolute value, whereas Φ1 and Φ2 are values between zero and one.

Theorem 170 If assumptions (1)− (4) hold, then as  →∞, we have:
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b →  (1−Φ1) + Φ1 (1)

and

b →  (1−Φ2) + Φ2 (2)

Proof. Exercise.

The Theorem states that the structural estimators converge in probability

to some convex combinations of the coefficients of the two dummy variables.

In general, b will be consistent if Φ1 = 0. b will be consistent if  = 0
To understand the implication of this result, suppose ∗ = 1 if the respon-

dent is a man, and ∗ = 0 if the respondent is a woman. The Theorem implies

that the coefficient for the group of women will be identified either if all the

respondents are women, or if the group of men has no missclassification.

Similarly, the coefficient for the group of men will be identified either if all

the respondents are men, or if the group of women has no missclassification.

Inspection of the Theorem shows that without additional information

about the measurement errors, it is not possible to recover the true pre- and

post-shift parameters. There are several ways to extract the information of

the true parameters under measurement errors. The most common one is

to use instrumental variables, which is widely recognized as an important

method for the analysis of linear measurement error model.

In our case, when Φ1 and Φ2 are known, in other words, when we know

,  and , then we can identify the true pre- and post-shift parameters. The

consistent estimators for the structural parameters are given in the following

Theorem.

If ,  and  are known, then we have

e = Φ2b−Φ1b
Φ0

→ 

and

e = b (1− Φ1)− b (1−Φ2)

Φ0

→ 
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Note that the validity of the reparameterizations depends on the assump-

tion that the value of Φ0 is non-zero. In the cases where Φ0 = 0, i.e.,  = 0,

 = 1, or +  = 1, we can never recover the true coefficients.

Some Special Cases

We have derived the general result in the previous section. Now, let us

look at some interesting cases.

Case 1: Observationally Equivalent Groups (+  = 1)

When  = 1− , the two different groups are measured with errors in a

way that the statistical properties of the two observed groups are identical.

For example, a group of men with 30 percent reported as women will be

observationally equivalent to a group of women with 70 percent reported as

men. In such a case, we have Φ0 = 0 and Φ1 = Φ2 = .

Corollary 171 If assumptions (1) − (4) hold and  +  = 1, then as

 →∞, we have:

b →  (1− ) +  (3)

and

b →  (1− ) +  (4)

The Corollary states that the OLS estimators converge to the same convex

combination of the true parameters of the two groups.

In this case, even if the coefficients of the two groups are different, we

cannot observe this due to the similarity of the statistical properties of the

two observed groups. Further, since Φ0 = 0, e and e will all be undefined,
the true parameters will never be identified.

Case 2: Same Coefficient for the Two Groups ( = )

231



When the two groups share the same coefficient, we have  = . This

implies that  = 0.

Corollary 2: If assumptions (1) − (4) hold, and if  = , then as

 →∞, we have:

b →  (5)

and

b →  (6)

Thus, all the estimators will be consistent and converge to the true para-

meters, despite the fact that there are measurement errors.

Therefore, if the coefficients for the two groups are the same, measurement

errors will have no effect on estimation at all.

Case 3: The Existence of One Group only ( = 0   = 1)

This happens if the survey method is not random enough so that only

one group of people is being surveyed. However, even if there is only one

category, we will still observe two categories due to measurement errors. We

study the case where  = 0. The case where  = 1 will have an opposite

interpretation and is therefore skipped. When  = 0, only the group defined

to be zero exists, we have

Φ0 = Φ1 = Φ2 = 0

Corollary 3: If assumptions (1)−(4) hold and  = 0, then as  →∞,
we have:

b →  (7)

and

b →  (8)
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In general, the probability limits of the estimators for both groups in the

existence of only one group will be the true parameters of the existing group.

The true coefficients of the non-existing group can never be identified even

if we know the values of  and .

Case 4: Measurement Error in One Group only ( = 0   = 0)

This happens when the members of a certain group have no incentive to

misreport themselves, but some members in another group misreport them-

selves as the members of the opposite group. For example, suppose in a

survey an individual is asked if he/she is homosexual, those who are not will

most likely reveal the truth, but there are strong reasons to believe that some

of the homosexuals may not tell the truth due to social pressure. Another

example is that in a court trial of a criminal offense with death penalty. Ex-

cluding very special cases, those who did not commit the crime are unlikely

to confess. However, some criminals may not confess even if they did commit

the crime.

Now, we consider the case where  = 0, i.e., when the true dummy is 1,

we measure it perfectly. This implies that Φ1 = 0 and

Φ0 = Φ2 =


+ (1− ) 


Note that Φ0 is a value between zero and one.

Corollary 4: If assumptions (1)−(4) hold and  = 0, then as  →∞,
we have:

b →  (9)

and

b →  (1−Φ2) + Φ2 (10)

When  and  are known, we can even identify . The consistent estimator

is

e = b − b (1−Φ2)

Φ2

→  (11)

233



Corollary 4 states that the structural parameters for the group of (1− ∗ )

can be identified despite the presence of measurement errors. However, the

structural estimator for the group of ∗ is biased towards a convex combi-

nation of the coefficients of the two dummy variables. Further, if we have

information about  and , then all the parameters can be identified. The

case for  = 0 has an opposite interpretation and is therefore skipped.

Case 5: Perfect Measurement Error in One Group ( = 1   = 1)

When  = 1, i.e., when the true dummy is 1, we always measure it

incorrectly. This happens when all the members in one group lie to the

survey conductor. Then, we have Φ2 = 0 and

Φ0 = − 

+ (1− ) (1− )


Φ1 = −Φ0
Note that Φ0 is negative and is less than 1 in absolute value.

Corollary 5: If assumptions (1)−(4) hold and  = 1, then as  →∞,
we have:

b →  (1−Φ1) + Φ1 (12)

and

b →  (13)

If we have the information about ,  and , we can construct the consis-

tent estimators as

e = b →  (14)

and

e = b− b (1−Φ1)

Φ1

→  (15)
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Corollary 5 states that the structural estimators are inconsistent. The

estimator for the group with perfect measurement error will converge in

probability to the true coefficient of another group. The probability limit

of the estimator of another group will be a convex combination of the true

coefficients of the two groups. Thus in a large sample, the group with a

higher value of the true coefficient will turn out to have a smaller value of

estimated coefficient, and vice versa.

If we have information about ,  and , then all the parameters can be

retrieved. The case for  = 1 has an opposite interpretation and is therefore

skipped.

Case 6: Perfect Measurement Error ( =  = 1)

When  =  = 1, we always measure the dummy variable incorrectly.

This may be an imaginary scenario, but in a small survey with particular

type of respondents, it may happen. Suppose there are only two types of

people in a survey, one type is smart but humble, the other type is dull but

arrogant. When they are asked if they think they are smart, those who are

really smart will be humble enough to report that they are not that smart,

but those who are dull will not consider themselves as dull and will report

that they are smart.

In this case, we have Φ0 = −1 Φ1 = 1 and Φ2 = 0. Corollary 6 below

states that the estimator for one group will converge to the coefficient of

another group.

Corollary 6: If assumptions (1) − (4) hold and  =  = 1, then as

 →∞, we have:

b →  (16)

and

b →  (17)

It follows that the effect of perfect measurement errors is to interchange

the probability limits of the estimators. The estimator for one group will
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converge to the true coefficient of another group. Consequently, we can

define

e = b →  (18)

e = b →  (19)

Case 7: +   1

When +   1, the probability of committing measurement errors in at

least one of the groups is higher than 0.5. In such a case, Φ0  0. Corollary 7

states that the relative importance of the marginal effect of the two categories

will be misinterpreted if the measurement error is serious.

Corollary 7: If assumptions (1)−(4) hold and +  1, and assume

that    then as  →∞, we have:

 limb   lim b (20)

Proof.  limb− lim b =  (1− Φ1)+Φ1+ (1−Φ2)+Φ2 = ( − )Φ0 

0

Thus, even   , we will observe that  limb   lim b.
Monte Carlo Experiments

This experiment verifies the above Theorems and Corollaries. Consider

the model

 =  (1− ∗ ) + ∗ +  ( = 1 2   ) 

We perform the following experiment:

Let

 = 50 100 1000 10000

 ∼  (0 1) 
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∗ ∼  ((1 ) (0 1− ))

 = ∗ + 

If ∗ = 1 then  = −1 with probability  and  = 0 with probability (1− ) ;

if ∗ = 0 then  = 1 with probability  and  = 0 with probability (1− ) 

∗ and  are independent of  Φ0, Φ1 and Φ2 are defined as in Section

3.

The simulations were programmed in GAUSS. For each value of   and

, we perform  replications, where  = 1 and 1000. Let b() and b() be
the average values of the OLS estimators for a sample of size  in these 

replications. Displayed in Table 1 are Monte Carlo simulation results for the

seven special cases. The first column corresponds to case one, and so on.
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Table 1: Estimation results for the 7 cases

 +  = 1  =   = 0  = 0  = 1  =  = 1 +   1

   5 3 7 5 2 2 0 2 2 5 0 4 5 1 3 5 1 1 5 7 7

  1 2 2 2 1 2 1 2 1 2 1 2 1 2

b b 15 15 2 2 1 1 1 1714 1588 1 2 1 17 13b(501) 1475 2000 819 799 1506 2255 1594b(501000) 1492 2011 997 990 1594 2007 1709b(1001) 1740 1940 854 987 1502 2244 1909b(1001000) 1490 2001 1001 1013 1592 2001 1705b(10001) 1566 2025 986 1091 1612 2020 1626b(10001000) 1501 1997 1002 1000 1590 2000 1703b(100001) 1512 2003 999 1008 1583 1997 1698b(100001000) 1500 2000 1000 1000 1588 2000 1700b(501) 1420 2437 671 2039 888 671 1179b(501000) 1498 2004 989 1718 994 1003 1296b(1001) 1410 1952 1042 1620 895 963 1461b(1001000) 1501 1999 998 1717 992 1009 1304b(10001) 1529 2007 935 1726 1041 1002 1256b(10001000) 1498 2000 1001 1717 1001 1001 1300b(100001) 1498 1992 1009 1716 971 1030 1296b(100001000) 1500 2000 1000 1715 999 1000 1300

The simulated results in Table 1 largely conform to our theory that the

OLS estimators converge to some convex combinations of the true parame-

ters.
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***

MEASUREMENT ERRORS IN STRUCTURAL-BREAK MOD-

ELS

It will be shown that in a structural-break model, the break point can

still be consistently estimated in the presence of measurement errors.

The Consistency of b
Suppose the true model is

 = 1
∗
1 { ≤ 0}+ 2

∗
1 {  0}+   = 1 2  

where 1 {·} is an indicator function that equals 1 when the statement
inside the bracket is true and equals 0 otherwise, 1 and 2 are true structural

parameters for 0   ≤ 0 and 0   ≤  respectively. Let  = [ ],

where [·] is the greatest integer function,  ∈ [   ] the break fraction. Now,
suppose the true value of ∗ is not perfectly measured and is approximated

by an observable  where

 = ∗ + 

and  is the measurement error. We shall assume for ease of exposition

that:

(1)  0 ∈ [   ] ⊂ (0 1) 
(2)  ∼  (0 2), 

2
 ∞

(3)  ∼  (0 2), 
2
 ∞,  (4 ) ∞

(4) ∗   and  are independent of one another.

(5)  (∗4 ) ∞

(6)

∗∗ ()

=
1



[ ]X
=1

∗2
→ 2∗

 ()

=
1



[ ]X
=1

2
→ 2
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uniformly for  ∈ [   ] 
Assumptions (2) to (6) imply the followings:

∗ ()

=

1√


[ ]X
=1

∗ ⇒ ∗ ()

∗ ()

=

1√


[ ]X
=1

∗ ⇒ ∗ ()

 ()

=

1√


[ ]X
=1

 ⇒  ()

√

¡
∗∗ ()− 2∗

¢ ⇒ ∗∗ ()√

¡
 ()− 2

¢ ⇒  ()

where “ ⇒ ” denotes the weak convergence of a stochastic process, and

∗ (), ∗ (),  (), ∗∗ (), and () are Gaussian processes with zero

mean and variances 2
2
∗ 

2

2
∗, 

2


2
,  ( (

∗4
 )− 4∗),  ( (

4
 )− 4)

respectively.

For any given , our estimated model is

b = b11 { ≤ }+ b21 {  }
The least-squares estimators of 1 and 2 based on the observable { }=1

is given by:

b1 =
 ()

 ()b2 =
 (1)−  ()

 (1)−  ()

where

 ()

=
1



[ ]X
=1

2
→ 

¡
2∗ + 2

¢
 ()


=
1



[ ]X
=1
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We define the break-point estimator as:

b = min
∈(01)

1


 ()

where

 () =

[ ]X
=1

³
 − b1´2 + X

=[ ]+1

³
 − b2´2

For  ∈ [   ] 

b1 → [11 { ≤  0}+ Γ11 {   0}]b2 → [Γ21 { ≤  0}+ 21 {   0}]

where

 =
2∗

2∗ + 2

Γ1 = 1
 0


+ 2

 −  0



Γ2 = 1
 0 − 

1− 
+ 2

1−  0

1− 

sup
∈[ ]

¯̄̄̄
1


 ()−  ()

¯̄̄̄
=  (1)

where for  ∈ [   0)

 () = 2 + (1−  0)
¡
22 − 21

¢
2∗ + 21 (1−)2∗ + (1− )

¡
21 − Γ22

¢
2∗

 ()


= − (2 − 1)

2
2∗

µ
1−  0

1− 

¶2
≤ 0

2 ()

 2
= −2 (2 − 1)

2
2∗
(1−  0)

2

(1− )
3
≤ 0
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Therefore 1

 () converges uniformly to a non-increasing and con-

cave function of  for  ∈ [   0)
For  =  0

 ( 0) = 2 +
¡
 0

2
1 + (1−  0)

2
2

¢
(1−)2∗

Thus even if the change point can be consistently estimated, the variance

of the regression error  will be over-estimated in general unless there is no

measurement errors (i.e. when  = 1).

For  ∈ ( 0  ]

 () = 2 +  0
¡
21 − 22

¢
2∗ + 22 (1−)2∗ + 

¡
22 − Γ21

¢
2∗

 ()


=  (2 − 1)

2
2∗
³ 0


´2
≥ 0

2 ()

 2
= −2 (2 − 1)

2
2∗
( 0)

2

 3
≤ 0

Thus for  ∈ ( 0  ],  () is non-decreasing and concave.
To summarize, the criterion function 1


 () converges uniformly to

a piecewise concave function  () whose minimum takes place at the true

change point. This implies the true change point can be consistently esti-

mated despite of the presence of the measurement errors. However, for all

 ∈ [   ], b1 and b2 are inconsistent estimates for 1 and 2 respectively.

Thus the consistency of the change-point estimator does not depend on the

consistency of the structural estimators.

Theorem 172 If assumptions (1) − (6) hold, then under 1 : 1 6= 2

as  →∞, we have:

b →  0b1 → 1b2 → 2
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where 0 ≤  =
2∗

2∗ + 2
≤ 1

Proof. Exercise.

This Theorem states that the change point can be estimated consistently

despite the existence of measurement errors. However, the pre-shift and

post-shift structural estimators are biased towards zero as long as there are

measurement errors (2  0). Therefore the true magnitude of break should

be bigger than the observed difference between the pre-shift and post-shift

estimates.

The Wald Test

Under the null of no structural break, the probability limits of the pre-

shift and post-shift parameters should be the same (not necessarily coincide

with true structural parameters). While in the presence of break(s), their

probability limits are different. Therefore a test statistic that based on the

difference between the estimated pre-shift and post-shift parameters will be

a consistent test. We define a Wald-type statistic as follows:

 () =
 2 (1− )

 ()

³b2 − b1´2  (1)
Let S be a set whose closure lies in (0 1). A Sup-Wald statistic defined as

sup
∈S

 () is constructed by searching the supremum of  () over a wide

range of possible break points

Under 0 : 1 = 2 =  , if there is no measurement error, both the pre-

shift and post-shift estimators are consistent, so
³b2 − b1´ is a stochastic

term of order  (1) and is independent of the true parameter . As a result,

the limiting distribution of  () will be independent of true parameters in

the absence of measurement errors. However, when there are measurement

errors, the term
³b2 − b1´ will depend on the true parameters , 2∗ 2

and 2. It will be shown that measurement errors will affect the asymptotic

null distribution of  () by a scaling parameter.

Definition 173 A Brownian Bridge motion  () is defined as
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 () =  ()−  (1)

where  () is a standard Brownian motion on [0 1] 

Note that a Brownian Bridge motion has the property that  (0) =

 (1) = 0

Theorem 174 If assumptions (2)− (6) hold, then under 0 : 1 = 2 =

 as  →∞, we have:

 ()⇒ 
¡


2
∗ 

2
 

2


¢ ( ())2
 (1− )

and

sup
∈S

 ()
→ 

¡


2
∗ 

2
 

2


¢
sup
∈S

( ())
2

 (1− )

where

0 ≤ 
¡


2
∗ 

2
 

2


¢
= 1 +

2 [4∗ (
4
 ) + 4 (

∗4
 )− 644∗]

(2∗ + 2)
2
¡
22∗2 + 2

2∗ + 2
2


¢
= 1 +

2 [4∗ ( (
4
 )− 34) + 4 ( (

∗4
 )− 34∗)]

(2∗ + 2)
2
¡
22∗2 + 2

2∗ + 2
2


¢
S denotes a set whose closure lies in (0 1), and  () is a Brownian

Bridge motion on [0 1] 

Proof. Exercise.

If 
¡


2
∗ 0 

2


¢
 1, using the conventional critical values will tend

to over-accept the null of no break, and the null will be over rejected if


¡


2
∗ 0 

2


¢
 1. Note that if there is no measurement errors, we have


¡


2
∗ 0 

2


¢
= 1, and the conventional null distribution applies. Further,

if ∗ and  are normally distributed, we will have  (
4
 ) = 3

4
 and  (

∗4
 ) =

34∗, 
¡


2
∗ 

2
 

2


¢
= 1 again.

THE UNIT ROOT MODEL WITH MEASUREMENT ERRORS
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Macroeconomists have nowadays recognized that unit root may exist in

many variables of economic interest. Standard theorems in the unit-root

literature, however, rule out the possibility of measurement errors in these

economic time series. This leaves open the question of the validity of those

previous findings if measurement errors exist.

The consequences of measurement errors in a simple unit root process

will be discussed here. It will be proved that the parameter can still be

consistently estimated, despite the presence of measurement errors. The

convergence rate is still T. The limiting distribution of the OLS estimator,

however, will be distorted. Its exact form depends on the distributional

properties of the measurement error process.

Definition 175 A sequence {}∞=−∞ is said to be strong mixing (-mixing)
if lim→∞ = 0 where  ≡ sup sup{∈=−∞∈=∞+} | ( ∩)−  () ()|
and =

 ≡  (  +1  ) 

Many macroeconomic variables appear to be generated from unit root

processes. Suppose the true data-generating process is a unit root process

without drift:

∗ = ∗−1 +  = ∗0 +
X

=1

 = ∗0 +   = 1 2  

where ∗0 is assumed to be drawn from a stationary processes with zero

mean and a finite second moment, and  is a random variable satisfying the

following assumptions:

Assumption 1:

() () = 0 for all 

() lim sup kk ∞, for some   2

()2

= lim→∞

µ
1


2

¶
exists and 2  0

() {}∞=1 are strong mixing (-mixing) with mixing coefficients  that

satisfy
∞P

=1


1−2
 ∞
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where kk is the  norm of  defined as kk = ( ||) 1 for  ∈
[1∞) and kk =  sup || for  =∞

Assumption 1 remains in effect throughout the rest of this handout. The

following lemma illustrates its role:

Lemma 1: Let  () be the standard Brownian motion in [0 1], if {}∞=1
satisfies Assumption 1, then as  →∞,
()  ()


=

1√


[] ⇒  (),

()
1



P
1

∗−1 ⇒
2

2

µ
2 (1)− 2

2

¶
 where 2 = lim→∞

1



P
=1

 (2 ) 

()
1

 2

P
1

∗2−1 ⇒ 2
Z 1

0

2 () 

Proof. Exercise.

Most macroeconomic data are aggregated and are therefore inevitably

suffered from measurement and aggregation errors. In addition, the current

value of an economic variable may greatly depend on its lagged values, so

measurement errors may appear in both sides of a dynamic model. Therefore

it would be of intrinsic interest to investigate the properties of the estimator

in the presence of these kinds of errors. Suppose the true value of ∗ cannot

be accurately observed and is proxied by an observable  where

 = ∗ +  =

Ã
∗0 +

X
=1



!
+ 

With a little rearrangement, the observed process  is generated by

 = −1 +  = 0 +

X
=1

 = 0 + 

where

 =  +  − −1
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The initial measurement error 0 is assumed to be drawn from a sta-

tionary process with zero mean and a finite second moment. It is worth

noting that even if the processes {}∞=1 and {}∞=1 are i.i.d., the observed
process {}∞=1 still has serially correlated innovations. Thus, the existence
of measurement errors in the unobserved unit root process is equivalent to

the case where the observed process has a unit root with serially correlated

disturbances.

The least-squares estimator for  based on the observations {}=1 is
given by

b =
P
=2

−1

P
=2

2−1

= 1 +

P
=2

−1

P
=2

2−1



Case 1:  ∼  (0)

We make the following assumptions for the process {}∞=1 :

Assumption 2:

() () = 0 for all 

() lim sup kk ∞, for some   2
() {}∞=1 are strong mixing with mixing coefficients  that satisfy

∞P
=1


1−2
 ∞

Lemma 2:Under Assumptions 1 and 2, we have:

() () = 0 for all .

() lim sup kk ∞, for some   2
() {}∞=1 are strong mixing with mixing coefficients  that satisfy

∞P
=1


1−2
 ∞

()2

= lim→∞

1



P
=1

 (2 ) = 2 + 2
2
 − lim→∞

2



P
=1

 (−1) 

where 2

= lim→∞

1



P
=1

 (2 ) and 2 was defined in Lemma 1().
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()2

= lim→∞

µ
1


2

¶
= 2.

()As  →∞,  ()

=

1√


[] ⇒  ().

Proof. Exercise.

The properties of {}∞=1 in Lemma 2 suffice to establish the consistency
of b in the following theorem.
Theorem 176 Under Assumptions 1 and 2, as  →∞ :


³b − 1´⇒ 2 (1)− 2

2

2

Z 1

0

2 () 

where 2 is defined in assumption 1(c), and 2 in Lemma 2(d).

Proof. Exercise.

Note that b no longer has a standard Dickey-Fuller distribution, and its
shape depends on the variance of the increment of measurement errors. Note

that when there is no measurement error and when {}∞=1 are i.i.d., i.e.
2 = 0 and 2 = 2, the OLS estimator will have a standard Dickey-Fuller

distribution.

Case 2:  ∼  (1)

The previous case where the measurement error process is stationary

suggests that
  ()

  (∗ )
becomes negligible as the sample size grows. This

implies the effect of measurement error will die out asymptotically, so that

the consistency of the OLS estimator will be preserved. Empirically speaking,

it is more likely for the magnitude of measurement errors to commensurate

with the magnitude of the true process ∗ .

To see how this affects our previous result, suppose the measurement

errors follow a first order integrated process such that
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 = −1 +  = 0 +

X
=1



The observed process  is generated by

 = 0 +  +

X
=1

 = 0 + 0 +

X
=1

( + )

or

 = −1 + 

where

 =  + 

and 0 is assumed to be drawn from a stationary process with zero mean

and a finite second moment. The increments of measurement errors satisfy

the following assumptions:

Assumption 3:

() () = 0 for all .

() lim sup kk ∞, for some   2

() {}∞=1 are strong mixing with mixing coefficient  that satisfy
∞P

=1


1−2
 ∞

()2Ω

= lim→∞

µ
1


2

¶
exists and is strictly positive.

() {}∞=1 and {}∞=1 are independent.

The observed innovations {}∞=1 have the following properties:

Lemma 3: Under Assumptions 1 and 3, we have:

() () = 0 for all .

() lim sup kk ∞, for some   2
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() {}∞=1 are strong mixing with mixing coefficients  that satisfy
∞P

=1


1−2
 ∞

()2

= lim→∞

1



P
=1

 (2 ) = 2 + 2

where 2

= lim→∞

1



P
=1

 (2 ) and 2 was defined in Lemma 1(b).

() lim→∞

µ
1


2

¶
exists and is strictly positive

()As  →∞,  ()⇒  (),

where  () is defined in Lemma 2(f) and  () is a standard Brownian

Motion on [0 1].

Proof. Exercise.

Theorem 177 Suppose  = −1+, then under Assumptions 1 and 3, as

 →∞,


³b − 1´⇒ 2

 (1)−
2
2

2

Z 1

0

2
 () 



Similar to the previous Theorem, b will have a standard Dickey-Fuller
distribution when 2 = 0 and 2 = 2.

Proof. Exercise.

The robustness of the consistency of the OLS estimator in the presence of

measurement error is surprising. It is more surprising that this consistency

result is insensitive to whether these measurement errors are  (0) or  (1).

The basic idea involved is that, if the true process is a unit root process with

weakly dependent increments, then the observed process will be a unit root

process with increments exhibiting another form of dependence.

Under fairly general circumstances, the OLS estimator approaches its

asymptotic distribution at the rate of  , as rapid as that in the case of no

measurement error. However, the limiting distribution will no longer be a
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standard Dickey Fuller type distribution, its shape depends on the long-run

variance and the order of the measurement error process.

Case 3:  = −−1 + 

We have shown previously that the consistency of OLS estimator is pre-

served under both  (0) and  (1) measurement errors. It seems that this con-

sistency result is invariant to the type of measurement errors from which the

true unit root process is suffering. This conjecture, however, is questionable.

We will show in the following case that the OLS estimator is inconsistent

under certain type of measurement errors. Suppose the measurement errors

are generated by the following process:

 = −−1 +  = − (−−2 + −1) + 

= (−1) 0 +
X

=1

 ( )

where

 ( ) = (−1)− 

Without loss of generality, suppose 0 = 0, then the observed process 

is generated by

 = 0 +  +

X
=1

 = 0 +

X
=1

( +  ( )) 

Lemma 4: If  and  are independent for all  , then under Assump-

tion 3,

() ( ( )) = 0 for all  .

() lim sup k ( )k ∞, for some   2
() { ( )}∞=1 are strong mixing with mixing coefficients  that satisfy

∞P
=1


1−2
 ∞

()2

= lim→∞

1



P
=1

 (2 ) = 2
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()2Λ

= lim→∞

µ
1


2

¶
exists and is strictly positive

()As  → ∞,  () ⇒  (), where  () is a standard Brownian

Motion on [0 1] 

Proof. Exercise.

Theorem 178 Suppose  = −−1 + , then under Assumptions 1 and 3,

the OLS estimator b is inconsistent, and as  →∞,

b ⇒ 1−
2

Z 1

0

2
 () Z 1

0

³
 () +


Λ
 ()

´2




where  () is defined in Lemma 1(a),  () in Lemma 4(f) , and  ()

is independent of  () 

Proof. Exercise.

Note that b → 1 as


Λ
→ ∞, and b → −1 as 

Λ
→ 0 In other words,

the OLS estimator will be closer to its true value as the measurement error

process becomes less volatile.

MONTE CARLO EXPERIMENTS

Experiment 1: This experiment verifies Theorem 52 and 53. We have

the following setup:

∗ = ∗−1 + ,  ∼ (0 1),  = 1 2  

0 is drawn from a (0 1) independent of {}=1 
The observed process

 = ∗−1 + ,  = −1 +   = −05 0 05 1
 is set to be a standard normal i.i.d. random variable independent of

0 and {}=1. i.e.,  ∼ (0 1)

To get the limiting distribution of b with high precision, we perform sim-
ulations at  = 20000 (sample size) and  = 20000 (number of replications)

Let b be the average of b in these 20000 replications.
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Table 1: Percentile of 
³b − 1´

b 99% 95% 90% 50% 10% 5% 1%

 = −5 9993 3452 −4204 −1053 −7860 −3231 −4403 −7243
 = 0 9996 8842 2839 −1363 −4198 −1873 −2575 −4228
 = 5 9997 1110 5623 1813 −3128 −1444 −1966 −3265
 = 1 9999 2024 1269 9175 −8389 −5756 −8114 −1406
2 = 0 9999 2062 1293 9285 −8412 −5580 −7809 −1400

Note from Table 1 that b are very close to 1 under various values of .
And as  increases, the limiting distribution of b shifts to the right. The case
without measurement is tabulated in the last row of Table 1 for comparison

purposes.

Note that the limiting distribution of b in the absence of measurement
error is closest to the case where  = 1 This implies that if the measurement

process is also a unit root process, its effects on the limiting distribution ofb will vanish.
Experiment 2: This experiment verifies Theorem 54.

∗ = ∗−1 + ,  ∼ (0 2),  = 1 2  

0 is drawn from a (0 1) independent of {}=1 
The observed process

 = ∗−1 + ,  = −−1 + ,  ∼ (0 2Λ)

 = 20000  = 20000

The results are summarized in Table 2.

Table 2: Percentile of bb 99% 95% 90% 50% 10% 5% 1%


Λ
= 10 9501 9993 9982 9971 9798 8715 7985 5776



Λ
= 1 −0002 9287 8362 7444 0005 −7476 −8389 −9293



Λ
= 01 −9506 −5759 −8003 −8759 −9803 −9970 −9982 −9993
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Note that as predicted in Theorem 54, b → 1 as


Λ
→∞, and b → −1 as



Λ
→ 0 and b converges in distribution to a random variable symmetrically

distributed about zero when


Λ
= 1.

Exercise 0.167 Use GAUSS to run the following experiment to verify The-

orem 50:

 = −10∗ +   = 1 2  10000

 = 10
∗
 +   = 10001 10002  20000

 = ∗ + 

 ∼  (0 1)

∗ ∼  (1 1)

 ∼  (0 2) 2 = 0 1 2  8

∗   and  are independent of one another.

 =
2∗

2∗ + 2
=

2

2 + 2
1

 ( 0)

→  ( 0) = 2 +
¡
 0

2
1 + (1−  0)

2
2

¢
(1−)2∗ = 1 +

200 (1−)

Fill up the Table below. For each value of 2, perform 1 replication.

2 0 1 2 3 4 5 6 7 8

1

2

 ( 0)bb1b2
1

 (b)

Do your results support the findings in Theorem 50? Is 1

 (b) is

much greater than the true value of 2 (= 1) when there are measurement

errors? Does the change-point estimator coincide with the true change point
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in all cases? Do the structural estimators converge to the true parameters

multiplied by ?

Exercise 0.168 Consider the process

∗ = ∗−1 + 

∗0 = 0

 ∼ 
¡
0 2

¢


Suppose ∗ is not observable and we only observe , where  = ∗ + ,

 ∼  (0 2). {∗ }=1, {}=1and {}=1 are independent.

a) Suppose ||  1, show that as →∞


¡
∗2
¢ 
= 2∗ =

2

1− 2


b) Let

 =
2∗

2∗ + 2

and

b = P

=2 −1P

=2 
2
−1



Show that

b → 

c) Suppose  = 1, show that plim b = 1
d) Write a Gauss program to simulate the distribution of b for  =

100000,  = 10000,  ∼  (0 1) and  ∼  (0 1)
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7. Use GAUSS to run the following experiment to verify Theorem 51,

which states that measurement errors affect the limiting distribution of the

Sup-Wald statistic.

True Model:

 = ∗ + 

Estimated Model:

 =  + 

 = 1 2  1000

 = ∗ + 

∗ ∼  (0 1)

 ∼  (0 1)

{}=1 and {}=1 are independent of each other.
 = 10000

Let  be the critical value such that Pr

Ã
sup

∈(1585)
 ()  

!
= .

a) If  = 0 for all , i.e. there is no measurement error. Fill up the

following table:

Table a:

 = 0

 (0 1 0 1) = 1

 1 05 01



 = 1

 (1 1 0 1) = 1

1 05 01

 = 2

 (2 1 0 1) = 1

1 05 01

 = 3

 (3 1 0 1) = 1

1 05 01

b) If  ∼ 
¡−√3√3¢, show that 2 = 1,  (4 ) = 9

5
and  ( 1 1 1) =

72 + 20

102 + 20
. Fill up the following table:
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Table b:

 = 0

 (0 1 1 1) = 1

 1 05 01



 = 1

 (1 1 1 1) = 09

1 05 01

 = 2

 (2 1 1 1) = 08

1 05 01

 = 3

 (3 1 1 1) = 75455

1 05 01

c) If  ∼  (0 1), 2 = 1, show that  (
4
 ) = 3,  ( 1 1 1) = 1. Fill

up the following table:

Table c:

 = 0

 (0 1 1 1) = 1

 1 05 01



 = 1

 (1 1 1 1) = 1

1 05 01

 = 2

 (2 1 1 1) = 1

1 05 01

 = 3

 (3 1 1 1) = 1

1 05 01

Exercise 0.169 Repeat experiments 1 and 2.

Proof of Theorem 50.

For  ∈ [   0] b1 =  ()

 ()
= 1

∗∗ ()
 ()

+  (1)
→ 1

b2 =  (1)−  ()

 (1)−  ()
= 1

∗∗ ( 0)− ∗∗ ()
 (1)−  ()

+2
∗∗ (1)− ∗∗ ( 0)
 (1)−  ()

+  (1)

→
µ
1

 0 − 

1− 
+ 2

1−  0

1− 

¶
 = Γ2

Using

2



[ ]P
=1

³
1

∗
 − b1 (∗ + )

´
 =  (1)

257



2



0P
=[ ]+1

³
1

∗
 − b2 (∗ + )

´
 =  (1)

2



P
=0+1

³
2

∗
 − b2 (∗ + )

´
 =  (1)

and (1−)2∗ = 2, we have:
1

 ()

= 1


[ ]P
=1

³
1

∗
 +  − b1 (∗ + )

´2
+ 1



0P
=[ ]+1

³
1

∗
 +  − b2 (∗ + )

´2
+ 1



P
=0+1

³
2

∗
 +  − b2 (∗ + )

´2
= 1



P
=1

2 +
b21 1 [ ]P

=1

2 +
³
1 − b1´2 1 [ ]P

=1

∗2

+
³
1 − b2´2 1 0P

=[ ]+1

∗2 +
³
2 − b2´2 1 P

=0+1

∗2

+b22 1 P
=[ ]+1

2 +  (1)

→ 2 + 21
22 + (1 − 1)

2
2∗ + (1 − Γ2)

2
( 0 − )2∗

+(2 − Γ2)
2
(1−  0)

2
∗ + Γ22

2 (1− )2

= 2 + (1−)2∗
2
1 + ( 0 − )21

2
∗ + (1−  0)

2
2
2
∗

+(( 0 − )+ (1−) (1− ) + (1−  0))Γ
2
2

2
∗ − 2 (1− )Γ22

2
∗

= 2 + (1−  0)
¡
22 − 21

¢
2∗ + (1−)2∗

2
1 + (1− )

¡
21 − Γ22

¢
2∗


=  ()

 ()


= −212∗ − 2Γ2 (2 − 1)

1−  0

1− 
2∗ + Γ22

2
∗

= −212∗ + 2Γ2 (1 − Γ2 )
2
∗ + Γ22

2
∗ = − (1 − Γ2)

2
2∗ ≤ 0

2 ()

 2
= −2 (1 − 2)

2
2∗
(1−  0)

2

(1− )
3
≤ 0

For  ∈ ( 0  ]b1 = 1
∗∗ ( 0)
 ()

+ 2
∗∗ ()− ∗∗ ( 0)

 ()
+  (1)

→
µ
1

 0


+ 2

 −  0



¶
 = Γ1

b2 = 2
∗∗ (1)− ∗∗ ()
 (1)−  ()

+  (1)
→ 2

Using
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2



0P
=1

³
1

∗
 − b1 (∗ + )

´
 =  (1)

2



[ ]P
=0+1

³
2

∗
 − b1 (∗ + )

´
 =  (1)

2



P
=[ ]+1

³
2

∗
 − b2 (∗ + )

´
 =  (1)

and (1−)2∗ = 2, we have:
1

 ()

= 1


0P
=1

³
1

∗
 +  − b1 (∗ + )

´2
+ 1



[ ]P
=0+1

³
2

∗
 +  − b1 (∗ + )

´2
+ 1



P
=[ ]+1

³
2

∗
 +  − b2 (∗ + )

´2
= 1



P
=1

2 +
b21 1 [ ]P

=1

2 +
³
1 − b1´2 1 0P

=1

∗2

+
³
2 − b1´2 1 [ ]P

=0+1

∗2 +
³
2 − b2´2 1 P

=[ ]+1

∗2

+b22 1 P
=[ ]+1

2 +  (1)

→ 2 + Γ21
22 + (1 − Γ1)

2
 0

2
∗ + (2 − Γ1)

2
( −  0)

2
∗

+22 (1−)
2
(1− ) 2∗ + 22

2 (1− )2

= 2 + Γ21 (1−)2∗ + (1− ) 22 (1−)2∗ +  0
2
1
2
∗ +  0Γ

2
1

22∗
+( −  0)

2
2
2
∗+ ( −  0)Γ

2
1

22∗− 2 01Γ12∗− 2 ( −  0)2Γ1
2
∗

= 2 +  0
¡
21 − 22

¢
2∗ + 22 (1−)2∗ + 

¡
22 − Γ21

¢
2∗


=  ()

 ()


= 22

2
∗− 2Γ1 (2 − 1)

 0


2∗ − Γ21

2
∗

= 22
2
∗− 2Γ1 (2 − Γ1)

2
∗ − Γ21

2
∗ =  (2 − Γ1 )

2
2∗

=  (2 − 1)
2
2∗
³ 0


´2
≥ 0

2 ()

 2
= −2 (2 − 1)

2
2∗
( 0)

2

 3
≤ 0

Thus 1

 () converges in probability to a piecewise concave function

of  . Under the i.i.d. assumptions (2) to (6), it is not difficult to show

that 1

 () converges uniformly to  (). Thus its minimum should take

place at the true change point, which implies:
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b →  0b1 = b10 +  (1)
→ 1b2 = b20 +  (1)
→ 2

Proof of Theorem 51.b1 =  − 
 ()

 ()
+ 1√



 ( ;)

 ()
where  ( ;) = −∗ () + ∗ () +  ()b2 =  − 

 (1)−  ()

 (1)−  ()
+ 1√



 (1;)−  ( ;)

 (1)−  ()√

³b2 − b1´
= −

√

( (1)− 2) ()− ( ()− 2) (1) + 2 ( ()−  (1))

 () [ (1)−  ()]

+
 (1;) ()−  ( ;) (1)

 () [ (1)−  ()]

= −
√

( (1)− 2) ( ()− 2)− ( ()− 2) ( (1)− 2)

 () [ (1)−  ()]

−
√

2 ((∗∗ ()− 2∗)−  (∗∗ (1)− 2∗))

 () [ (1)−  ()]
−2 2 (∗ ()− ∗ (1))

 () [ (1)−  ()]

+
 (1;) ()−  ( ;) (1)

 () [ (1)−  ()]

⇒ −2∗
 (1)− ()

 (1− ) (2∗ + 2)
2
+2

∗∗ (1)−∗∗ ()

 (1− ) (2∗ + 2)
2
+22

∗ (1)−∗ ()

 (1− ) (2∗ + 2)
2

− ∗ (1)−∗ ()
 (1− ) (2∗ + 2)

+
∗ (1)−∗ ()
 (1− ) (2∗ + 2)

+
 (1)− ()

 (1− ) (2∗ + 2)

= 0
5P

=1

 ()

=  ()

where

0 =
1

 (1− ) (2∗ + 2)
2
, 1 = −2∗

p
 (4 )− 4 2 = 2

p
 (∗4 )− 4∗

3 =  (2 − 2∗)∗ 4 = ∗ (2∗ + 2)  5 =  (
2
∗ + 2)

2 = 20

5P
=1

2

=
2 (4∗ (

4
 ) + 4 (

∗4
 )− 644∗) +

¡
22∗

2
 + 2

2
∗ + 2

2


¢
(2∗ + 2)

2

 2 (1− )
2
(2∗ + 2)

4
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1 () =
 (1)− ()p

 (4 )− 4
, 2 () =

∗∗ (1)−∗∗ ()p
 (∗4 )− 4∗

, 3 () =

∗ (1)−∗ ()
∗

, 4 () =
∗ (1)−∗ ()

∗
, 5 () =

 (1)− ()


 () are Brownian Bridge motions on [0 1] independent of one an-

other,  = 1 2 3 4 5.

 () =
 (1− )
1

 ()


³b2 − b1´2  (1)

⇒  (1− )

2 + 2
2

2∗ + 2
2∗

2 ()
2
(2∗ + 2) = 

¡


2
∗ 

2
 

2


¢  ()
2

 (1− )

where


¡


2
∗ 

2
 

2


¢
= 1 +

2 [4∗ (
4
 ) + 4 (

∗4
 )− 644∗]

(2∗ + 2)
2
¡
22∗2 + 2

2∗ + 2
2


¢
and  () is a Brownian Bridge motion on [0 1] 

By the Continuous Mapping Theorem, we have:

sup
∈S

 ()
→ 

¡


2
∗ 

2
 

2


¢
sup
∈S

( ())
2

 (1− )

where S is a set whose closure lies in (0 1).
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Proof of Theorem 52:
1

 2

P
=1

2−1 =
1

 2

P
=1

µ
0 + −1 +

−1P
=1



¶2
=
1

 2

P
=1

¡
2−1 + 2 (0 + −1)−1 + (0 + −1)

2
¢

= 2
P
=1

Z 

(−1)

2[]

2
 +

2√


P
=1

(0 + −1)
Z 

(−1)

[]√




+
1



µ
20 +

20



P
=1

−1 +
1



P
=1

2−1

¶
= 2

Z 1

0

2
 ()  +

2√


Ã
0

Z 1

0

 ()  +
P
=1

−1

Z 

(−1)
 () 

!
+
1



µ
20 +

20



P
=1

−1 +
1



P
=1

2−1

¶
= 2

Z 1

0

2
 ()  +  (1)⇒ 2

Z 1

0

2 () 

1



P
=1

−1 ( − −1) =
1



P
=1

¡
0 + (−1)

¢


= 0 +
1

2

P
=1

³
2 − 2(−1) − 2

´
= 0 +

1

2
2 −

1

2

P
=1

2

= 0 +
2

2

µ
 (1) +




√


¶2
− 1

2

P
=1

2

= 0 +
2

2
2
 (1)−

1

2

P
=1

2 +  (1)⇒ 2

2
2 (1)− 2

2

Thus, 
³b − 1´ =

1



P
=2

−1

1

 2

P
=2

2−1

⇒
2 (1)− 2

2

2

Z 1

0

2



Proof of Theorem 53:
1

 2

P
=1

2−1 =
1

 2

P
=1

µ
0 + 0 +

−1P
=1



¶2
=
1

 2

P
=1

³
2(−1) + 2 (0 + 0)(−1) + (0 + 0)

2
´

= 2

P
=1

Z 

(−1)

2[]

2
+

2√

 (0 + 0)

P
=1

Z 

(−1)

[]√


+
(0 + 0)

2
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= 2

Z 1

0

2
 ()  +

2√

 (0 + 0)

Z 1

0

 ()  +
1


(0 + 0)

2

= 2

Z 1

0

2
 ()  +  (1)⇒ 2

Z 1

0

2
 ()  as  →∞

1



P
=1

−1 ( − −1) =
1



P
=1

¡
(−1) + 0 + 0

¢


= (0 + 0)  +
1

2

P
=1

³
2 − 2(−1) − 2

´
=
1

2

P
=1

³
2 − 2(−1)

´
− 1

2

P
=1

2 +  (1)

=
1

2
2 −

1

2

P
=1

( + )
2
+  (1)

=
2
2
2
 (1)−

1

2

P
=1

2 −
1

2

P
=1

2 +  (1)

⇒ 2
2
2
 (1)−

2
2
− 2
2

Thus, 
³b − 1´ =

1



P
=2

−1

1

 2

P
=2

2−1

⇒
2
 (1)−

2 + 2
2

2

Z 1

0

2




Proof of Theorem 54:
1

 2

P
=1

−1 ( − −1) =
1

 2

P
=1

¡
0 + (−1)

¢


= 1

0 +

1

2 2

P
=1

³
2 − 2(−1) − 2

´
=  (1) +

1

2 2
2 −

1

2 2

P
=1

( +  − −1)
2

= − 1

2 2

P
=1

( +  − 2−1)2 +  (1)

= − 2
 2

P
=1

−1 − 2

 2

P
=1

2−1 +  (1)

= − 2
 2

P
=1

2−1 +  (1)⇒ −22Λ
Z 1

0

2
 () 

1

 2

P
=1

2−1 =
1

 2

P
=1

µ
0 +

−1P
=1

( ( ) + )

¶2
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=
1

 2

P
=1

µ
−1P
=1

( ( ) + )

¶2
+  (1)

⇒
Z 1

0

(Λ () +  ())
2


Thus, b = 1 +

1

 2

P
=1

−1 ( − −1)

1

 2

P
=1

2−1

⇒ 1 −
2

Z 1

0

2
 () Z 1

0

³
 () +


Λ
 ()

´2




Proof of Lemma 1:

()See Herrndorf (1984, Corollary 1, p.142).

() and (), see Phillips (1987, Theorem 3.1(a),(b), p.282).

Proof of Lemma 2:

() Obvious.

() Let  = min { }  2 then
lim sup kk = lim sup k +  − −1k
≤ lim sup

³
kk + kk + k−1k

´
by Minkowski’s inequality

≤ lim sup
³
kk + kk + k−1k

´
by Liapunov’s inequality

≤ lim sup kk + lim sup kk + lim sup k−1k
∞ by Assumptions 1(b) and 2(b).

() See White (1984, Theorem 3.49, p.47).

()2

= lim→∞

1



P
=1

 (2 ) = lim→∞
1



P
=1

 ( +  − −1)
2

= 2 + 2
2
 − lim→∞

2



P
=1

 (−1)

()2 = lim→∞

µ
1


2

¶
= lim→∞

1


 ( +  )

2

= lim→∞
1


 (2 ) + lim→∞

2


 ( ) + lim→∞

1


 (2 )

= lim→∞

µ
1


2

¶
= 2.

()As  →∞,  ()

=

1√


[] =




1√


[] +
[]√


=



 () +  (1)⇒  ().
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Proof of Lemma 3:

()Obvious.

() Let  = min { }  2 then lim sup kk = lim sup k + k
≤ lim sup

³
kk + kk

´
by Minkowski’s inequality

≤ lim sup
³
kk + kk

´
by Liapunov’s inequality

≤ lim sup kk+lim sup kk ∞ by Assumptions 1(b) and 3(b).

()See White (1984, Theorem 3.49, p.47).

() lim→∞
1



P
=1

 (2 ) = lim→∞
1



P
=1

 ( + )
2

= lim→∞
1



P
=1

 (2 ) + lim→∞
1



P
=1

 (2 ) + lim→∞
2



P
=1

 () ()

= 2 + 2

()2 = lim→∞

µ
1


2

¶
= lim→∞

1


 ( +  )

2

= lim→∞
1


 ( +  + 0)

2
= lim→∞

1


 (2 + 2 )

= 2 + 2Ω which exists and is strictly positive

()See Herrndorf (1984, Corollary 1, p.142).

Proof of Lemma 4:

() ( ( )) = (−1)− () = 0 for all  .

() lim sup k ( )k = lim sup kk ∞, for some   2
()See White (1984, Theorem 3.49, p.47).

()2

= lim→∞

1



P
=1

 (2 ) = 2

()2Λ

= lim→∞

µ
1


2

¶
= lim→∞

µ
1


2

¶
which exists and is strictly positive

()See Herrndorf (1984, Corollary 1, p.142).
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ASYMPTOTICPROPERTIESOF EXTREMUMESTIMATOR

Definition 179 A sequence of function  () converge to  () pointwise

in Θ, if for any given  ∈ Θ

| ()−  ()| =  (1)

Definition 180 A sequence of function  () converge to  () uniformly

in Θ if

sup
∈Θ

| ()−  ()| =  (1)

Uniform convergence implies pointwise convergence, but the not the other

way around.

Example 181 Θ = [0 2] 

 () =   ∈
∙
0
1

2

¸
= 1−   ∈ ( 1

2

1


]

= 0  ∈ ( 1

 1]

=


 + 1
( − 1)  ∈ (1 15]

=


 + 1
(2− )  ∈ (15 2]
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 () = 0  ∈ [0 1]

=
1

2
( − 1)  ∈ (1 15]

=
1

2
(2− )  ∈ (15 2]

For any given  ∈ [0 2] 

| ()−  ()| =  (1)

But

sup
∈Θ

| ()−  ()| = 1

2
6=  (1) 

Definition 182 A sequence of random variable  () converge to 0 in prob-

ability pointwise if for any given  ∈ Θ

| ()−  ()| =  (1)

Definition 183 A sequence of random variable  () converge to 0 in prob-

ability uniformly if

sup
∈Θ

| ()−  ()| =  (1)

Uniform convergence in probability implies pointwise convergence in prob-

ability, but the not the other way around.

Example 184 Θ = [0∞)

 () =
1



X
=1

 +   ∈
∙
0
1

2

¸

=
1



X
=1

 + (1− )  ∈ ( 1
2


1


]

= 0  ∈
µ
1


∞
¶
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where {}=1 is an i.i.d. zero-mean, finite variance stochastic sequence,
 is a binary random variable which takes −1 with probability 05 and 1
with probability 05.

 () = 0  ∈ Θ

For any given  ∈ Θ

| ()−  ()| =  (1)

However

sup
∈Θ

| ()−  ()| =
¯̄̄̄
¯ 1

X
=1

 +


2

¯̄̄̄
¯ 6=  (1)

since

Pr (sup∈Θ | ()−  ()| ≥ ) = Pr

µ¯̄̄̄
1


P
=1

 +

2

¯̄̄̄
≥ 

¶
→ Pr

¡¯̄

2

¯̄
≥ 
¢
=

1

Definition 185 Let  = (12 )
0
be a T-vector of random variables and

 a K-vector of parameters. An extremum estimator b is an estimator ob-
tained by maximizing (or minimizing) a certain function  (; ) defined

over the parameter space Θ.

b 
= max

∈Θ
 (; )

Such an estimator is sometimes referred to an M-estimator.

Consistency

Assumptions:

(A1) The parameter space Θ is a compact subset of  

(B1) (; ) is continuous in  ∈ Θ for all  and is a measurable function

of  for all  ∈ Θ.

(C1) 1

 (; ) converges to a non-stochastic function () in probability

uniformly in  ∈ Θ as  →∞, and  () attains a unique global maximum

at 0. i.e.

268



sup
∈Θ

¯̄̄̄
1


 (; )− ()

¯̄̄̄
=  (1)

and

0

= max

∈Θ
 () is unique

Theorem 186 Under assumption (A1) to (C1), we have

b → 0

Proof. Let  be an open neighborhood in  containing 0. Then   ∩Θ
is compact. Therefore max

∈∩Θ
 (; ) exist. Denote

 =  (0)− max
∈∩Θ

 ()  0

Let  be the event¯̄̄̄
1


 (; )− ()

¯̄̄̄




2
∀ ∈ Θ

Since b and 0 ∈ Θ, we have

 (0)− 1


 (; 0) 



2

and

1




³
;b´−

³b´ 


2

Summing up of the above inequalities gives

1




³
;b´−

³b´+ (0)− 1


 (; 0)  

Since 

³
;b´ ≥  (; 0), we have

 (0)−
³b´   =  (0)− max

∈∩Θ
 ()

This implies
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³b´  max

∈∩Θ
 ()

which in turn implies

b ∈   ∩Θ
or

b ∈ 

Thus,  ⇒ b ∈ 

Pr ( ) ≤ Pr
³b ∈ 

´
Taking limit and using assumption (C),

1 = lim
→∞

Pr ( ) ≤ lim
→∞

Pr
³b ∈ 

´
≤ 1

Thus,

lim
→∞

Pr
³b ∈ 

´
= 1

Thus, b converges to 0 in probability.
Asymptotic Normality

Assumptions:

(A2) The parameter space Θ is an open subset of   0 belongs to the

interior of Θ

(B2)  (; ) is continuous in an open neighborhood 1 (0) of 0 for all

 and is a measurable function of  for all  ∈ Θ.

(C2) 1

 (; ) converges to a non-stochastic function () in probability

uniformly in an open neighborhood2 (0) of 0 as  →∞, and () attains
a strict local maximum at 0.

(D2)
 ( )


exists and is continuous in an open neighborhood1 (0)of

0
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(E2)
2 (; )

0
exists and is continuous in an open, convex neighborhood

of 0

(F2)
1



µ
2 (; )

0

¶
∗

→  (0) for any sequence 
∗


→ 0, where (0)

is a finite non-singular matrix defined as

 (0) = lim
→∞

1




µ
2 (; )

0

¶
0

(G2)
1√


µ
 ( )



¶
0

→  (0  (0)), where

 (0) = lim
→∞

1




"µ
 ( )



¶
0

µ
 ( )

0

¶
0

#

Theorem 187 Let Θ be the set of roots of the equation
 ( )


= 0

corresponding to the local maxima, and
nbo a sequence obtained by choosing

one element from Θ . Then under assumptions (A2) to (G2), we have

√

³b − 0

´
→ 

¡
0  (0)

−1
 (0) (0)

−1¢
Proof. Taking a Taylor expansion, we have

0 =

µ
 ( )



¶
 =

µ
 ( )



¶
0

+

µ
2 (; )

0

¶
∗

³b − 0

´
√

³b − 0

´
= −

µ
1



2 (; )

0

¶−1
∗

µ
1√


 ( )



¶
0

Using assumption (F2), (G2) and Theorem 27, we prove the above theo-

rem.

Maximum Likelihood Estimation

Let {}=1 be i.i.d. r.v. with joint density  (1 2  ; ), where  =

(1 2 )
0
. Since the sample values have been observed and therefore

fixed number, we regard  (; ) as a function of .

Definition 188 Let  = (1 2  )
0
, we defined the likelihood function

as
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 (; ) =  (1 2   ; ) =


Π
=1

 (; ) 

Definition 189 The scores  is a  by 1 vector defined as

 =



ln (; ) =

X
=1




ln  (; )

Theorem 190 The scores have zero expectation when the density for  is

correctly specified.

Proof.

 () = 
£


ln (; )

¤
= 

h
1

(;)


 (; )

i
=

Z ∞

−∞
· · ·
Z ∞

−∞

h
1

(;)


 (; )

i
 (; ) 1 · · · 

=

Z ∞

−∞
· · ·
Z ∞

−∞


 (; ) 1 · · · 

= 


Z ∞

−∞
· · ·
Z ∞

−∞
 (; ) 1 · · · 

= 

[1] = 0

Note that if the density is misspecified, say suppose the true joint density

is  (1 2  ; ), then the expectation of score will not be zero in general

since

 () =

Z ∞

−∞
· · ·
Z ∞

−∞

∙
1

 (; )




 (; )

¸
 (1 2  ; ) 1 · · ·  6= 0

Definition 191 Fisher’s Information Matrix is the variance-covariance ma-

trix of the scores for  and it equals

 =

X
=1



∙µ



ln  (; )

¶


0
ln  (; )

¸
To show this, note that

 =  ( − ()) ( − ())
0
=  (0)
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= 
h³P

=1


ln  (; )

´³P

=1

0 ln  (; )

´i
Since


£¡



ln  (; )

¢ ¡

0 ln  (; )

¢¤
= 0

for all  6=  by independence

We have

 =
P

=1
£¡



ln  (; )

¢

0 ln  (; )

¤


Theorem 192 If  ∼  with density  (; ), b is any unbiased estima-
tor of , the minimum variance of b that can be attained is −1 

Proof.

Note that since b is unbiased, we have

³b´ = Z ∞

−∞
· · ·
Z ∞

−∞
b (1 2   ; ) 1 · · ·  = 

Differentiating both sides w.r.t. 0



0

³b´ = Z ∞

−∞
· · ·
Z ∞

−∞
b 

0


Π
=1

 (; ) 1 · · ·  = 

This implies

Z ∞

−∞
· · ·
Z ∞

−∞
b X

=1

µ
Π 6= (; )



0
 (; )

¶
1 · · ·  = 

Z ∞

−∞
· · ·
Z ∞

−∞
b X

=1

µ
Π 6= (; )  (; )

1

 (; )



0
 (; )

¶
1 · · ·  = 

Z ∞

−∞
· · ·
Z ∞

−∞
b X

=1

µ
Π
=1 (; )



0
ln  (; )

¶
1 · · ·  = 

Z ∞

−∞
· · ·
Z ∞

−∞
bΠ

=1 (; )

Ã
X
=1



0
ln  (; )

!
1 · · ·  = Z ∞

−∞
· · ·
Z ∞

−∞
b0Π

=1 (; ) 1 · · ·  = 

Thus


³b0´ = 
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Using the fact that



µ³b − 
´³b − 

´0¶
 (0)−

³b0´
is a positive semi-definite matrix, we have



µ³b − 
´³b − 

´0¶
 − 

is a positive semi-definite matrix, or

 
³b´− −1

is a positive semi-definite matrix.

We call −1 the Cramér-Rao lower bound of an unbiased estimator
b.

Theorem 193  = −
µ

2

0
ln (; )

¶
Proof. Since

 () = 

µ



ln (; )

¶
=

Z ∞

−∞
· · ·
Z ∞

−∞

¡


ln (; )

¢
 (1 2   ; ) 1 · · ·  = 0

Differentiating both sides w.r.t. 0



0
 () =

Z ∞

−∞
· · ·
Z ∞

−∞



0
( (; )) 1 · · ·  = 0

This impliesZ ∞

−∞
· · ·
Z ∞

−∞

µ




0
 (; ) +  (; )



0


¶
1 · · ·  = 0

Z ∞

−∞
· · ·
Z ∞

−∞




0
 (; ) 1 · · ·  = −

Z ∞

−∞
· · ·
Z ∞

−∞

µ
2

0
ln (; )

¶
 (; ) 1 · · · 

Z ∞

−∞
· · ·
Z ∞

−∞


1

 (; )

µ


0
 (; )

¶
 (; ) 1 · · ·  = −

µ
2

0
ln (; )

¶
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Z ∞

−∞
· · ·
Z ∞

−∞


µ


0
ln (; )

¶
 (; ) 1 · · ·  = −

µ
2

0
ln (; )

¶

 [0] = −
µ

2

0
ln (; )

¶

 = −
µ

2

0
ln (; )

¶

Theorem 194 Under the assumptions (A1) to (C1), let  (; ) = ln (; ).

The maximum likelihood estimator b satisfies
√

³b − 0

´
→ 

⎛⎝0−" lim
→∞



µ
2 (; )

0

¶
0

#−1⎞⎠
Proof. (exercise).

Nonlinear Least Squares Estimator

A nonlinear regression model is a model of the form

 =  (0) +   = 1 2  

The nonlinear least squares estimator is defined as

b = min




where  =
P
=1

[ −  ()]
2

Assumptions:

(A3)  () is continuous in an open neighborhood  of 0

(B3)
 ()


exists and is continuous in 

(C3)
1



P
=1

 (1)  (2) converges to a non-stochastic function in proba-

bility uniformly in 1 2 ∈ 
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(D3) lim→∞
1



P
=1

[ ()−  (0)]
2 6= 0 if  6= 0

(E3) lim→∞
1



P
=1

µ
 ()



¶
0

µ
 ()

0

¶
0

= , where  is a finite

non-singular matrix.

(F3)
1



P
=1

 ()



 ()

0
converges to a finite matrix uniformly for all 

in  .

(G3)
2 ()


is continuous in  in  uniformly in .

(H3) lim→∞
1

 2

P
=1

∙
2 ()



¸2
= 0 for all  in  .

(I3)
1



P
=1

 (1)

µ
2 ()

0

¶
2

converges to a finite matrix uniformly for

all 1 and 2 in  .

Theorem 195 Under assumptions (A3) to (D3), we have

b → 0

Proof. Let  () = lim→∞
1



P
=1

[ (0)−  ()]
2

by assumption (C3) and (D3),  () is a function of  that has a local

minimum at 0 uniformly in 

sup∈

¯̄̄̄
1


 − 2 −  ()

¯̄̄̄
≤ sup∈

¯̄̄̄
1



P
=1

[ (0)−  ()]
2 −  ()

¯̄̄̄
+ sup∈

¯̄̄̄
1



P
=1

2 − 2
¯̄̄̄

+sup∈

¯̄̄̄
1



P
=1

[ (0)−  ()]

¯̄̄̄
≤ sup∈

¯̄̄̄
1



P
=1

[ (0)−  ()]
2 −  ()

¯̄̄̄
+

¯̄̄̄
1



P
=1

2 − 2
¯̄̄̄

+

¯̄̄̄
1



P
=1

 (0)

¯̄̄̄
+ sup∈

¯̄̄̄
1



P
=1

 ()

¯̄̄̄
= 1 +2 +3 +4

→ 0

Obviously1 to3 are  (1). To show that4 also tends to 0 in probabil-

ity, we partition  into  non-overlapping regions 1  . By assumption
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(B3), for any   0, we can find a sufficiently large  such that for each

 = 1 2  

| (1)−  (2)| 


2
√
2 + 1

for 1 2 ∈  and for all t.

Thus

sup∈

¯̄̄̄
1



P
=1

 ()

¯̄̄̄
= sup∈

1



¯̄̄̄
P
=1

( () +  ()−  ())

¯̄̄̄
≤ 1



¯̄̄̄
P
=1

 ()

¯̄̄̄
+ sup∈

1



¯̄̄̄
P
=1

( ()−  ())

¯̄̄̄
by Triangle inequality

≤ 1



¯̄̄̄
P
=1

 ()

¯̄̄̄
+

s
1



P
=1

2 sup∈

s
1



P
=1

[ ()−  ()]
2

by Cauchy-Schwartz inequality

≤ 1



¯̄̄̄
P
=1

 ()

¯̄̄̄
+

s
1



P
=1

2 sup∈

1



P
=1

| ()−  ()|

≤ 1



¯̄̄̄
P
=1

 ()

¯̄̄̄
+

s
1



P
=1

2


2
√
2 + 1

Thus

Pr (4  ) ≤
P
=1

Pr

µ
sup∈

¯̄̄̄
1



P
=1

 ()

¯̄̄̄
 

¶
≤

P
=1

Pr

Ã
1



¯̄̄̄
P
=1

 ()

¯̄̄̄
+

s
1



P
=1

2


2
√
2 + 1

 

!

≤
P
=1

Pr

Ã
1



¯̄̄̄
P
=1

 ()

¯̄̄̄
+

s
1



P
=1

2


2
√
2 + 1

  ∩
s
1



P
=1

2


2
√
2 + 1

≤ 
2

!

+
P
=1

Pr

Ã
1



¯̄̄̄
P
=1

 ()

¯̄̄̄
+

s
1



P
=1

2


2
√
2 + 1

  ∩
s
1



P
=1

2


2
√
2 + 1

 
2

!

≤
P
=1

Pr

µ
1



¯̄̄̄
P
=1

 ()

¯̄̄̄
 

2

¶
+

P
=1

Pr

Ãs
1



P
=1

2


2
√
2 + 1

 
2

!
≤

P
=1

Pr

µ
1



¯̄̄̄
P
=1

 ()

¯̄̄̄
 

2

¶
+ Pr

µ
1



P
=1

2  2 + 1

¶
→ 0
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Theorem 196 Under assumptions (A3) to (I3), we have

√

³b − 0

´
→ 

¡
0 2−1

¢
Proof. (exercise).

Questions:

1-6. Greene, Chapter 4, Exercises 7-9, 11, 16-17.

7. Consider the following model.

 = 

 + 

 = 1 2   .,  ∼  (0 1),  ∼  (0 1),  = 2,  = 2,  and  are

independent.

a) Show that the nonlinear least squares estimators of  and  are con-

sistent.

b) Show that the nonlinear least squares estimators of  and  are as-

ymptotically normal.

c) Use GAUSS to simulate the sampling distribution of the nonlinear least

squares estimators for T=50, 100, 1000, using 20000 replications.
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Proof.

() Since 
→  we have  + 

→  +  by Theorem 25. Further,

 +  − ( + ) =  − 
→ 0. From Theorem 27,  +  and  + 

have the same limiting distribution which is  + .

() Since 
→  we have 

→  by Theorem 25. Further, and

 −  =  ( − )
→ 0 by Theorem 28. From Theorem 27, 

and  have the same limiting distribution which is .

() Since 
→  we have





→ 


by Theorem 25. Further, and




− 


= 

µ
1


− 1



¶
→ 0 by Theorem 20 and Theorem 28. From

Theorem 27,



and




have the same limiting distribution which is




.

Applying theorem 9 with  = 2 yields the expansion

#####

Theorem 197 If 
³
||

´
∞, then

¯̄̄̄
¯Φ ()−

X
=0

()


!

¡

¢¯̄̄̄¯ ≤ min

(


Ã
2 ||
!

!
 

Ã
||+1
( + 1)!

!)


Proof. A function  that is differentiable  times has the expansion

 () =

−1X
=0

()


!
 () (0) +  () ()

()


!

where  () is the j’th derivative of  and 0 ≤  ≤ 1
The expansion of  () =  gives

 =

−1X
=0

()


!
+
()



!
 =

X
=0

()


!
+
()



!

¡
 − 1¢
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or alternatively

 =
P

=0

()


!
+

()+1

(+1)!


0


where 0 ≤  ≤ 1 0 ≤ 0 ≤ 1
| − 1| =

p
(cos+  sin− 1) (cos−  sin− 1)

=
√
2− 2 cos ≤ 2 and

¯̄̄


0


¯̄̄
= 1

Thus, we can write¯̄̄̄
¯ −

X
=0

()


!

¯̄̄̄
¯ =

¯̄̄̄
¯()!

¡
 − 1¢¯̄̄̄¯ ≤ 2 ||!

and ¯̄̄̄
¯ −

X
=0

()


!

¯̄̄̄
¯ =

¯̄̄̄
¯()+1( + 1)!


0


¯̄̄̄
¯ = ||+1

( + 1)!


Replacing  by the random variable , taking expectation and using the

modulus inequality that | ()| ≤  || for a complex random variable ,

we have¯̄̄̄
¯Φ ()−

P

=0

()


!
 ()

¯̄̄̄
¯ =

¯̄̄̄
¯
Ã
 −P

=0

()


!

!¯̄̄̄
¯

≤ 

¯̄̄̄
¯ −P

=0

()


!

¯̄̄̄
¯ ≤ 

³
2||
!

´
and¯̄̄̄
¯Φ ()−

P

=0

()


!
 ()

¯̄̄̄
¯ ≤ 

¯̄̄̄
¯ −P

=0

()


!

¯̄̄̄
¯ = 

³
||+1
(+1)!

´
Thus¯̄̄̄
¯Φ ()−

P

=0

()


!
 ()

¯̄̄̄
¯ ≤ minn ³2||!

´
 
³
||+1
(+1)!

´o


Note that there is no need for  ||+1 to exist for this theorem to hold.
#####

*****

Theorem 198 If  (2) ∞, then

¯̄̄̄
¯Φ ()−

2X
=0

()


!

¡

¢¯̄̄̄¯ ≤ min

(


Ã
2 ||2
2!

!
 

Ã
||3
3!

!)
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Proof. A function  that is twice differentiable has the expansion

 () =

1X
=0

()


!
 () (0) +  (2) ()

()
2

2!

where  () is the j’th derivative of  and 0 ≤  ≤ 1
The expansion of  () =  gives

 =
P1

=0

()


!
+

()2

2!
 =

P2

=0

()


!
+

()2

2!
( − 1)

or alternatively

 =
P2

=0

()


!
+

()3

3!


0


where 0 ≤  ≤ 1 0 ≤ 0 ≤ 1
| − 1| =

p
(cos+  sin− 1) (cos−  sin− 1)

=
√
2− 2 cos ≤ 2 and

¯̄̄


0


¯̄̄
= 1

Thus, we can write¯̄̄̄
¯ −

2X
=0

()


!

¯̄̄̄
¯ =

¯̄̄̄
¯()22!

¡
 − 1¢¯̄̄̄¯ ≤ 2 ||22!

and ¯̄̄̄
¯ −

2X
=0

()


!

¯̄̄̄
¯ =

¯̄̄̄
¯()2+1(2 + 1)!


0


¯̄̄̄
¯ = ||2+1

(2 + 1)!


Replacing  by the random variable , taking expectation and using the

modulus inequality that | ()| ≤  || for a complex random variable ,

we have¯̄̄̄
¯Φ ()−

P2

=0

()


!
 ()

¯̄̄̄
¯ =

¯̄̄̄
¯
Ã
 −P2

=0

()


!

!¯̄̄̄
¯

≤ 

¯̄̄̄
¯ −P2

=0

()


!

¯̄̄̄
¯ ≤ 

³
2||2
2!

´
and¯̄̄̄
¯Φ ()−

P2

=0

()


!
 ()

¯̄̄̄
¯ ≤ 

¯̄̄̄
¯ −P2

=0

()


!

¯̄̄̄
¯ = 

³
||2+1
(2+1)!

´
Thus¯̄̄̄
¯Φ ()−

P2

=0

()


!
 ()

¯̄̄̄
¯ ≤ minn ³2||22!

´
 
³
||3
3!

´o
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Note that there is no need for  ||2+1 to exist for this theorem to hold.
*****¯̄̄̄
¯Φ

¡
−1−12

¢−P2

=0

()


!

³£
−12 (( − ) )

¤´¯̄̄̄¯
≤ min

(


Ã
2 | ( − ) |2

2!

!
 

Ã
| ( − ) |3

3!

!)
In other words,

¯̄̄̄
Φ

¡
−1−12

¢− 1 + 2

2

¯̄̄̄
≤ min

(




2

 
| ( − )|3
6332

)
which makes it possible to write, for fixed ,

Φ

¡
−1−12

¢
= 1− 2

2
+

µ
1

32

¶
****

Example 199 Pr ( = 1) =
1

2
+

1

+ 1
, Pr ( = 2) =

1

2
− 1

+ 1
. As 

goes to infinity, the two probabilities converge to
1

2
, since lim→∞

¯̄̄̄
Pr ( = 1)− 1

2

¯̄̄̄
=

lim→∞
1

+ 1
= 0 and lim→∞

¯̄̄̄
Pr ( = 2)− 1

2

¯̄̄̄
= − lim→∞

1

+ 1
= 0.

However,  does not converge to a constant.

***

Definition 200 A test of 0 :  ∈ Θ0 against 1 :  ∈ Θ1 as defined by

some rejection region 1 is said to be uniformly most powerful (UMP)

test of size  if

()max∈Θ0  () = 

() () ≥  ∗ () for all  ∈ Θ1;

where  ∗ () is the power function of any other test of size 

A test is most powerful if it has greater power than any other test of the

same size. It is uniformly most powerful if it has greater power than any

other test of the same size for all admissible values of the parameter.
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***

Assumptions:

(A)  (; ) is continuous in an open neighborhood  of 0

(B)
 (; )


exists and is continuous in 

(C)
1



P
=1

 (; 1)  (; 2) converges to a non-stochastic function in prob-

ability uniformly in 1 2 ∈ 

(D) lim→∞
1



P
=1

[ (; )−  (; 0)]
2 6= 0 if  6= 0

(E) lim→∞
1



P
=1

µ
 (; )



¶
0

µ
 (; )

0

¶
0

= , where  is a finite

non-singular matrix.

(F)
1



P
=1

 (; )



 (; )

0
converges to a finite matrix uniformly for all

 in .

(G)
2 (; )


is continuous in  in  uniformly in .

(H) lim→∞
1

 2

P
=1

∙
2 (; )



¸2
= 0 for all  in .

(I)
1



P
=1

 (; 1)

µ
2 (; )

0

¶
2

converges to a finite matrix uniformly

for all 1 and 2 in .

Theorem 201 Under assumptions (A) to (D), we have

b → 0

Proof. Let  () = lim→∞
1



P
=1

[ (; 0)−  (; )]
2

by assumption (C) and (D),  () is a function of  that has a local

minimum at 0 uniformly in 

sup∈ | ()− 2 −  ()|
≤ sup∈

¯̄̄̄
1



P
=1

[ (; 0)−  (; )]
2 −  ()

¯̄̄̄
+ sup∈

¯̄̄̄
1



P
=1

2 − 2
¯̄̄̄

+sup∈

¯̄̄̄
1



P
=1

[ (; 0)−  (; )]

¯̄̄̄
≤ sup∈

¯̄̄̄
1



P
=1

[ (; 0)−  (; )]
2 −  ()

¯̄̄̄
+

¯̄̄̄
1



P
=1

2 − 2
¯̄̄̄

283



+

¯̄̄̄
1



P
=1

 (; 0)

¯̄̄̄
+ sup∈

¯̄̄̄
1



P
=1

 (; )

¯̄̄̄
= 1 +2 +3 +4

→ 0

Obviously1 to3 are  (1). To show that4 also tends to 0 in probabil-

ity, we partition  into  non-overlapping regions 1  . By assumption

(B), for any   0, we can find a sufficiently large  such that for each

 = 1 2  

| (; 1)−  (; 2)|  

2
√
2 + 1

for 1 2 ∈  and for all t.

Thus

sup∈

¯̄̄̄
1



P
=1

 (; )

¯̄̄̄
= sup∈

1



¯̄̄̄
P
=1

( (; ) +  (; )−  (; ))

¯̄̄̄
≤ 1



¯̄̄̄
P
=1

 (; )

¯̄̄̄
+ sup∈

1



¯̄̄̄
P
=1

( (; )−  (; ))

¯̄̄̄
by Triangle inequality

≤ 1



¯̄̄̄
P
=1

 (; )

¯̄̄̄
+

s
1



P
=1

2 sup∈

s
1



P
=1

[ (; )−  (; )]
2

by Cauchy-Schwartz inequality

≤ 1



¯̄̄̄
P
=1

 (; )

¯̄̄̄
+

s
1



P
=1

2 sup∈

1



P
=1

| (; )−  (; )|

≤ 1



¯̄̄̄
P
=1

 (; )

¯̄̄̄
+

s
1



P
=1

2


2
√
2 + 1

Thus

Pr (4  ) ≤
P
=1

Pr

µ
sup∈

¯̄̄̄
1



P
=1

 (; )

¯̄̄̄
 

¶
≤

P
=1

Pr

Ã
1



¯̄̄̄
P
=1

 (; )

¯̄̄̄
+

s
1



P
=1

2


2
√
2 + 1

 

!

≤
P
=1

Pr

Ã
1



¯̄̄̄
P
=1

 (; )

¯̄̄̄
+

s
1



P
=1

2


2
√
2 + 1

  ∩
s
1



P
=1

2


2
√
2 + 1

≤ 
2

!

+
P
=1

Pr

Ã
1



¯̄̄̄
P
=1

 (; )

¯̄̄̄
+

s
1



P
=1

2


2
√
2 + 1

  ∩
s
1



P
=1

2


2
√
2 + 1

 
2

!
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≤
P
=1

Pr

µ
1



¯̄̄̄
P
=1

 (; )

¯̄̄̄
 

2

¶
+

P
=1

Pr

Ãs
1



P
=1

2


2
√
2 + 1

 
2

!
≤

P
=1

Pr

µ
1



¯̄̄̄
P
=1

 (; )

¯̄̄̄
 

2

¶
+ Pr

µ
1



P
=1

2  2 + 1

¶
→ 0

***

ECO5120

Econometric Theory and Application

1st Term 1999/2000, Final Exam

Answer all questions.

1. Explain why there can be no random variable  for which the moment

generating function () =


1− 


2. Find the limits of the following sequences as →∞:
(a)

 =
2

2
;

(b)

1 =
√
1 2 =

q
1 +
√
1 3 =

r
1 +

q
1 +
√
1 4 = 

(16 points)

3. Suppose you know that, conditional upon ,  is distributed as  ( 1).

If  is a  (0 1) random variable, find  () and  (2) 

(15 points)

4. Define  = −−1,  =

P

=1


 Find 

¡

¢
  

¡

¢
and examine

whether the central limit theorem applies to  in the following cases:

a)  = −1 +  where {}=0 ∼  (0 2)  
2
 ∞

b) {}=0 ∼  (0 2)  
2
 ∞
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5. Consider the following density function of a random variable .

 (; ) =
1


for 0    ;

= 0 elsewhere.

i) Find the moment generating function of .

ii) Sketch the graph of  (; 1)   (; 2) and  (; 3) 

Let 12  constitute a random sample of size  from the above

population.

iii) Find the joint density of 12   

iv) Find the likelihood function  (; ) and the log-likelihood function

ln (; ) 

v) Find the score  =



ln (; )  does the score have zero expectation?

vi) Find the ML estimator b.
vii) Find the Fisher’s information matrix using  () using

 () = −
µ

2

2
ln (; )

¶


viii) Suppose we would like to test 0 :  = 1 versus 1 :   1.

Define a Wald test


³b´ = ³b − 1´2  ³b´ 

where 
³b´ is the Fisher’s Information Matrix evaluated at b
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Since we have only one restriction, 
³b´ has an asymptotic chi-square

distribution with 1 degree of freedom. Thus at  = 5%, we reject 0 when


³b´  384146;

Now consider the case where the sample size  = 1;

a) show that b = 1.

b) if b = 1
3
, intuitively, should we reject or not reject H0? Now compute


³b´ at b = 1

3
 Is 0 rejected at  = 5%?

c) if 0 is true, can b = 2? Intuitively, should we reject or not reject 0

if b = 2? Now compute  ³b´ at b = 2 Is 0 rejected at  = 5%?

d) plot 
³b´ at b = 1 2 3 4∞

ix) For  ≥ 1, plot the power functions of this test for  = 1 2 3 4∞

x) Explain why the test is not properly behaved. Design a test for above

hypothesis.

6. Write a GAUSS program to generate 1000 independent

a) N(0,1) random variables. (3 points)

b) N(1,2) random variables. (4 points)

c) U(0,1) random variables. (3 points)

d) U(-2,2) random variables. (4 points)

7. Consider the model  = 0 + 1 +   = 1 2   If the dependent

variable is upper-truncated at  and lower-censored at 0, for any constants

0   ∞.
If the error term has a logistic distribution with density and distribution

function

287



 () =
exp ()

(1 + exp ())
2


 () =
exp ()

1 + exp ()


Show that the log-likelihood function is given by

ln =
X
0

ln
exp ( − ) (1 + exp (− 0 − 1))

(1 + exp ( − 0 − 1))
2

+
X
=0

ln
exp (−) (1 + exp (− 0 − 1))

1 + exp (−0 − 1)
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Threshold Model

Consider the following model:

 = 01 + (
0
2 − 01)Ψ

¡
0
¢
+ 

where 1 and 2 are the pre-shift and post-shift regression slope parame-

ters respectively, with  = (1 2  )
0
being a  by 1 matrix of true

parameters,  = 1 2;

 is a  by 1 vector of dependent variable;

 is a  by  matrix of covariates;

 is a  by  vector of threshold variables, where 0   ∞;
(1 2  

0
 ) is a  by 1 vector of error term  with  ||4  ∞ for

some   1. The errors are assumed to be independent of the regressors

and the threshold variables for simplicity purpose. The observed sample

{  }=1 are real-valued;
 =

¡
1

¢0
is a vector of  threshold parameters to be estimated;

Ψ (
0) is the threshold condition, which equals one when the threshold

variables satisfy some required conditions, and equals zero otherwise. For

example, if the parameters change when all the threshold variables exceed

some critical values, then we have:

Ψ

¡
0
¢

= 
¡
1  01    0

¢


where  is the 
 threshold variable. In the example of financial crisis,

the crisis will not be triggered until all the threshold variables exceed the

critical thresholds. We call this case the “and" case.

If the condition is that at least one threshold variable exceeds the critical

value, then

Ψ

¡
0
¢
= 1− 

¡
1 ≤ 01   ≤ 0

¢
We call this the “or" case. It turns out that the “or" case can be rewritten

in the form of the “and" case. Let  = −, then
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Ψ

¡
0
¢
= 1− 

¡
1  −01    −0

¢
= Ψ

¡
−0

¢


An important application of a threshold model with multiple threshold

variables is the prediction of financial crises. Studies in the financial crises

literature indicate that the occurrence of financial crises depends critically

on the values of several threshold variables. It has long been observed that

some economic variables, such as the foreign debt level and interest rate, did

cross a certain threshold value before a currency crisis occur.

We focus on the case where  = 2. The methods extend in a straight-

forward manner to models with more than two threshold variables. Define

 ( ) = Pr (1 ≤  2 ≤ ) 

 ( ) = Pr (1   2  ) 

For ease of illustration, we let  = 1. We estimate the model via Ordinary

Least Squares method, the residual sum of squares is

X
=1

( − 1 (1−Ψ ())− Ψ ())
2


We study the case where

Ψ

¡
0
¢
= 

¡
1  01 2  02

¢


Given 1 and 2, the OLS estimator for  are

b1 () = P

=1  (1−Ψ ())P

=1 (1−Ψ ())

and

b2 () = P

=1 Ψ ()P

=1Ψ ()


The residual sum of squares is
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 () =

X
=1

³
 − b1 (1−Ψ ())− b2Ψ ()

´2


b = ¡b1b2¢ = argmin ¡12¢ 
The final structural estimators are then defined as

b1 (b) = P

=1  (1−Ψ (b))P

=1 (1−Ψ (b))
and

b2 (b) = P

=1 Ψ (b)P

=1Ψ (b) 

Note that

b1 ¡12¢ = 1 +  ×P

=1 [ (1  01 2  02)−  (1  max {01 1}  2  max {02 2})]P

=1 (1−  (1  1 2  2))

+ (1)

Similarly, we have

b2 ¡12¢ = 2 −  ×P

=1 [ (1  1 2  2)−  (1  max {01 1}  2  max {02 2})]P

=1  (1  1 2  2)

+ (1) 

where

 = 2 − 1

It can be shown that

sup
(12)∈2

¯̄̄̄
1



¡
12

¢−  (1 2)

¯̄̄̄
=  (1) 

291



Let

 (1 2) =  2
¡
 (1 2)− 2

¢


We discuss four cases:

Case 1: 1 ≤ 01 2 ≤ 02;

b1 ¡12¢ → 1

b2 ¡12¢ → 2 − 

µ
1−  (01 

0
2)

 (1 2)

¶


1 (1 2) = 2
¡
01 

0
2

¢µ
1−  (01 

0
2)

 (1 2)

¶
≥ 1

¡
01 

0
2

¢
= 0

Case 2: 1  01 2 ≤ 02;

b1 ¡12¢ → 1 + 
 (01 

0
2)−  (1 

0
2)

1−  (1 2)


b2 ¡12¢ → 2 − 

µ
1−  (1 

0
2)

 (1 2)

¶


2 (1 2) = 2

"

¡
01 

0
2

¢− ¡ (01 02)−  (1 
0
2)
¢2

1−  (1 2)
−
¡
 (1 

0
2)
¢2

 (1 2)

#
≥ 2

¡
01 

0
2

¢
= 0

Case 3: 1 ≤ 01 2  02;

b1 ¡12¢ → 1 + 
 (01 

0
2)−  (01 2)

1−  (1 2)


b2 ¡12¢ → 2 − 

µ
1−  (01 2)

 (1 2)

¶


3 (1 2) = 2

⎡⎢⎢⎢⎣  (01 
0
2)−

¡
 (01 

0
2)−  (01 2)

¢2
1−  (1 2)

−
¡
 (1 

0
2)
¢2

 (1 2)

+
¡
 (01 

0
2)−  (01 2)

¢  (01 02)
 (1 2)

⎤⎥⎥⎥⎦
≥ 3

¡
01 

0
2

¢
= 0
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Case 4: 1  01 2  02;

b1 ¡12¢ → 1 + 
 (01 

0
2)−  (1 2)

1−  (1 2)


b2 ¡12¢ → 2

4 (1 2) = 2
¡

¡
01 

0
2

¢−  (1 2)
¢ 1−  (01 

0
2)

1−  (1 2)
≥ 4

¡
01 

0
2

¢
= 0

Combining the results above, we conclude that the function  (1 2) has

a global minimum at the true threshold values, i.e.,

min
(12)∈2

 (1 2) =
¡
01 

0
2

¢


Since  (1 2) ≥  (01 
0
2) in all cases, the estimators converge to (

0
1 

0
2).

When 1 and 2 are independent, it can be shown that

Case 1: 1 ≤ 01 2 ≤ 02;

1 (1 2)

1
≤ 0

1 (1 2)

2
≤ 0

Case 2: 1  01 2 ≤ 02;

2 (1 2)

1
≥ 0

2 (1 2)

2
≤ 0

Case 3: 1 ≤ 01 2  02;

3 (1 2)

1
≤ 0

3 (1 2)

2
≥ 0
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Case 4: 1  01 2  02

4 (1 2)

1
= 2

µ
1−  1 (

0
1) 2 (

0
2)

1−  1 (1) 2 (2)

¶2
 2 (2) 1 (1) ≥ 0

4 (1 2)

2
= 2

µ
1−  1 (

0
1) 2 (

0
2)

1−  1 (1) 2 (2)

¶2
 1 (1) 2 (2) ≥ 0

Note that given 2, the value of  (1 2) reduces whenever 1 approaches

01 from both directions. Similarly, given 1, the value of  (1 2) reduces

whenever 2 approaches 
0
2. This implies that

min
1∈

 (1 2) = 01 ∀2

and

min
2∈

 (1 2) = 02 ∀1

In general, the two threshold variable will not be independent. We assume

that the joint distribution of 1 and 2 are continuous and differentiable with

respect to both variables.

Define the moment functionals

 = (1 2) =  (
0
 (1  1 2  2)) 

0 =
¡
01 

0
2

¢


 =  (
0
) 

 (1 2) =  (
0
|1 = 1 2 = 2) 

 = 
¡
01 

0
2

¢


 (1 2) = 
¡


0

2
 |1 = 1 2 = 2

¢
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 (1 2) =−1 (1 2) 

  (1 2) =



 (1 2)  = 1 2


0

 =  

¡
01 

0
2

¢
 = 1 2

Let

 () = Ψ ()

and let  and  be  by  matrixes formed by stacking the vectors 0
and  ()

0


Thus, our model can be rewritten as

 = 1 +δ + 

Given 1, the OLS estimator for  are

b01 () =
Ã

X
=1


0
 (1−Ψ ())

!−1 X
=1


0
 (1−Ψ ())

and

b02 () =
Ã

X
=1


0
Ψ ()

!−1 X
=1


0
Ψ () 

Define

 () =

X
=1

³
 − b01 − ³b02 − b01´Ψ ()

´2


b = ¡b1b¢ = arg min
∈Γ


¡
1

¢


where

Γ = Π
=1

³h
 

i
∩ {1  }

´
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The final structural estimators are then defined as

b1 ¡b1b¢
and

b2 ¡b1b¢ 
The residual sum of squares can also be written as

 () =  (0 − )

where

 = e

³ e 0

e

´−1 e 0


e =
h
 

i


Let 0 = 0
, then since  −1−δ and  lies in the space spanned

by ,

 ()− 0 = −0+ 2δ
0
0 ( − ) + δ

0
0 ( − )0δ

1

 1−2
( ()− 0) =

1


0 ( 0

0 ( − )0) + (1)

We discuss four cases. In each case,
1

 1−2
( ()− 0)

→  ()  with

 (0) = 0,  = 1 2 3 4

Case 1: 1 ≤ 01 2 ≤ 02;

1 () = 0
¡
0 −0−10

¢
 ≡ 1 () ≥ 0

Case 2: 1  01 2 ≤ 02;

2 () =

0
Ã

0 −
¡
0 − (1 

0
2)
¢ ¡

 −
¢−1¡

0 − (1 
0
2)
¢− (1 

0
2)−1 (1 

0
2)

!


≥ 0
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Case 3: 1 ≤ 01 2  02;

3 ()

= 0
Ã

0 −
¡
0 − (01 2)

¢ ¡
 −

¢−1¡
0 − (01 2)

¢− (01 2)−1 (01 2)

!


≥ 0
Case 4: 1  01 2  02

4 () = 0
³
 −0 −

¡
 −0

¢ ¡
 −

¢−1 ¡
 −0

¢´


Since all the four functions of b are minimized at the true thresholds, the

threshold estimators are therefore consistent.

The threshold estimators are similar to the change point in the structural-

change model. As is well known, because of the superconsistency of the

change-point estimator, the distribution of the change-point estimator will

degenerate to the true change point for any fixed magnitude of change. To

generate a meaningful distribution, the usual practice is to let the magni-

tude of change to go to zero at an appropriate rate. When the change is

small enough, there is a variation of the change point estimate even it is

superconsistent.

In the threshold model, in order to obtain the distribution of the threshold

estimators, we let  = −,  
1

2
. It can be shown that

 1−2
(0)

2

0 

³¡b1 − 01
¢

0

1
¡b2 − 02

¢

0

2

´
= (b1 b2) → argmax

(12)∈2

2X
=1

µ
−1
2
||+ ()

¶


To find the joint distribution in the close form, note that the selection of

1 does not depend on the choice of 2 and vice versa, it can be shown that

(12) (1 2) = Π2=1

µ
1 +

r


2
exp

³
−
8

´
+
3

2
exp ()Φ

µ
−3
√


2

¶
−  + 5

2
Φ

µ
−
√


2

¶¶


Thus, the joint density function can be found as

(12) (1 2) = Π2=1

µ
3

2
exp ()Φ

µ
−3
√


2

¶
− 1
2
Φ

µ
−
√


2

¶¶


where Φ (·) is the cdf of a standard normal distribution.
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In cases when some of the   0, we can replace those items in the above

expression by  () = 1−  (−) and  () =  (−).
In general, if we have  threshold variables,

− 1−2 (
0)

2

0 
(b − 0)◦

 (01  
0
)



→ argmax
(1)∈

X
=1

µ
−1
2
||+ ()

¶


where ◦ is the Hadamard product operator that multiplies on an element
by element basis, and

(1) (1  )
= Π

=1

µ
1 +

r


2
exp

µ−
8

¶
+
3 exp ()

2
Φ

µ−3√
2

¶
−  + 5

2
Φ

µ−√
2

¶¶


(1) (1  ) = Π
=1

µ
3

2
exp ()Φ

µ
−3
√


2

¶
− 1
2
Φ

µ
−
√


2

¶¶


It should be noted that if the threshold variables are dependent, it may

be impossible to derive the joint distribution of the threshold estimators,

although we may still get the consistency result. For example, if 2 = −1,
we may not be able to partition the data into four groups according to the

values of the two threshold variables, so the above distributional result will

not hold.

Our model can be extended to incorporate panel data. The observed

data are from a balanced panel with  individuals over  periods. Following

the lead of Hansen (1999), we assume that all individuals have the same

threshold value for each threshold variable. Note that the model in the

previous section can be a cross-sectional or a time series model. In the panel

model here,  is the cross-sectional sample size. The analysis is asymptotic

with fixed  and as →∞

We let

Ψ () =  (1  1    ) 
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The observations are divided into two regimes depending on whether the

threshold variable vector  satisfies the threshold conditions. We assume

that  and  are not time invariant. The model is

 =  + 01 +  Ψ () = 0

 =  + 02 +  Ψ () = 1

Let

 () = Ψ ()

 =  + 01 + 0Ψ () + 

Averaging the above panel equation over , we have

 =  + 01 + 0 () + 

where

 =
1



X
=1



 =
1



X
=1



 () =
1



X
=1

Ψ () 

 =
1



X
=1



Taking the difference, we have

∗ = 01
∗
 + 0∗ () + ∗

where
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∗ =  − 

∗ =  − 

∗ () =  ()−  () 

∗ =  − 

Let

∗ =

⎡⎢⎢⎣
∗2
...

∗

⎤⎥⎥⎦  ∗ =
⎡⎢⎢⎣

∗2
...

∗

⎤⎥⎥⎦  ∗ () =
⎡⎢⎢⎣

∗2 ()
...

∗ ()

⎤⎥⎥⎦  ∗ =
⎡⎢⎢⎣

∗2
...

∗

⎤⎥⎥⎦
denote the stacked data and errors for an individual, with one time period

deleted. Let  ∗, ∗ () and ∗ denote the data stacked over all individual,

i.e.,

 ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗1
...

∗
...

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
 ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗1
...

∗
...

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
 ∗ () =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗1 ()
...

∗ ()
...

∗ ()

⎤⎥⎥⎥⎥⎥⎥⎥⎦
 ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗1
...

∗
...

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦


Thus, our model becomes

 ∗ = ∗1 +∗ () δ + ∗

Hence, the estimation method and the asymptotic results in the previous

part apply in the panel model.

 () = ( −∗1 −∗ () δ)0 ( −∗1 −∗ () δ)
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b = ¡b1b¢ = arg min
∈Γ


¡
1

¢


Γ = Π
=1

³h
 

i
∩ (∪=1 {1  })

´
The final structural estimators are then defined as

b1 ¡b1b¢
and

b2 ¡b1b¢ 
and the residual variance is

b2 = 1

 ( − 1) (b) 
Testing for values of the thresholds

0 :  = 0

We borrow the Likelihood Ratio test of Hansen (1999, 2000). Under the

assumption that  is i.i.d.  (0 
2), we have

 (1 2) = 
 (1 2)−  (b1b2)

 (b1b2) 

0 is reject for large  (
0
1 

0
2) 

If the threshold variables are independent, we can extend the result of

Hansen (2000) to show that



¡
01 

0
2

¢ → 2

where

 = 1 + 2
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1 = max
−∞1∞

(− |1|+ 21 (1)) 

2 = max
−∞2∞

(− |2|+ 22 (2))

and

2 =
(0 )
20



The distribution of  ( = 1 2) is

Pr ( ≤ ) =
³
1− exp

³
−
2

´´2


 () =
³
1− −

1
2

´
−

1
2


Thus,

Pr ( ≤ ) = Pr (1 + 2 ≤ )

=

Z 

0

Pr (1 ≤ − ) 2 () 

=

Z 

0

µ
1− exp

µ
−− 

2

¶¶2 ³
1− −

1
2

´
−

1
2


= 1− 5− − 2−1
2
 − −+ 4−

1
2


 () = 4
− − 4− 1

2
 + −

1
2
 + −
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