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Chapter 1

Probability

1.1 Revision of the Summation Operator

The summation operator
P
has the following properties:

1. If  is a constant, then
P
=1

 = ;

2. If  is a constant, then
P
=1

 = 
P
=1

;

3.
P
=1

( + ) =
P
=1

 +
P
=1

;

4.
P
=1

( − ) = 0;

5.
P
=1

( − ) ( − ) =
P
=1

( − )  =
P
=1

( − );

6.

µ
P

=1



¶Ã
P

=1



!
=

P
=1

P
=1



= 11 + 12 + + 1 + 21 + + 2 + + 1 + +  ;

7.

µ
P
=1



¶2
=

P
=1

2 + 2
−1P
=1

P




Exercise 1: Compute

(i)
P3

=1 (+ 4) 
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(ii)
P3

=1 3


(iii)
P3

=1

P2

=1 

Definition 1: A random experiment is an experiment satisfying the

following three conditions:

(i) All possible distinct outcomes are known a priori.

(ii) In any particular trial the outcome is not known a priori

(iii) It can be repeated under identical conditions.

For example, tossing a coin and throwing a dice are random experiments.

Definition 2: The sample space S is defined to be the set of all possible

outcomes of the random experiment. The elements of  are called elementary

events.

For example, when tossing a coin,  = {}, elementary events are
=head and =tail.

When throwing a dice,  = {1 2 3 4 5 6}, the elementary events are 1,
2, 3, 4, 5 and 6.

Definition 3: An event is a subset of the sample space. Every subset

is an event. It may be empty, a proper subset of the sample space, or the

sample space itself. An elementary event is an event while an event may not

be an elementary event.

For example, when tossing a coin, the subsets of  are  {}  {} and
{}, where  is an empty set. The event “ and  appear at the same

time” belongs to 

Consider the sum of points in throwing two dices, the sample space is
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 = {2 3 4 5 6 7 8 9 10 11 12}

The event that the sum is an even number will be

 = {2 4 6 8 10 12} 

The event that the sum is bigger than 13 will be , or a null event.

The event that the sum is smaller than 13will be {2 3 4 5 6 7 8 9 10 11 12},
or equal the sample space.

Axiom 1: Kolmogorov Axioms of Probability

Let  be an event, then

(i) 0 ≤ Pr () ≤ 1;
(ii) Pr () = 1;

(iii) Pr ( ∪) = Pr () + Pr () if ∩  =  where “ ∪ ” is the union
of sets, meaning “or”. “ ∩ ” stands for intersection of sets, meaning “and”.

Example 1: For what values of  can

Pr ( = ) = (1− ) 

serve as the values of the probability distribution of a random variable with

the countably infinite range  = 0 1 2 ?

Solution: Since

(i) 0 ≤ Pr( = ) ≤ 1 Thus, 0 ≤ (1− )  ≤ 1, which implies 0≤  ≤ 1.
(ii) Pr ( = 0 or 1 or 2 or 3 or....) = 1;

(iii) Since the event “ =  and  = ” =  for all  6= , we have
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Pr ( = 0 or 1 or 2 or 3 or....) = Pr ( = 0) + Pr ( = 1) + 

Further, by using property (ii), we have

∞X
=0

Pr( = ) = 1

∞X
=0

(1− ) = 1

(1− )

∞X
=0

 = 1

Thus, we rule out the cases where  = 0 and  = 1, since otherwise the

equality will not hold. Since  is strictly bigger than zero and strictly smaller

than one, we have

(1− )
1

1− 
= 1

1 = 1

Thus, any value of  with 0    1 is a solution.

Definition 4: The conditional probability of  occurring, given that

 has occurred is

Pr (|) = Pr ( ∩)
Pr ()

if  () 6= 0. If Pr () = 0, we define Pr (|) =
0 The result implies that

Pr ( ∩) = Pr (|) Pr () 
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For example, consider a card game, let  be the event that a “Heart”

appears,  be the event that an “Ace” appears.

Pr (Ace|Heart) = Pr (Ace ∩Heart)
Pr (Heart)

=
152

1352
=
1

13


Definition 5: Two events  and  are independent if and only if

Pr ( ∩) = Pr () Pr (), i.e. Pr (|) = Pr () 
The statement “if and only if” is different from “if”. When we say “A

if and only if B”, we mean “if A then B” and “if B then A” are both true.

Thus “if and only if” is a formal definition.

Therefore if two events are independent, we must have Pr ( ∩) =
Pr () Pr (). If we known Pr ( ∩) = Pr () Pr (), then  and  must

be independent.

Exercise 2: Give two independent events and two dependent events.

Definition 6: A random variable is a real-valued function of the ele-

ments of a sample space. It is discrete if its range forms a discrete(countable)

set of real number. It is continuous if its range forms a continuous(uncountable)

set of real numbers and the probability of  equalling any single value in its

range is zero.

Thus the value of a random variable corresponds to the outcome of an

random experiment.

For example, tossing a coin is a random experiment, the outcomes are

represented by Heads and Tails. However, Heads and Tails are not real-value

numbers, thus Heads and Tails are not random variables. If we define  = 1

if a Head appears and  = 2 if a Tail appears, then  is a random variable.
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1.2 Probability Distribution Function and Den-

sity Function

Let ,  be two continuous random variables.

Definition 7: The probability distribution function of  is defined

as  () = Pr (−∞   ≤ )  with  (∞) = 1.

Definition 8: The density function is  () =
 ()


, with  () ≥ 0,

and  (−∞) =  (∞) = 0

Example 2: Let  be a random variable evenly distributed in zero-one

interval, then

Pr (  0) = 0   0;

Pr (0 ≤  ≤ ) =  0 ≤  ≤ 1;
Pr (  ) = 0   1

 () = 0   0

=  0 ≤  ≤ 1
= 1   1

 () = 0   0

= 1 0 ≤  ≤ 1
= 0   1
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Definition 9: The joint distribution function of  and  is defined

as  ( ) = Pr ( ≤  and  ≤ ). Their joint density function is  ( ) 

The relationship between  ( )   ( )   () and  () is:

 ( ) =

Z 

−∞

Z 

−∞
 ( ) 

 ( ) =
2


 ( ) 

 () =

Z ∞

−∞
 ( ) 

 () =

Z ∞

−∞
 ( ) 

Further,  (−∞−∞) = Pr ( ≤ −∞ and  ≤ −∞) = 0,  (∞∞) =
Pr ( ≤ ∞ and  ≤ ∞) = 1, and  ( ) ≥ 0.  and  are independent if

and only if  ( ) =  ()  () 

Exercise 3: Suppose a continuous random variable  has density func-

tion

 (; ) = + 05 for −1    1

 (; ) = 0 otherwise

(i) Find values of  such that  (; ) is a density function.

(ii) Find the mean and median of .

(iii) For what value of  is the variance of  maximized.

Exercise 4: Suppose the joint density of  and  is given by:

 ( ) = 2 for   0   0, +   1

 ( ) = 0 otherwise

Find

(i) Pr
¡
 ≤ 1

2
and  ≤ 1

2

¢
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(ii) Pr
¡
 +   2

3

¢


(iii) Pr (  2 ) 

1.3 Mathematical Expectation

Definition 10: The first moment, mean or expected value of a

random variable , is defined as:

 () =
X


 () if  is discrete

 () =

Z ∞

−∞
 ()  if  is continuous

It has the following properties: For any random variables ,  and any

constants , .

()  () = ;

()  ( ()) =  () ;

()  () =  () ;

()  ( +  ) =  () +  ( ) 

Other measures of central tendency are the median, which is the value

that is exceeded by the random variable with probability one-half, and the

mode, which is the value of  at which  () takes its maximum.

Exercise 5: Let  and  be two independent random variables, if



µ




¶
 1, then

 ()

 ( )
 1. True/False/Uncertain. Explain.

Definition 11: The second moment around the mean or variance

of a random variable is
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  () =  ( − ())
2
=  (2)−2 () =

P


( − ())
2
 ()

if  is discrete.

  () =

Z ∞

−∞
(− ())

2
 ()  if  is continuous.

It has the following properties: for any random variables ,  and any

constant ,

()   () = 0;

()   () = 2  () ;

()   ( ±  ) =   () +   ( )± 2 ( ) if  and  are

not independent;

()   ( ±  ) =   () +   ( ) if  and  are independent.

Note:   ( −  ) 6=   ()−   ( )!

Definition 12: The covariance of two random variables  and  , is

defined to be:

 ( ) =  ( − ()) ( − ( )) =  ( )− () ( )

where

 ( ) =
P


 Pr ( ) if  and  are discrete.

 ( ) =

Z ∞

−∞

Z ∞

−∞
 ( )  if  and  are continuous.

 ( ) =  () ( ) if  and  are independent, i.e., if  and  are

independent, ( ) will be equal to zero. However, the reverse is not

necessarily true.

Example 3: Let,  , and  be three random variables, if  () 6=
0 and  () 6= 0, then  ( ) 6= 0 True/False/Uncertain. Explain.
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Solution: The statement is false. Consider the following counter exam-

ple:

Define  =  +  where  and  are defined to be independent and

 () and  ( ) 6= 0.

() = ( + )

= () + ()

=  () 6= 0
(  ) =  ( ) 6= 0 similarly.
( ) = 0 (given)

(Note that independence of  and  implies ( ) = 0.)

Definition 13: The correlation coefficient between  and  is de-

fined as:

 =
( )p

  ()  ( )


Example 4: Prove that for any two random variables  and  , −1 ≤
 ≤ 1

Solution: For any random variables  and  , and any real-valued con-

stant , we have
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 ( +  ) ≥ 0

  () + 2(  ) +   ( ) ≥ 0

  () 2 + 2( )+   ( ) ≥ 0

since the variance for any random variable is positive.

Consider the solution of a quadratic equation in ,

2 + +  = 0

The solution is

∗ =
−±√2 − 4

2

There will be two solutions if 2 − 4  0, 1 solutions if 2 − 4 = 0,
and no solution if 2 − 4  0.
In our case,  =   () ≥ 0,  = 2( ),  =   ( ) 

Since for any value of  the function 2+ +  ≥ 0, it means 2+ + 

never cross the X-axis, so there is at most 1 solution of t such that 2++ =

0. When 2 + +   0, there is no solution.

Hence we have 2 − 4 = 0 or 2 − 4  0
It implies that 2 − 4 ≤ 0, or
(2( ))

2 − 4  ()  ( ) ≤ 0
⇐⇒ (( ))

2 ≤   ()  ( )

⇐⇒ (( ))
2

  ()  ( )
≤ 1

⇐⇒ −1 ≤ ( )p
  ()  ( )

≤ 1
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Exercise 6: Let ,  ,  , and  be random variables, and , , ,  be

constants. Show that:

(a)   ( + ) =   (− − ).

(b)  (  ) =  ( ).

(c)  () =   () 

(d) ( +   + ) =  ( )+ ()+ ( )+

 () 

Suppose  = 3 + 5, and  = 4− 8 .
(e) Is  = 1? Prove or disprove.

(f) Is  = ? Prove or disprove.

Exercise 7: Let  and  be two random variables, if  (2  2) = 0,

then  ( ) = 0. True/False/Uncertain. Explain.

Exercise 8: Let  and  be two random variables, if  and  are inde-

pendent, then  (2  2)   ( ). True/False/Uncertain. Explain.

Exercise 9: A Poisson random variable X has the following distribution

Pr ( = ) =
−

!
 = 0  1 2 

where ! =  ( − 1) ( − 2) 1
(a) Graph the distribution for  = 0 1 2 3 4.

(b) Find the mean of .

(c) Find the variance of .



Chapter 2

Special Probability

Distributions

2.1 Uniform Distribution

 ∼  (0 1) means  is evenly distributed in the interval [0 1], its density

function is defined as:

 () = 1 for  ∈ [0 1] ;
 () = 0 elsewhere.

The distribution function is then

 () = 0 for  ≤ 0;
 () =  for  ∈ (0 1) ;
 () = 1 for  ≥ 1

The mean is obviously equal to
1

2
. To calculate the variance, note that

19
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  () = 
¡
2
¢−2 () = 

¡
2
¢−µ1

2

¶2
=

Z 1

0

2 () − 1
4
=

Z 1

0

2− 1
4

=

∙
3

3

¸1
0

− 1
4
=
1

3
− 1
4
=
1

12


Exercise 1: If  ∼  (0 1), find

(i) Pr (  0) ;

(ii)Pr ( ≤ 1) ;
(iii)Pr (  0) ;

(iv) Pr ( ≤ 05) ;
(v) Pr (  07) ;

(vi) Pr (04   ≤ 08) ;
(vii) Pr ( = 08) 

Note that the area under the density function has to sum up to 1, so if

we have a random variable which is uniformly distributed between 1 and 3,

i.e. if  ∼  (1 3), then its density function is

 () =
1

2
for  ∈ [1 3] ;

 () = 0 elsewhere.

The distribution function will be

 () = 0 for  ≤ 1;

 () =
− 1
2

for  ∈ (1 3) ;

 () = 1 for  ≥ 3

Exercise 2: If  ∼  (1 2), find (i)  () ; (ii)  () ; (iii)  () ; (iv)

  () 
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Exercise 3: If  ∼  ( ), where   , find (i)  () ; (ii)  () ; (iii)

 () ; (iv)   () 

2.2 Normal Distribution

The normal distribution is the most commonly used distribution, many vari-

ables in the real world follow approximately this distribution.

A random variable which follows a normal distribution with mean  and

variance 2 can be expressed as ∼  ( 2). Its density function is defined

as:

 () =
1


√
2
exp

Ã
−1
2

µ
− 



¶2!
 −∞   ∞

-4 -3 -2 -1 0 1 2 3 4

0.1

0.2

0.3

0.4

x

y

N(0,1)

Exercise 4: If  ∼  (1 4), find

(i) Pr (  0) ;

(ii)Pr ( ≤ 1) ;
(iii)Pr (  0) ;

(iv) Pr ( ≤ −1) ;
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(v) Pr (  2) ;

(vi) Pr (1   ≤ 3) ;
(vii) Pr ( = 1) 

2.3 Standardized Normal Distribution

If  ∼  ( 2), then  =
 − 


follows  (0 1). Its density function is

defined as:

 () =
1√
2
exp

µ
−1
2
2
¶
 −∞   ∞

Example 1: If  ∼  (3 4), then  =
 − 3
2

follows  (0 1).

Pr (1 ≤  ≤ 5) = Pr

µ
1− 3
2
≤  − 3

2
≤ 5− 3

2

¶
= Pr (−1 ≤  ≤ 1) ' 067

Exercise 5: If  ∼  (0 1), find

(i) Pr (  0) ;

(ii)Pr ( ≤ 1) ;
(iii)Pr (  0) ;

(iv) Pr ( ≤ −1) ;
(v) Pr (  2) ;

(vi) Pr (1   ≤ 3) ;
(vii) Pr ( = 1) 

2.4 The Lognormal Distribution

When we study the relationship between a person’s IQ score and his income,

we find that they are positively correlated. A person with a higher IQ score
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usually makes more money than a person with a lower IQ score. IQ scores are

approximately normally distributed, while the distribution of income is skews

to the right and has a long right tail. Thus, it appears that IQ score and

income do not have a linear relationship. We use the lognormal distribution

to approximate the distribution of income. The lognormal distribution is

defined as follows:

If  ∼  ( 2), and  = ln , or equivalently  = exp (), then 

follows a lognormal distribution.

Its density function is:

 () =
1


√
2
exp

Ã
−1
2

µ
ln  − 



¶2!
 for 0   ∞

 () = 0, for  ≤ 0

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

x

y

Distribution of Y when lnY is N(0,1).

Thus if  is the  score,  is the income of an individual, then we can

treat  as a normally distributed random variable and  as a lognormally

distributed random variable.

Exercise 6: If  ∼  (0 1),  = ln , find
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(i) Pr (  0) ;

(ii)Pr ( ≤ 1) ;
(iii)Pr (  0) ;

(iv) Pr ( ≤ −1) ;
(v) Pr (  2) ;

(vi) Pr (1   ≤ 3) ;
(vii) Pr ( = 1) 

2.5 Chi-square Distribution

Chi-squared distribution

If  ∼  (0 1), then 2 follows Chi-squared distribution with degree of

freedom equals 1.

Example 2: If  ∼  (0 1), then  = 2 follows 21.

Pr (0 ≤  ≤ 1) = Pr (−1 ≤  ≤ 1) ' 067,
Pr (0 ≤  ≤ 4) = Pr (−2 ≤  ≤ 2) ' 095,
Pr (0 ≤  ≤ 9) = Pr (−3 ≤  ≤ 3) ' 099.
Thus a chi-squared random variable must take non-negative values, and

the distribution has a long right tail.

If 1 2   are independent (0 1), then  = 21 + 22 +  + 2

follows chi-squared distribution with  degrees of freedom, and we write it

as 2.

The mean of a chi-squared distribution equals its degrees of freedom. This

is because


¡
2
¢
=   () +2 () = 1 + 0 = 1
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and thus

 () = 
¡
21 + 22 + + 2

¢
= 

It density function of  is

 () =

−2
2 −2

22Γ (2)
 0   ∞

 () = 0 elsewhere

where Γ () = (− 1)Γ (− 1), Γ (1) = 1 and Γ
¡
1
2

¢
=
√


A chi-square random variable must take non-negative values, and the

distribution has a long right tail.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

x

y

Chi-square distributions with d.f.=1, 3.

Exercise 7: If  ∼  (0 1),  = 2, find

(i) Pr (  0) ;

(ii)Pr ( ≤ 1) ;
(iii)Pr (  0) ;

(iv) Pr ( ≤ −1) ;
(v) Pr (  2) ;

(vi) Pr (1   ≤ 3) ;
(vii) Pr ( = 1) 
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2.6 Exponential Distribution

For   0, if the random variable X has an exponential distribution with

mean , then  has the following density function.

 () =
1


− 0   ∞

 () = 0 elsewhere

Note that a chi-squared distribution with degrees of freedom equal 2 is

identical to an exponential distribution with  = 2.

Exercise 8: If  is an exponential distribution with mean 2, find

(i) Pr (  0) ;

(ii)Pr ( ≤ 1) ;
(iii)Pr (  0) ;

(iv) Pr ( ≤ −1) ;
(v) Pr (  2) ;

(vi) Pr (1   ≤ 3) ;
(vii) Pr ( = 1) 

2.7 Student’s t-Distribution

If  ∼  (0 1),  ∼ 2, and  and  are independent, then:

 =
p


has a t-distribution with  degrees of freedom.



2.7. STUDENT’S T-DISTRIBUTION 27

The t-distribution was introduced by W. S. Gosset, who published his

work under the pen name “Student”. The density function of the t-distribution

with degrees of freedom  is given by

 () =
Γ
¡
+1
2

¢
Γ
¡

2

¢√

¡
1 + 2



¢+1
2

−∞   ∞

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

x

y

t-distributions with d.f.=1,10.

The t-distribution has a thicker tail than the normal distribution. When

the degree of freedom goes to infinity, that is when  →∞, the t-distribution
becomes a standardized normal distribution.

This is because as  →∞, the random variable




=

21 + 22 + + 2


which is the sample average of 2 , ( = 1 2 ) will converge to the true

mean of 2 , i.e.  (
2
 ). Since  (

2
 ) =   () + 2 () = 1 + 0 = 1, we

have




=

21 + 22 + + 2


→ 1

Thus,

 =
p


→ √
1
=  ∼  (0 1) 
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Hence a t-distribution with degrees of freedom infinity is a standardize

normal distribution. You may check the t-table to see if those critical values

for large degrees of freedom are close to the critical values from a  (0 1)

table.

Exercise 9: If the random variable  has a t-distribution with degree of

freedom 5, find

(i) Pr ( ≤ 0) ;
(ii)Pr (  0267) ;

(iii)Pr (  0727) ;

(iv) Pr ( ≤ 1476) ;
(v) Pr (  2015) ;

(vi) Pr (2571   ≤ 3365) ;
(vii) Pr ( = 1) 

2.8 Cauchy Distribution

Let 1 and 2 be independent and follow  (0 1), then the ratio

 =
1

2

will have a Cauchy distribution. A Cauchy distribution is a t-distribution

with 1 degree of freedom.

Its density has the form:

 () =
1

 (1 + 2)
 −∞   ∞

For most distributions, the mean and variance are finite. However, the

mean and variance of a Cauchy distribution do not exist. In other words,
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when we draw a sample of size  from a Cauchy distribution, the sample

average will not converge to a constant no matter how large the sample size

is.

Exercise 10: If the random variable  has a Cauchy distribution, find

(i) Pr ( ≤ 0) ;
(ii)Pr (  0325) ;

(iii)Pr (  1) ;

(iv) Pr ( ≤ 3078) ;
(v) Pr (  6314) ;

(vi) Pr (12706   ≤ 31821) ;
(vii) Pr ( = 1) 

2.9 F-Distribution

If  ∼ 2 and  ∼ 2, and if  and  are independent of each other, then

 =




has an F-distribution with  and  degrees of freedom.

Note that:

 (1 ) = 2

The density function of the F-distribution with degrees of freedom ()

is given by

 () =
Γ
¡
+
2

¢
Γ
¡

2

¢
Γ
¡

2

¢ ³


´
2

(

2
−1)
³
1 +





´−+

2

for 0 ≤  ∞
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and

 () = 0 for   0

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

x

y

F-distributions with d.f.=(1,1) and (3,4).

The F-distribution was named after Sir Ronald A. Fisher, a remarkable

statistician of this century.

Example 3: Let 1,..., , +1 be independent  (0 1) random vari-

ables, let

 = 21 + 22 + 23 + + 2−1 + 2

a) What is the distribution of ? Find  ().

b) What are the distributions of
+1p


and
2+1


?

c) If we define another random variable  =  − 2+1 , then  must

have a Chi-square distribution with degrees of freedom  − 1, true or false?
Explain.

Solution:

(a)  ∼ 2.
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() = (21 + 22 + + 2)

= (21) +(22) + +(2)

= 1 + 1 + + 1 since (2 ) =  () + [()]
2
for  = 1 2  

= 

(b) Since +1 and  are independent,
+1p


∼  and
2+1


∼  (1 ).

(c) This statement is false. It is possible that 2+1   and hence   0.

Since, as we know, chi-square distribution should be positive,  does not

have a chi-square distribution.

Exercise 11: If the random variable  has a F-distribution with degrees

of freedom (1 5), find

(i) Pr ( ≤ 0) ;
(ii)Pr (  0071289) ;

(iii)Pr (  0528529) ;

(iv) Pr ( ≤ 2178576) ;
(v) Pr (  4060225) ;

(vi) Pr (6610041   ≤ 11323225) ;
(vii) Pr ( = 1) 

Exercise 12: For   4, let 1,...,  be independent  (0 1) random

variables, and let

 = 21 + 22 + 23 

 = 24 + 25 + 26 + + 2−1 + 2 
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a) What are the distributions of  and  ? Find  () and  ( ).

b) What is the distribution of
3

 ( − 3) ? Find 

µ
3

 ( − 3)
¶
and

 ( ).



Chapter 3

Estimation and Hypothesis

Testing

3.1 Point Estimation

Population and sample are very different concepts. We would like to know

the mean () and the variance (2) of a population, but we will never know

these as we do not have the resources to do a detailed calculation of the

population. Even in the case of throwing a dice, we do not know whether

the dice is leaded or not. What we can do, however, is to draw a sample

from the population. A sample is a subset of a population. hopefully, we can

retrieve information about a population from a sample when the sample size

is large enough. We usually construct estimators to estimate the population

mean and variance.

Definition 1: An estimator is a rule or formula that tells us how to

estimate a population quantity, such as the population mean and population

variance.

33
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An estimator is usually constructed by using the sample information.

Thus, it is usually a random variable since it takes different values under

different samples. An estimator has a mean, a variance and a distribution.

Definition 2: An estimate is the numerical value taken by an estimator,

it usually depends on what sample is drawn.

Example 1:

Suppose we have a sample of size  , the sample mean

 =
1 +2 + +



is an estimator of the population mean.

If  turns out to be 3.4, then 3.4 is an estimate of the population mean.

Thus the estimate differs from sample to sample.

Example 2:

The statistic e =
1 +2 + +−1



is also an estimator of the population mean. Note that we usually put

a symbol on top of  to indicate that it is an estimator. Conventionally,

 denotes the sample mean, we may use e, b, ∗, etc. to denote other

estimators.

Example 3:

An weighted average

e = 11 + 22 + +  where

X
=1

 = 1

is also estimator of the population mean.
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Example 4:

A single observation 1 is also an estimator of the population mean.

Example 5:

∗ =
2
1 +2

2 + +2




can also be an estimator of the population mean.

Example 6:

A constant, for example, 3.551, is also an estimator of the population

mean. In this case, 3.551 is both an estimator and an estimate. Note that

when we use a constant as an estimator, the sample has no role in this case.

No matter what sample we draw, the estimator and the estimate are always

equal to 3.551.

Thus, there are a lot of estimators for the population mean. The problem

is which one is the best, and what criteria should be used to define a good

estimator.

In choosing the best estimator, we usually use criterion such as linearity,

unbiasedness and efficiency.

The first criterion in choosing estimator is linearity, an linear estimator

is by construction simpler than a nonlinear estimator.

Definition 2: An estimator b is linear if it is a linear combination of

the sample observations. i.e.
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b = 11 + 22 + + 

where  ( = 1 2   ) are constants. They can be negative, larger than

1, and some of them can be zero.

However, if all  are zero, then b is no longer an estimator.

Thus, estimators in examples 1, 2, 3 and 4 are linear, while estimators in

example 5 and 6 are not linear.

We reduce the set of all possible estimators to the set linear estimators.

Still, there are plenty of linear estimators, so how should they be compared?

We introduce the concept of unbiasedness.

Definition 3: An estimator b is unbiased if 
³ b´ = , where  is

the true mean of the random variable .

It is important to note that any single observation from the sample is

unbiased. i.e.

 () =   = 1 2  

This is because when an observation is drawn from a population, what is

the best and most reasonable guess?

The best and most reasonable guess is to expect the observation to be

the true mean () of the population.

For an estimator constructed by using two or more observations, whether

it is unbiased depends on the way it is constructed.

Example 7: If  ( = 1 2   ) are random variables with  () = 

and   () = 2 Show that:
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(a)  =

P
=1




is an unbiased estimator for 

(b) Find  (2
 ) and 

³¡

¢2´

in terms of  and 2

(c) Show that
P
=1

¡
 −

¢2
=

P
=1

2
 − 

¡

¢2


(d) Use (a) and (c), show that b2 =
P
=1

¡
 −

¢2
 − 1 is an unbiased esti-

mator for 2

Solution:(a)


¡

¢
= 

Ã
1



X
=1



!

=
1



X
=1

 ()

=
1



X
=1



=




= .

(b)

  () = 2 = 
¡
2



¢−2 ()

= 
¡
2



¢− 2

⇒ 
¡
2



¢
= 2 + 2



38 CHAPTER 3. ESTIMATION AND HYPOTHESIS TESTING

 () =  

Ã
1



X
=1



!

=
1

 2
 

Ã
X
=1



!

=
1

 2

X
=1

  () since  is 

=
2

 2
=

2




Also,

 
¡

¢
= 

³

2
´
−2

¡

¢

= 
³

2
´
− 2

⇒ 
³

2
´
=

2


+ 2

(c)

X
=1

¡
 −

¢2
=

X
=1

³
2

 − 2 +
2
´

=

X
=1

2
 − 2

X
=1

 + 
2

=

X
=1

2
 − 2

2
+ 

2

=

X
=1

2
 − 

2
.

(d)
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¡b2¢ = 

ÃP

=1( −)2

 − 1

!

= 

ÃP

=1
2
 − 

2

 − 1

!

=

P

=1 (
2
 )− 

³

2
´

 − 1
=

 (2 + 2)−  (2   + 2)

 − 1
=

 − 1
 − 1

2

= 2

Exercise 1: Show that the estimators in examples 1, 3 and 4 are unbi-

ased, and that the estimators in examples 2, 5 and 6 are biased.

We further reduce the set of all possible estimators to the set of linear

and unbiased estimators. However, if there are plenty of linear and unbiased

estimators, how should we compare them? For this, we introduce the concept

of efficiency.

Definition 4: An estimator b is more efficient than another estimator

∗ if  
³ b´    (∗) 

Example 8: If we look at the efficiency criteria, the estimator in ex-

ample 6 is the most efficient estimator since the variance of a constant is

zero. However, it is neither linear nor unbiased. A constant as an estimator

actually gives us no information about the population mean. Thus, despite

the fact that it is efficient, it is not a good estimator.
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Exercise 2: Suppose we have a sample of 3 independent observations

1 2 and 3 drawn from a distribution with mean  and variance 2.

Which of the following estimators is/are unbiased? Which one is more effi-

cient? Explain.

b =
1 + 22 +3

4


b =
1 +2 +3

3


Exercise 3: Rank the efficiency of the estimators in examples 1 to 6.

Definition 5: An estimator b is consistent estimator of the population

mean  if it converges to the  as the sample size goes to infinity.

A necessary condition for an estimator to be consistent is that  
³ b´→

0 as the sample size goes to infinity. This is because if the estimator truly

reveals the value of the population mean , the variation of this estimator

should become smaller and smaller when the sample is getting larger and

larger. In the extreme case, when the sample size is infinity, the estimator

should have no variation at all.

An unbiased estimator with this condition satisfied can be considered an

consistent estimator. If the estimator is biased, it may also be consistent,

provided that the bias and the variance of this estimator both go to zero as

the sample size goes to infinity.

Consistency is a rather difficult concept as it involves the concept of infin-

ity. It is very important for an estimator to be consistent, as what we want is

to retrieve information about the population mean from the estimator. If an
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estimator is inconsistent, it tells us nothing about the population no matter

how large the sample is.

One of the consistent estimators is the sample mean

 =
1 +2 + +




Why it is consistent? Note first that it is unbiased as


¡

¢
= 

µ
1 +2 + +



¶
=

 (1) + (2) + + ( )



=
+ + + 


=




= 

Second, suppose the variance of ,   () = 2 ∞ for  = 1 2  ,

then

 
¡

¢
=  

µ
1 +2 + +



¶
=
1

 2
  (1 +2 + + )

=
1

 2
[  (1) +   (2) + +   ( )]

=
1

 2

£
2 + 2 + + 2

¤
=

1

 2

£
2

¤
=

2


→ 0 as  →∞

Note that consistency and unbiasedness do not imply each other.

An estimator can be biased but consistent. Consider the estimator in

example 2,

e =
1 +2 + +−1




For any given value of sample size  ,


³ e´ =  − 1


 6= 
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The bias is

1




which goes to zero as  → ∞, thus we say e is biased in finite sample

but is asymptotically unbiased.

Note also that as  →∞

 
³ e´ =  

µ
1 +2 + +−1



¶
=

 − 1
 2

2 =

µ
1


− 1

 2

¶
2 → 0

Thus, both the bias and the variance of e go to zero. Therefore e is a

consistent estimator.

An estimator can also be unbiased but inconsistent. Consider the esti-

mator in example 4, a single observation as an estimator for the population

mean. It is unbiased. However, it is inconsistent as we only use one observa-

tion from a sample of size  , no matter how large  is. Thus, increasing the

number of other observation is of no use in improving the precision of this

estimator.

Exercise 4: Construct an estimator which is biased, consistent and less

efficient than the simple average .

Exercise 5: Suppose the span of human life follows an i.i.d. distribution

with an unknown upper bound  ∞. Suppose we have a sample of  obser-
vations 12  on people’s life span, construct a consistent estimator

for  and explain why your estimator is consistent.
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3.2 The Law of Large Numbers and the Cen-

tral Limit Theorem

Definition 6: A sequence of random variables  ( = 1 2  ) follow an

Independent and Identical Distribution (i.i.d.) if all the  have the

same distribution and  does not depend on  for any  6= .

The Law of Large Numbers states that, if  is an i.i.d. with finite

mean  and finite variance 2, the sample average  converges to the true

mean  as the sample size  goes to infinity.

Exercise 6: To illustrate the Law of Large Number, consider the random

experiment of throwing a dice  times. Let  be the outcome at the  trial,

 = 1 2   . Let  be the sample average of these 

(a) What is the population mean of the outcome for throwing a dice

infinite number of times?

(b) What possible values will  take if  = 1?  = 2?  = 3?

(c) Try the experiment yourself, recording the value of  and plot a

diagram which indicates its behavior as  increases from 1 to 30. Does 

converge to 35?

The Central Limit Theorem states that, if  is an i.i.d. with finite

mean  and finite variance 2, the sample average converges in distribution

to a normal distribution with mean  and variance
2


, as the sample size 

goes to infinity.

It is a powerful theorem because  can come from any distribution.
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Example 9: Let 1 and 2 be two independent random variables dis-

tributed as

Pr ( = −1) = Pr ( = 1) =
1

2


where  = 1 2.

Then the distribution of

 =
1 +2

2

will be

Pr
¡
 = −1¢ = Pr (1 = −1 and 2 = −1)

= Pr (1 = −1)Pr (2 = −1)
=

1

2
× 1
2
=
1

4


Pr
¡
 = 0

¢
= Pr ({1 = −1 and 2 = 1} or {1 = 1 and 2 = −1} )
= Pr (1 = −1)Pr (2 = 1) + Pr (1 = 1)Pr (2 = −1)
=

1

2


Pr
¡
 = 1

¢
= Pr (1 = 1 and 2 = 1)

= Pr (1 = 1)Pr (2 = 1)

=
1

2
× 1
2
=
1

4
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Note that although 1 and 2 are evenly distributed,  is not evenly

distributed but has a bell-shape distribution. As the number of observations

tends to infinity,  will have a normal distribution.

Exercise 7: To show the Central limit Theorem, let us consider the

random experiment of throwing a dice  times in the previous exercise .

(a) Conduct the experiment yourself, with  = 30. Record the value of

.

(b) Throw the dice for another 30 times, record the value of , does the

value of  different from the previous one?

(c) Repeat part (b) until you collects 20 values of , i.e. you have 18

more rounds to go.

(d) Plot the histogram (the frequency diagram) of  for the range 0 to

6, with each increment equal 01.

(e) Repeat part (d) by finding another 4 classmates and pool the result

of 100 values of .

Exercise 8: Use computers or calculators to generate 36 random num-

bers from the uniform distribution  (0 1); calculate the sample mean, and

repeat this procedure 100 times. Define a variable  =
√
36
¡
 − 05

¢


 = 1 2  100 Now make two frequency tables of  with the length of each

interval 001 and 01 respectively. Plot the two histograms.

3.3 Testing a Statistical Hypothesis

In the real world, when we observe a phenomenon, we would liket to ex-

plain it a hypothesis. We usually post a null hypothesis, and an alternative
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hypothesis, which is the set of complement of events described in the null

hypothesis.

For example, when we observe that the death toll in winter is usually

higher than the death toll in the other three seasons, we may post a null

hypothesis that the death toll is negatively related to temperature. The

alternative hypothesis would be that the death toll has nothing to do with

or positively related to temperature.

A hypothesis is not a theorem, which is always true when certain assump-

tions are held. A hypothesis is just a guess, which may be wrong. Thus, we

have to test how likely our hypothesis is going to be correct. In testing a

hypothesis, we cannot be sure that it is a correct hypothesis, as otherwise it

would become a theorem. As such, we may commit errors when concluding

a hypothesis. There are two possible types of errors as described below.

Definition 7: Rejection of the null hypothesis when it is true is called

the Type I Error; the probability of committing the type I error is denoted

by 

Definition 8: Acceptance of the null hypothesis when it is false is called

theType II Error; the probability of committing the type II error is denoted

by 

We want to reduce both Type I and Type II errors as much as possible.

However, as there is no free lunch, there is no way to eliminate both errors.

Reducing the chance of committing the Type I Error will increase the chance

of committing the Type II Error. Reducing the chance of committing the

Type II Error will increase the chance of committing the Type I Error.
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Exercise 9: In a judicial trial, suppose the null hypothesis is that “the

defendant is not guilty”.

(a) State the alternative hypothesis?

(b) What is the Type I Error in this case?

(c) What is the Type II Error in this case?

(d) How can you fully eliminate Type I Error in this case? How will this

affect the chance of committing Type II Error?

(e) How can you fully eliminate Type II Error in this case? How will this

affect the chance of committing Type I Error?

(f) How can you fully eliminate both Errors in this case?

(g) Suppose the defendant is charged with the murder of first degree,

whose penalty is the capital punishment (death). From your point of view,

which type of error has a more serious consequence?

3.4 The Normal Test

Consider a random sample 1, 2,... drawn from a normal distribution

with unknown mean  and a known variance 2. We would like to test

whether  equals a particular value 0. i.e.,

0 :  = 0

0 is a pre-specified value, e.g. 0 = 0

We construct a test statistic , where

 =
 − 0


√
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Under 0 :  = 0,  ∼  (0 
2). Since the sum of normal random

variable is also normal, as a result,  is also normally distributed for all sam-

ple size  , no matter  is small or large. Thus = 1

(1 +2 + + ) ∼



µ
0

2



¶


Hence

 ∼  (0 1) 

In the two-sided case (i.e. 1 :  6= 0), we reject 0 at a significance

level  if ||  
2
 For example 0025 = 196.

In the one-sided case (i.e. 1 :   ()0), we reject 0 at a significance

level  if    (  −) 

A 100 (1− )% confidence interval for  is

µ
 − 

2

√

 + 

2

√


¶


If 0 does not fall into this interval, we reject 0 at the significance level



The normal test is of limited use since we have two very strong assump-

tions that (i) the observations  come from the normal distribution and (ii)

the variance is known. A more commonly used test is the t-test, which is

used when the population variance is unknown and the sample size is small.

3.5 The t-Test

Consider a random sample 1, 2,... drawn from a normal distribution

with unknown mean  and a unknown variance 2. We would like to test

whether  equals a particular value 0.
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0 :  = 0

We construct a test statistic, defined as

 =
 − 0b√ 

where  stands for the observed value of the statistic under the null

hypothesis that  = 0.

What is the distribution of ?

Recall that

b =
vuuut P

=1

¡
 −

¢2
 − 1 

Note that

 =
 − 0b√ =

−0

√
s

1
−1

P
=1

³
−



´2 

Under 0 :  = 0,  ∼  (0 
2), thus  = 1


(1 +2 + + ) ∼



µ
0

2



¶
, and

 − 0


√

∼  (0 1) 

Further, it can be shown that (very difficult)

X
=1

µ
 −



¶2
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has a Chi-squared distribution with degrees of freedom ( − 1), and that
(also very difficult)

 − 0


√


and

X
=1

µ
 −



¶2
are independent.

Recall the definition of a t-distribution,

 =
 − 0b√ =

−0

√
s

1
−1

P
=1

³
−



´2 =  (0 1)q
2−1 ( − 1)

will have a t-distribution with degrees of freedom ( − 1).

In the two-sided case (i.e. 1 :  6= 0), we reject 0 at the significance

level  if ||  
2
−1. For example, 00259= 2262.

In the one-sided case (i.e. 1 :   ()0), we reject 0 at the signifi-

cance level  if   −1 (  −−1) 

A 100 (1− )% confidence interval for  is

µ
 − 

2
−1

b√

 + 

2
−1

b√


¶


If 0 does not fall into this interval, we reject 0 at the significance level



Example 10: Suppose the height of the population of Hong Kong

is normally distributed  (, 2). Suppose we want to test a hypothesis
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that the mean height of the population of Hong Kong at a certain time is

 =160cm. We test this based on a sample of 10 people, the sample mean

being  =165cm and the standard error (note that standard error is the

square root of the sample variance while standard deviation is the square

root of the population variance) is b =5cm.
Thus, we test

0 :  = 160

1 :  6= 160

Since the sample size is small and 2 is unknown, we use the t-test, the

observed t-value is calculated by

 =
 − 0b√ =

165− 160
5
√
10

= 3163

 will have a -distribution with degrees of freedom equal  − 1.
In the two-sided case, we reject 0 at a significance level  if || 


2
−1.

Now, let  = 5%, then

00259= 2262

Since ||  00259, we reject 0 at  = 5% This means we are 95%

sure that the population mean is not equal to 160cm.

A 95% confidence interval for  is

 ∓ 00259

µ b√
10

¶
= 165∓ 2262

µ
5√
10

¶
= (1614 1686) 
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Since 160 does not fall into this interval, we reject 0 at  = 5%

Note that the conclusion depends on the value of  that we set, if we set

 = 1%, then

0019= 325

Since ||  0019, we do not reject 0 at  = 1% This means we

cannot be 99% sure that the population mean is not equal to 160cm.

Exercise 10: A random sample of size  = 12 from a normal population

has the sample mean  = 28 and sample variance b2 = 3.
(a) Construct a 95% confidence interval for the population mean 

(b) Test the hypothesis 0 :  = 30 against 1 :  6= 30 at  = 5%

Exercise 11: Let  be the monthly total number of births in Hong

Kong. Assume that  ∼  ( 2). Consider a sample of  from April

1998 to June 1999.

(a) Find  and b2
(b) Use t-test to test the hypothesis 0 :  = 4500 against 1 :  6= 4500

at  = 5%

(c) Construct a 95% confidence interval for the population mean 

Exercise 12: Let  be the monthly total number of deaths in Hong

Kong. Assume that  ∼  ( 2). Consider a sample of  from April

1998 to June 1999.

(a) Find  and b2
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(b) Use t-test to test the hypothesis 0 :  = 3000 against 1 :   3000

at  = 5%

Exercise 13: Let  be the monthly total number of marriages in Hong

Kong. Assume that  ∼  ( 2). Consider a sample of  from April

1998 to June 1999.

(a) Find  and b2
(b) Use t-test to test the hypothesis 0 :  = 3000 against 1 :   3000

at  = 5%

3.6 What if X are not Normally Distributed?

Thus far we have assumed that the observations are normally distributed.

What if this assumption does not hold?

Consider a random sample 1, 2,... drawn from any distribution

with unknown finite mean  and a finite unknown variance 2. We would

like to test whether  equal a particular value 0.

0 :  = 0

If the sample size is small, say if   30, then we cannot test the hy-

pothesis since we do not know what the behavior of the sample mean  and

sample variance b2 if  is not normally distributed.

However, if the sample size is large, say   30, we can apply the Cen-

tral Limited Theorem that  is normally distributed and the Law of Large

Number that b2 will converge to the population variance 2
Then the test statistic
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 =
 − 0b√

will be approximately normally distributed as  (0 1) 

In the two-sided case(i.e. 1 :  6= 0), we reject 0 at a significance

level  if ||  
2
 For example 0025 = 196.

In the one-sided case(i.e. 1 :   ()0), we reject 0 at a significance

level  if    (  −) 

A 100 (1− )% confidence interval for  is

 ∓ 
2

b√



If 0 does not fall into this interval, we reject 0 at the significance level



Thus, if the observations  are not normal, we need a large sample to

carry out the test.

Exercise 14: A random sample of size  = 100 from a population has

the sample mean  = 28 and sample variance b2 = 3.
(a) Construct a 95% confidence interval for the population mean 

(b) Test the hypothesis 0 :  = 30 against 1 :  6= 30 at  = 5%
(Note that we cannot apply the t-test as we do not assume that the

observations come from a normal distribution.)



Chapter 4

Simple Regression Models

4.1 Introduction

Regression analysis is a statistical technique used to describe relationships

among variables. The simplest case to examine is the one in which a variable

 , referred to as the dependent variable, may be related to another variable

, called an independent or explanatory variable. If the relationship between

 and  is linear, then the equation expressing this relationship will be the

equation for a line:

 = 0 + 1

where 0 and 1 are constants.

This is an exact or deterministic linear relationship. Exact linear rela-

tionship may be encountered in various science course. In social sciences as

well as in economics, exact linear relationships are the exception rather than

the rule. In most cases in economics,  and  may be linearly related, but

is not an exact relationship. There may be some unknown factors that also

affect  , we used  to represent all these unknown factors, thus we write

55
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 = 0 + 1 + 

For example, when  is consumption and  is income, then the above

model is a consumption function.

1 represents when  increases 1 unit,  will increase 1 unit(s).

0 is the value of  when  = 0.

We would like to estimate the unknown parameter 0 and 1 based on

our observations { }=1.

When we plot the observations and try to find a line which fits these

observations the best, how should we do it? What criteria should we use?

Of course not all the data lie on our line, so we have to minimize the

“distance” between the observations and the line. What distance? Statisti-

cally speaking, we may use vertical distance, horizontal distance or distance

that are perpendicular to our line. In Economics, we use vertical distance.

However, we are not just minimizing the sum of errors, as it is possible that

some big positive errors may be cancelled out by some big negative errors,

ending up with a small value of the sum of errors. Thus, we have to make the

errors positive. We may take absolute values, but we would like to penalize

observations which are further away from the line. Thus, we minimize the

sum of squared errors. This is the Ordinary Least Squares (OLS) Esti-

mation method, proposed in the 19th century by the French mathematician

Adrien Legendre.

Let b0, b1 be the OLS estimators for 0 and 1 respectively. To en-

sure that the estimators have the desirable properties such as unbiasedness,

efficiency and consistency, we have to make the following assumptions:
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4.2 Assumptions

1: The true model (population) is a linear model, i.e.,

 = 0 + 1 + 

Linearity means linear in ’s, not necessarily linear in  and .

e.g.  = 0+1
2
 + is a linear model, but  = 0+21+ is not

a linear model.

This assumption allows us to derive the OLS estimator b0, b1 via sim-
ple calculus. If the model is nonlinear in 0 , the problem becomes very

complicated when taking differentiation on 0

2:  () = 0 for all 

This assumption is to ensure that the OLS estimators are unbiased, i.e.


³b0´ = 0 and 

³b1´ = 1 if this assumption is made.

3:  cannot be all the same.

This assumption is to ensure that we will not obtain a vertical line with

infinite slope. If the slope is infinity, the model becomes meaningless.

4:  is given and is non-random, in the sense that you can choose the values

of . (This assumption can be relaxed later)

This assumption simplifies our analysis when we discuss the unbiasedness
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of the estimators, since  can be treated as a constant and taken out of the

expectation operator. For example,  () =  () = 0 by assumption

2. This also implies  ( ) = 0

5: Homoscedasticity, i.e.,   () = 2 for all 

6: Serial Independence, i.e.,  ( ) = 0 for all  6= 

Assumptions 5 and 6 simplify our calculation of  
³b0´ and   ³b1´,

see example 2 below. They also ensure that OLS estimators are the most

efficient estimators among all the linear and unbiased estimators.

As far as the estimation of 0 is concerned, assumptions 1 to 6 ensure

the OLS estimators are the best linear unbiased estimators (BLUE) .

4.3 Least Squares Estimation

 = 0 + 1 + 

 =  − 0 − 1

The problem is

min
01

X
=1

( − 0 − 1)
2


The first order conditions are:
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P
=1

( − 0 − 1)
2

0

¯̄̄̄
¯̄̄̄
01

= −2
X
=1

³
 − b0 − b1

´
= 0 (*)


P
=1

( − 0 − 1)
2

1

¯̄̄̄
¯̄̄̄
01

= −2
X
=1

³
 − b0 − b1

´
 = 0 (**)

Solving these two normal equations gives theOrdinary Least Squares

Estimators:

b1 =
P
=1

¡
 −

¢ ¡
 − 

¢
P
=1

¡
 −

¢2 

b0 =  − b1

Note: If  are also assumed to be random, then when sample size

increases, b1 will converge to ( )

 ()


Example 1: Show that

b1 = 1 +

P
=1

¡
 −

¢


P
=1

¡
 −

¢2 
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Solution:

b1 =

P

=1

¡
 −

¢ ¡
 − 

¢P

=1

¡
 −

¢2
=

P

=1

¡
 −

¢
P

=1

¡
 −

¢2
=

P

=1

¡
 −

¢
(0 + 1 + )P

=1

¡
 −

¢2
= 0

P

=1

¡
 −

¢P

=1

¡
 −

¢2 + 1

P

=1

¡
 −

¢
P

=1

¡
 −

¢2 +

P

=1

¡
 −

¢
P

=1

¡
 −

¢2
= 0

0P

=1

¡
 −

¢2 + 1 (1) +

P

=1

¡
 −

¢
P

=1

¡
 −

¢2
= 1 +

P

=1

¡
 −

¢
P

=1

¡
 −

¢2 

Exercise 1: Solve (*) and (**) for b0 and b1.

4.4 Properties of Estimators

Under the above assumptions 1-6, the Least Squares Estimators b0 and b1
have the following properties:

(1) They are linear estimators, i.e. they are linear combinations of 

Proof.
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b1 =

P
=1

¡
 −

¢ ¡
 − 

¢
P
=1

¡
 −

¢2

=

P
=1

¡
 −

¢


P
=1

¡
 −

¢2
=

1 −
P
=1

¡
 −

¢21 + 2 −
P
=1

¡
 −

¢22 + +
 −

P
=1

¡
 −

¢2
=

X
=1



where

 =
 −

P
=1

¡
 −

¢2 

b0 =  − b1
=

1



X
=1

 −
Ã

X
=1



!


=

X
=1

1


 −

X
=1



=

X
=1

µ
1


−

¶


=

X
=1



where
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 =
1


− =

1


−

⎛⎜⎜⎝  −
P
=1

¡
 −

¢2 
⎞⎟⎟⎠ 

(2) They are unbiased, i.e. 
³b0´ = 0 and 

³b1´ = 1

Proof. From example 1,

b1 = 1 +

P

=1

¡
 −

¢
P

=1

¡
 −

¢2 

Thus


³b1´ = 

Ã
1 +

P

=1

¡
 −

¢
P

=1

¡
 −

¢2
!

= 1 +

P

=1

¡
 −

¢
 ()P

=1

¡
 −

¢2
= 1 +

P

=1

¡
 −

¢× 0P

=1

¡
 −

¢2
= 1.
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³b0´ = 

³
 −b1´

= 

ÃP

=1 



!
−

³b1´
= 

ÃP

=1 (0 + 1 + )



!
−1



Ã
0

P

=1 1


+ 1

P

=1


+

P

=1 



!
−1

= 0 +1 +

ÃP

=1 



!
−1

= 0 +

ÃP

=1 



!

= 0 +
1



X
=1

 ()

= 0 since () = 0

(3) They are consistent, i.e. b0 → 0 and
b1 → 1 as the sample size

goes to infinity.

Proof. Skip.

(4) They are efficient among all the linear unbiased estimators by the

Gauss-Markov Theorem.

Gauss−Markov Theorem: Under assumptions 1-6, the Ordinary Least
Squares() estimators are the Best Linear Unbiased Estimators ():

Proof. Skip.

(5) The estimated regression line must pass through the point ( ).
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Proof. Note that the estimated regression line is

 = b0 + b1
By the definition of b0 =  −b1

 =  −b1 + b1
 −  = b1 ¡−

¢

The question is where the line passes through the point ( ), if it does,

then the equality should hold when we put  =  and  =  . This is obvious

since

 −  = b1 ¡ −
¢

0 = 0

Although OLS has so many nice properties, it also has shortcomings. If

there are observations whose values are extremely large, those observations

will dominate other observations in the determination of the OLS estimates.

In other words, the OLS estimator is not robust to outliers.

Example 2: Derive  
³b1´ 

Solution:
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³b1´ =  

⎛⎜⎜⎝1 +

P
=1

¡
 −

¢


P
=1

¡
 −

¢


⎞⎟⎟⎠

=  

⎛⎜⎜⎝
P
=1

¡
 −

¢


P
=1

¡
 −

¢


⎞⎟⎟⎠ since 1 is a constant

=
1µ

P
=1

¡
 −

¢


¶2 
Ã

X
=1

¡
 −

¢


!

=

P
=1

 
¡¡
 −

¢

¢

µ
P
=1

¡
 −

¢


¶2 since Cov ( )=0 for all i 6= j

=

P
=1

¡
 −

¢2
  ()µ

P
=1

¡
 −

¢2¶2 =

P
=1

¡
 −

¢2
2µ

P
=1

¡
 −

¢2¶2 = 2

P
=1

¡
 −

¢2 

Exercise 2: True/False/Uncertain, explain.

a)  estimators are most efficient among all estimators.

b) The 2 increases with the number of observations.

c) If  () = 2, b0 will be biased.
d) If  () = 2, b1 will be biased.
Exercise 3: Show that 

³
 b1 ¡ −

¢´
= 0

Exercise 4: Derive  
³b0´ and 

³b0 b1´ 
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4.5 Goodness of Fit

To see whether the regression line fits the data, we first define the variation

of  about its mean as the total sum of squares (TSS), where

 =

X
=1

¡
 − 

¢2


Let

b = b0 + b1

be the predicted value of  given . Consider the following identity:

 −  ≡
³b − 

´
+
³
 − b´ 

Squaring both sides gives

¡
 − 

¢2
=
³b − 

´2
+
³
 − b´2 + 2³b − 

´³
 − b´ 

Summing up from  = 1 to  , we have

X
=1

¡
 − 

¢2
=

X
=1

³b − 
´2
+

X
=1

³
 − b´2+2 X

=1

³b − 
´³

 − b´ 
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We want to show the last item in the R.H.S. is zero. Note that

X
=1

³b − 
´³

 − b´
=

X
=1

³b − 
´³

 − b0 − b1

´
=

X
=1

b ³ − b0 − b1

´
− 

X
=1

³
 − b0 − b1

´
=

X
=1

b ³ − b0 − b1

´
−  × 0 by the normal equations (*)

=

X
=1

³b0 + b1

´³
 − b0 − b1

´
= b0 X

=1

³
 − b0 − b1

´
+ b1 X

=1

³
 − b0 − b1

´


= 0 by the normal equations (*) and (**).

Thus we have:

X
=1

¡
 − 

¢2


=

X
=1

³b − 
´2



+

X
=1

³
 − b´2


where

 stands for the total sum of squares,

 stands for the regression sum of squares, and

 stands for the error sum of squares.

Thus the difference between  and  can be decomposed into two parts.

The first part is

³b − 
´
=
³b0 + b1

´
−
³b0 + b1´ = b1 ¡ −

¢




68 CHAPTER 4. SIMPLE REGRESSION MODELS

This part shows that  differs from its average because  differs from

its average.

The second part
³
 − b´ is the unknown reason why  varies. It is the

residual that remains unexplained by the regressor 

We define

2 = 1− 




Since  and  are positive, and  ≥ , the range for 2 is

0 ≤ 2 ≤ 1

We use 2 to measure the goodness of fit of a regression line. If 2 is

close to 0,  and  do not have linear relationship. If 2 is close to 1, 

and  are highly linearly correlated.

If  cannot explain  at all, then  = 0,  = , and 2 = 0

in this case, and the regression line does not fit the data.

If there is nothing that remains unexplained, then  = 0, that means

the variation of  can be totally explained by the variation of , and 2 = 1

in this case, and all the data must lie on the regression line.

Remark: These abbreviations ,  and  are drawn from Ra-

manathan text, some other texts and computer programs(e.g. MFIT386) use

 to represent the residual sum of squares and  to denote the ex-

plained sum of squares, which are the opposites of Ramanathan’s definitions.

Therefore be careful when you use these abbreviations.
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4.6 Properties of R2

(1) In the simple regression model (i.e., only one regressor ), 2 can be

written as

2 =

µ
P
=1

¡
 −

¢ ¡
 − 

¢¶2
P
=1

¡
 −

¢2 P
=1

¡
 − 

¢2 
Proof.

2 = 1− 


=





=

P
=1

³b − 
´2

P
=1

¡
 − 

¢2 =
P
=1

³b1 ¡ −
¢´2

P
=1

¡
 − 

¢2

= b21
P
=1

¡
 −

¢2
P
=1

¡
 − 

¢2 = b21
P
=1

¡
 −

¢2
P
=1

¡
 − 

¢2

=

⎛⎜⎜⎝
P
=1

¡
 −

¢ ¡
 − 

¢
P
=1

¡
 −

¢2
⎞⎟⎟⎠
2 P
=1

¡
 −

¢2
P
=1

¡
 − 

¢2

=

µ
P
=1

¡
 −

¢ ¡
 − 

¢¶2
P
=1

¡
 −

¢2 P
=1

¡
 − 

¢2 
(2) Given the data ( ),  = 1 2  , We run a regression of  on 

and obtain the following results

b = b0 + b1 2 = 
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Now suppose we use the same data and run a regression of  on , and

obtain the following regression.

b = b0 + b1 2 = 

Then

 =  = b1b1
Proof.

 =

µ
P
=1

¡
 −

¢ ¡
 − 

¢¶2
P
=1

¡
 −

¢2 P
=1

¡
 − 

¢2

 =

µ
P
=1

¡
 − 

¢ ¡
 −

¢¶2
P
=1

¡
 − 

¢2 P
=1

¡
 −

¢2 = 

b1b1 =

P
=1

¡
 −

¢ ¡
 − 

¢
P
=1

¡
 −

¢2 ×

µ
P
=1

¡
 − 

¢ ¡
 −

¢¶2
P
=1

¡
 − 

¢2

=

µ
P
=1

¡
 −

¢ ¡
 − 

¢¶2
P
=1

¡
 −

¢2 P
=1

¡
 − 

¢2 = 

(3) It is possible that 2 may turn out to be negative or bigger than one

if we run a regression without an intercept. See example 4 below.

Example 3: Given the data ( ),  = 1 2  , suppose we know

 = 30. We run a regression of  on  and obtain the following results
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b = 08 + 09 2 = 09

Now suppose we use the same data and run a regression of  on , and

obtain the following regression.

b = +  2 = 

Find the values of  ,  , and .

Solution: Given that b = 08 + 09, 
2 = 09 and  = 30

 = 08 + 09 = 08 + 09 (30) = 278.

Regression of  on  yields

2 =

³P

=1

¡
 −

¢ ¡
 − 

¢´2
P

=1

¡
 −

¢2P

=1

¡
 − 

¢2 = 09.
Regression of  on  yields

 =

³P

=1

¡
 − 

¢ ¡
 −

¢´2
P

=1

¡
 − 

¢2P

=1

¡
 −

¢2 .
Thus,

 = 09.

Also,
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2 =

³P

=1

¡
 −

¢ ¡
 − 

¢´2
P

=1

¡
 −

¢2P

=1

¡
 − 

¢2
=

P

=1

¡
 −

¢ ¡
 − 

¢P

=1

¡
 −

¢2 ×
P

=1

¡
 −

¢ ¡
 − 

¢P

=1

¡
 − 

¢2
09 = (09) 

⇒  = 1.

Since  = +  ,

30 = + 278

⇒  = 22

Example 4: Consider the model:  = 1 +   = 1 2  

a. Show that the OLS estimator for 1 is given by
b1 =

P
=1



P
=1

2


;

b. If we have three observations of ( ),  = 1 2 3.

 0 1 2

 2 1 0

Calculate the numerical values of:

i) b1;
ii) b = b1 for  = 1 2 3;

iii)  =
3P

=1

³
 − b´2 ;

iv)  =
3P

=1

¡
 − 

¢2
;

v) 2 = 1− 




Solution:
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(a) The problem is

min
1

X
=1

2 = min
1

X
=1

( −1)
2


The first order condition is


P

=1 ( −1)
2

1
= −2

X
=1

( −1) = 0

⇒ b1 = P

=1P

=1
2


.

(b)

 1 2 3

 0 1 2

 2 1 0

(i)

b1 = (0) (2) + (1) (1) + (2) (0)

(0)
2
+ (1)

2
+ (2)

2
=
1

5


(ii)

b1 =
1

5
(0) = 0

b2 =
1

5
(1) =

1

5
,

b3 =
1

5
(2) =

2

5
.

(iii)
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 =

3X
=1

³
 − b´2

= (2− 0)2 +
µ
1− 1

5

¶2
+

µ
0− 2

5

¶2
= 48

(iv)

 =

3X
=1

¡
 − 

¢2
= (2− 1)2 + (1− 1)2 + (0− 1)2

= 2

(v)

2 = 1− 


= 1− 48

2
= −14

Note that 2 is negative because the regression line excludes the intercept

term and
P3

=1 b 6= 0.
Exercise 5: Given the data ( ),  = 1 2   , and = 10. Suppose

we run a regression of  on with an intercept, and get the following results:

b =  2 = 1

Now suppose we use the same data and run a regression of  on  with

an intercept, and get the following regression:

b = +  2 = 



4.6. PROPERTIES OF R2 75

Find the values of  ,  , and .

Exercise 6: Consider the model:  = 0+1+  = 1 2  

If we have three observations of ( ),  = 1 2 3.

 0 1 2

 2 1 0

Calculate the numerical values of:

i) b0 b1 ;
ii) b = b0 + b1 for  = 1 2 3;

iii)  =
3P

=1

³
 − b´2 ;

iv)  =
3P

=1

¡
 − 

¢2
;

v) 2 = 1− 


;

vi) 
2
= 1− (1−2)

 − 1
 −  − 1 

Exercise 7: Consider a simple linear regression model:

 = 0 + 1 +   = 1 2  

i) Write down the OLS estimators b0 and b1
ii) Given 

³
, b1´ = 0, show that  ³b0, b1´ = − 

³b1´ 
Explain intuitively why this covariance depends on, discuss cases where

  0,  = 0, and   0 (Hint: Use the fact that the estimated regression

line must pass through the point
¡


¢
, and see how the intercept and slope

vary as this regression line rotates about the point
¡


¢
.)

iii) If  () = −2, will b0 and b1 be biased? Explain your answers.
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Exercise 8: Consider the model:  = 0 + 1 +   = 1 2  

a) Suppose we have four observations of ( ),  = 1 2 3 4

 0 1  1− 

 0 1 1 0

Find the followings in term of :

i) b0 b1
ii) b = b0 + b1 for  = 1 2 3 4

iii)  =
4P

=1

³
 − b´2

iv)  =
4P

=1

¡
 − 

¢2
v) 2 = 1− 


b) For what value(s) of  will the b1 equal 1?
c) For what value(s) of  will the 2 be maximized? For what value(s) of

 will the 2 be minimized?

4.7 Hypothesis Testing on s

We run a linear regression for the model

 = 0 + 1 + 

because we want to examine whether  is linearly related to , i.e., we

want to test whether 1 equals zero.

After the estimation, we may perform hypothesis testing. Suppose we find

that b1 = 034 from the sample. We may test whether the true parameter

1 equals zero or not. That is, we test 0 : 1 = 0. We must perform

this test because if we cannot reject 0, that implies that  cannot explain

 and the regression model will be useless. When we test this hypothesis,
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we have to form a test statistic and find its distribution. We may use a test

statistic which follows a t-distribution. As mentioned in the previous chapter,

when using the t-distribution, we have to assume that the observations come

from a normal distribution. In the context of regression models, the random

elements are .

Note that we have not specified the distribution of . Thus far we have

only assumed that  are uncorrelated and identically distributed with mean

zero and variance 2. Therefore we have to make the following assumption

when we carry out hypothesis testing:

Assumption 7: Normality of errors:  ∼  (0 2).

This assumption is not necessary as far as estimation is concerned. It is

called for when we want to perform hypothesis testing on ’s.

Suppose we perform a two-sided test on 1:

0 : 1 = 0

1 : 1 6= 0

A standard way to test the hypothesis is to form a test statistic

 =
b1 − 1r
 

³b1´ 
whereb1 is the OLS estimator for the unknown parameter 1 and

 
³b1´ = 2

P
=1

¡
 −

¢2
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from example 1.

Note that since b1 is unbiased,
 ( ) =


³b1 − 1

´
vuuut 2

P
=1

¡
 −

¢2
= 0

and

  ( ) =  

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
b1 − 1vuuut 2

P
=1

¡
 −

¢2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

 
³b1´
2

P
=1

¡
 −

¢2
= 1

Thus, the test statistic will have a distribution with mean zero and vari-

ance 1. But what is its exact distribution? This depends on whether 2 is

known or not. Note from example 1 that

 =
b1 − 1vuuut 2

P
=1

¡
 −

¢2

=

P

=1

¡
 −

¢
P

=1

¡
 −

¢2vuuut 2

P
=1

¡
 −

¢2
=

1 −s
2

P
=1

¡
 −

¢21 + 1 −s
2

P
=1

¡
 −

¢21 + +
 −s

2
P
=1

¡
 −

¢2 



4.7. HYPOTHESIS TESTING ON S 79

which is a linear combination of  Since  has a normal distribution by

assumption 7, if 2 is known, then by the property that normal plus normal

is still normal, the test statistic  will have a  (0 1) distribution.

The problem again, is that 2 is unknown in the real world, so we will

have to estimate it. Recall that 2 is the variance of  in the true model:

 = 0 + 1 + 

Now after we obtain the  estimators b0 and b1 the estimated resid-
ual is

b =  − b0 − b1

and we define

b2 =
P
=1

b2
 − 2 

We use b2 to estimate 2.
You should have two questions here, why use

P
=1

b2 but not P
=1

³b − b´2?
And why must we use ( − 2), but not ?
The answer to the first question is

P
=1

b = P
=1

³
 − b0 − b1

´
= 0

using the first normal equation (*). Thus b = 1


P
=1

b = 0
The reason why we have to use ( − 2) is because we want b2 to be an

unbiased estimator of 2 (see example 5). This number should be equal to

the number of 0 in the regression. If we have a multiple regression with

k 0, then it should be ( − ) at the bottom. It is the same reason why

we usually put ( − 1) at the bottom when forming a sample variance of a

random variable. This is because we want to obtain an unbiased estimator

of 2.
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Now,

 =
b1 − 1vuuut b2

P
=1

¡
 −

¢2
=

b1 − 1vuuut 2

P
=1

¡
 −

¢2
r

2b2

=  (0 1)×
s

2b2
=

 (0 1)rb2
2

=
 (0 1)vuuut 1

 − 2
P
=1

b2
2



=
 (0 1)vuuut P
=1

µb


¶2
 − 2

It can be shown that (very difficult)
P
=1

µb


¶2
has a chi-squared distrib-

ution with degree of freedom ( − 2), and that
P
=1

µb


¶2
is independent ofb1 − 1vuuut 2

P
=1

¡
 −

¢2
, thus the test statistic



4.7. HYPOTHESIS TESTING ON S 81

 =
 (0 1)r

2−2
 − 2

will have a t-distribution with degrees of freedom ( − 2)  This explains
why we have to use the t-table for hypothesis testing in regression models.

Example 5: Show that b2 =
P
=1

b2
 − 2 is an unbiased estimator for 

2, i.e.,


¡b2¢ = 

⎛⎜⎜⎝
P
=1

b2
 − 2

⎞⎟⎟⎠ = 2

Solution: We only have to show that 

µ
P
=1

b2¶ = ( − 2)2. Note
that



µ
P
=1

b2¶ = 

µ
P
=1

³
 − b0 − b1

´2¶
= 

µ
P
=1

³
 −  − b1 ¡ −

¢´2¶
= 

µ
P
=1

³
0 + 1 +  −

¡
0 + 1 + 

¢− b1 ¡ −
¢´2¶

= 

µ
P
=1

³
 − −

³b1 − 1

´ ¡
 −

¢´2¶
= 

∙
P
=1

( − )
2
+
³b1 − 1

´2 P
=1

¡
 −

¢2 − 2³b1 − 1

´ P
=1

¡
 −

¢
( − )

¸
= 

⎡⎣ P
=1

( − )
2
+

⎛⎝ 
=1
(−)


=1
(−)2

⎞⎠2

P
=1

¡
 −

¢2 − 2 
=1
(−)


=1
(−)

P
=1

¡
 −

¢


⎤⎦
=

P
=1

 ( − )
2 −





=1
(−)

2

=1
(−)2

=
P
=1

 (2 )−  (2)−

=1
(−)2(2)+2

−1
=1



(−)(−)()


=1
(−)2



82 CHAPTER 4. SIMPLE REGRESSION MODELS

=
P
=1

2 − 

µ
2



¶
−


=1
(−)22+2

−1
=1



(−)(−)(0)


=1
(−)2

= ( − 1)2 − 2 = ( − 2)2

Exercise 9: Go to the following webpage:

http://osc.universityofcalifornia.edu/journals/journals_a.html.

Let

=List Price;

=ISI impact factor.

Skip the journals without data. For all the journals (A-Z) with data

i) Plot (, ).

ii) Run the following regression model

 = 0 + 1 + 

Find the values of b0, b1. What is the meaning of b0 in this case?
Interpret b1.
iii) Test 0 : 1 = 0 against 1 : 1 6= 0 at  = 005 Is the journal list

price affected by the impact factor?

vi) Repeat part i) to iii) using the UC online uses as X.

Exercise 10: Below are the Labour Force Participation Rates formale,

using age group from 20 to 59, for the year 1994. The table is adopted from

Hong Kong Annual Digest of Statistics 1996 Edition, page 13, Table 2.1.
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 (middle of the age group)  (%)

22 802

27 978

32 983

37 986

42 986

47 973

52 924

57 783

where

=Labour force participation rate;

=Middle age in each age group.

i) Plot (, ).

ii) Run the following regression model

 = 0 + 1 + 

Find the values of b0, b1. What is the meaning of b0 in this case?
Interpret b1.
iii) Test 0 : 1 = 0 against 1 : 1 6= 0 at  = 005 Is the labour force

participation rate stable for men? If not, is it increasing or decreasing with

age?

vi) Repeat part i) to iii) using the labour force participation rate for

female in the same year.
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4.8 Prediction and Forecasting

If we are just interested in the relationship between  and  , we can simply

use ( ) or ( ). An important purpose of running a regression

is to predict the value of  at a given value of . The idea is that the

regression line can be extended indefinitely in the  plane. Thus, for any

given value of , you can find a corresponding value of  .

Make sure that you distinguish the differences between

 = 0 + 1 + 

 = b0 + b1 + b
and

b = b0 + b1

The first equation is the true model, the second is the estimated model.

The actual observed values of  do not necessary lie on the line, so residuals

are added to both equations. The last equation represents a regression line,

every b is a point in the regression line, no error is needed.
We use the regression line b = b0 + b1 to make predictions, e.g. Ifb0 = 1, b1 = 1 the predicted value b at  = 10 will be 11

Exercise 11: The following table is adopted from Hong Kong Annual

Digest of Statistics 1996 Edition, page 301, table 17.2.



4.8. PREDICTION AND FORECASTING 85

   (HK$million)  (HK$million)

1986 450411 253618

1989  312682

1991 612016 359019

1992 650347 386519

1993 690223 

1994 726709 442025

1995 760728 445302

where

=private consumption expenditure at constant (1990) market price;

=Expenditure-based GDP at constant (1990) market price.

i) Fill in the values of  and .

For parts ii) to vi), if the second last number of your student ID is 1

(e.g. 04567712) , then delete the observation in 1991, if it is 6, then delete

the observation in 1986, and so on. If the second last number of your student

ID is (7,8,0), then you have to use all the seven observations.

ii) Plot (, ).

iii) Run the following regression model

 = 0 + 1 + 

Find the values of b0, b1. What is the meaning of b0 in this case?
Interpret b1.
iv) Test 0 : 1 = 0 against 1 : 1 6= 0 at  = 005
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v) Using the Hong Kong Annual Digest of Statistics 1997 Edition, find

the ( ) for 1996.

vi) Using the estimated model to predict the value of  in 1996 using 

in 1996. Is the predicted value b different from the actual  in 1996?

Exercise 12: Consider Table 11.20 in Hong Kong Annual Digest of

Statistics 1996 Edition, page 223, the Statistics of Results of Hong Kong

Certificate of Education Examination 1995.

Let

= % of student getting A.

=Number sat.

i) If a student wants to get 10 straight As in HKCEE, which 10 subjects

would you recommend for him/her to take?

ii) If a student wants to fail 10 subjects in HKCEE, which 10 subjects

would you recommend for him/her to take?

For parts iii) and vi), if your last name starts with A (e.g. Au) , then

delete the subjects which start with A (Accommodation and Catering Ser-

vices, Additional Mathematics, Art), and so on. If you don’t have to delete

any subject, then use all the observations. Anyone who does not follow

this rule will earn no credit for this question.

iii) Run the following regression model

 = 0 + 1 + 

Find the values of b0, b1. What is the meaning of b0 in this case?
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Interpret b1.
iv) Test 0 : 1 = 0 against 1 : 1 6= 0 at  = 005 Does the chance

of getting an A depend on the number of candidates in the exam? If so, in

which direction?

Exercise 13: Use 9/00 to 9/06 Hang Seng Index, End of Month, closing

price data to run a regression HSI on TIME, where HSI is the value of the

Hang Seng index, and TIME=1 for September 2000, 2 for October 2000,

and so on. Is the slope coefficient significantly different from 0 at  = 5%?

Predict the value of Hang Seng index for End of October 2006.

Now use the natural logarithm of Hang Seng index ln(HSI) as the depen-

dant variable, run the regression ln(HSI) on TIME. Is the slope coefficient

significantly different from 0 at  = 5%? Predict the value of ln(HSI) for

October 2006, and take the exponential of this predicted value, i.e. calculate

e
\ln() and use it as the predicted value for HSI.

Finally, obtain the actual value of HSI at the end of October 2006, and

compare your predicted values above with this actual value. Which one is

closer to the true value, and why?

Exercise 14: Let  and  be random variables,  = 1 − , and

 = 1−  ,

(a) Show that  () =  ( ) .

(b) Suppose we draw a sample size T from the above distributions of X

and Y. We run the following two regression models:

 = 0 + 1 + 
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 = 0 + 1 + 

Then the two estimates of 1 are identical in the two regression models.

True or False? Explain.

Exercise 15: Let  be four random variables with zero mean

and unit variance.

(a) Is  ()−  () =  (− −)?

(b) Suppose we draw a sample size T from the above distributions of A,

B, C and D, and run the following three regression models:

 = 0 + 1 + 

 = 0 + 1 + 

 − = 0 + 1 ( −) + 

Is b1 = b1 − b1?
Exercise 16: True/False. Explain.

(a). The 
2
can be equal to 1.

(b). In a linear regression model  = 0+1+,   () =   ().

(c). The OLS estimators are inefficient linear unbiased estimators.

(d). The more the regressors, the lower the 2 in a regression model

Exercise 17: Let 1, 2 be independent  (0 1) random variables, let
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 = 21 + 22 

(a) What is the distribution of ?

(b) Find  ().

(c) If we define another random variable  = 212 find E( ) and

Var( ) 

(d) What is the distribution of
 − 

2
?

(e) Suppose we draw a sample size T from the above distributions of Z1

and Z2. In a linear regression model 
2
2 = 0 + 1

2
1
+ , what will b1

converge to?

Exercise 18: Let ,  be two independent identical discrete random

variables with the probability distributions as follows:

 = −1 with probability 1
2


 = 1 with probability 1
2


 = −1 with probability 1
2


 = 1 with probability 1
2


Find the distribution of  if:

a)  =  { } 
b)  = 

c)  =  +  .

Suppose we draw a sample size T from the above distributions of X, Y

and Z, and run the following regressions:

(i)  = 0 + 1 + 

(ii)  = 0 + 1 + 

(iii)  = 0 + 1 + 
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When  goes to infinity, what are the values of b0, b1 in each of the 7
possible cases ?

Exercise 19: True or false? Explain.

If  and  are two continuous random variables,

(a) then  +  must be continuous too.

(b) If  +  is discrete, then the slope estimate of the regression of

( +  ) on the continuous random variable  must converge to zero.



Chapter 5

Multiple Regression

5.1 Introduction

Usually a single explanatory variable is not sufficient to explain the variation

of  , we may have to regress  on many explanatory variables. A multiple

regression is of the following form:

 = 0 + 11 + 22 + +  + 

The OLS estimated model is:

b = b0 + b11 + b22 + + b

It should be noted that the number of regressors cannot exceed the num-

ber of observations. Here the interpretation of b’s is a little bit different from
the case of simple regression. b0 is interpreted as the predicted value of 
if all the ’s are zero. Sometimes b0 is not interpretable as  cannot be

zero physically, or the predicted value of  is beyond its possible range. b1
is interpreted as the increase in the value of b if 1 is increased by 1 unit,

holding all other ’s constant. Similar interpretations hold for b2 to b It is
91
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the statement ‘holding other ’s constant’ which sometimes makes the sign

of b counter-intuitive.
For example, if you regress the price of a house on its size and the number

of bedrooms, it may happen that the estimated coefficient associated with

the number of bedrooms is negative, although we expect it to be positive.

The reason is that we are holding the size of the house constant, but keep

adding bedrooms, this may reduce the price of the house.

Again, we use 2 to measure the goodness of fit of multiple regression

models. However, we cannot use 2 to measure the correlation between 

and, since we have more than one regressor here. We define2 = 1−


.

As we increase the number of regressors, the explanatory power of the

regression increases, the error sum of squares is reduced. Thus, 2 is al-

ways non-decreasing with the number of ’s. In principle, as the number

of regressors approach infinity, 2 should approach 1. Of course we cannot

do that due to the limited number of observations. Even if we have a lot of

observations, it is not always a good idea to increase the number of regressors.

A good model is a model that is simple and has high explanatory power.

Even if we add a garbage variable to the model, we may still increase 2.

Thus, we should not use 2 to compare models. Instead, we define an ad-

justed 2 as follows:


2
= 1−  − 1

 −  − 1
¡
1−2

¢


Note that as  increases, there are two effects. The direct effect is a

reduction in 
2
. This is because including an additional regressor reduces

the degrees of freedom of the model. The indirect effect is an increase 
2
via

the increase in 2 Thus, whether 
2
increases or decreases with  depends

critically upon the importance of the additional regressor. If the additional
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regressor is significantly explaining the variation of  , then 2 will increase a

lot, and the indirect effect will dominate the direct effect, ending up with an

increase in 
2
. However, if the additional variable is a garbage variable, 2

will only increase by a small amount. Hence, the direct effect dominates the

indirect effect, ending up with a decrease in 
2
. In light of this, we normally

use 
2
to compare models.

Example 1: The more the number of explanatory variables, the higher

the adjusted 2. True/False/Uncertain. Explain.

Solution: False

By definition,


2
= 1−  − 1

 −  − 1
¡
1−2

¢


Differentiate both sides with respect to , we have


2


= − ( − 1)

∙
1

( −  − 1)2
¡
1−2

¢− 1

 −  − 1
2



¸
=

 − 1
 −  − 1

∙
2


− 1−2

 −  − 1
¸


Thus,


2





=



0 ⇒ 2





=



1−2

 −  − 1 
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5.2 Simple Hypothesis Testing

If we are just interesting in one of the coefficients in the multiple regression

model, the t-test is performed as usual, the degrees of freedom are  −−1.
For any  = 0 1 2  , we test:

0 :  = 0

1 :  6= 0

We define

 =
bb³b´b ( = 0 1  ) are obtained by solving the  + 1 normal equations.

b³b´ =

qb2+1+1
b2 =

P
=1

b2
 −  − 1b =  − b0 − b11 − b22 − − b

+1+1 is the (+ 1 + 1)

element of the matrix ( 0)−1.

 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 11 21 · · · 1

1 12 22 2

...
. . .

...

1 1 2 · · · 

⎞⎟⎟⎟⎟⎟⎟⎠
We reject the null at the significance level  if || 

¯̄

2
−−1

¯̄
.
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Example 1: Consider the following data

 = 1  = 2  = 3  = 4

1 3 1 2 0

2 1 2 3 4

 2 1 4 5

 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 11 21

1 12 22

1 13 23

1 14 24

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 3 1

1 1 2

1 2 3

1 0 4

⎞⎟⎟⎟⎟⎟⎟⎠

 0 =

⎛⎜⎜⎜⎝
1 1 1 1

3 1 2 0

1 2 3 4

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
1 3 1

1 1 2

1 2 3

1 0 4

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
4 6 10

6 14 11

10 11 30

⎞⎟⎟⎟⎠

( 0)−1 =

⎛⎜⎜⎜⎝
4 6 10

6 14 11

10 11 30

⎞⎟⎟⎟⎠
−1

=

⎛⎜⎜⎜⎝
299
36

−35
18
−37
18

−35
18

5
9

4
9

−37
18

4
9

5
9

⎞⎟⎟⎟⎠
:

11 =
299

36
 22 =

5

9
 33 =

5

9


5.3 Joint Hypothesis Testing

Sometimes, we are interested in testing the significance of a set of coefficients.

For example,

0 : 2 = 3 = 4 = 0
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i.e., we would like to test whether all the 23 and 4 are garbage

regressors.

Be careful when you write down the alternative hypothesis 1 Most

students make mistakes here. Remember 0 ∪ 1 =  where  is the

sample space. Thus, 1 must be the complement of the statement 0 Some

of you may write down 1 : 2 = 3 = 4 6= 0 or 1 : 2 6= 3 6= 4 6= 0,
which are inappropriate, as those statements are not the complements of 0

The correct statement should be

1: at least one of the 2 3 4 is not equal to zero.

Sometimes, we are interested in the linear relationship among 0 rather

than testing if the 0 equal some prespecified values. For instance, we may

want to test

0 : 2 = 3 = 4

1 : 2 3 and 4 are not all the same.

or

0 : 2 = 23

1 : 2 6= 23

In all the aforementioned situations, the t-test is no longer appropriate,

as the hypothesis involves more than one . We use the F-test in these cases.

The idea behind the F-test is as follows:

We run two regressions, one is the unrestricted model:

 = 0 + 11 + 22 + +  + 
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We obtain the unrestricted error sum of squares from this model, called

 

Another type is the restricted model, where we impose the restriction of

0 on the model. For example, if 0 : 2 = 3 = 4 = 0, then our restricted

model is:

 = 0 + 11 + 54 + +  + 

We obtain the restricted error sum of squares from this model, and call

it  (Note that  ≥   why?)

If 0 is true, the estimates of 2 3, and 4 in the unrestricted model will

converge to zero, and there will be no difference between the restricted and

unrestricted models. Thus, their error sum of squares should be the same

when the sample size is very large.

If 0 is false, then at least one of the 2 3 4 is not equal to zero, and

 6=  as a result. We can therefore construct a test statistic based

on the difference between  and  . We define

 =
( −)  ( − )



where  and  are the degrees of freedom for the restricted and un-

restricted model respectively.

If 0 is true,  − will be very small. This implies  will be

small if 0 is true. But how small is small? We have to find a critical value.

Now at a given value of , find out the critical −value at  = ( −
  ) from the F-table. If the observed F-value is bigger than the critical

−value, we reject 0 at  level of significance.

Example 2: Consider the following demand function for chicken.
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ln = 0 + 1 ln1 + 2 ln2 + 3 ln3 + 4 ln4 + 

Suppose we run an OLS and obtain

dln = 21898
(01557)

+ 03425
(00833)

ln1 − 05046
(01109)

ln2 + 01485
(00997)

ln3 + 00997
(01007)

ln4

2 = 09823

 = 1 2  30

where

=per capita consumption of chicken (lbs)

1=real disposable per capita income ($)

2=real retail price of chicken per lb (cents)

3=real retail price of pork per lb (cents)

4=real retail price of beef per lb (cents)

and the figures in the parentheses are the estimated standard errors.

(a) Interpret each of the above coefficient estimates Perform the t-test

for 0 :  = 0 v.s. 1 :  6= 0,  = 0 1 2 3 4 at  = 5%.

(b) Suppose we want to test the hypothesis that 0 : 3 = 4 = 0. What

is the purpose of testing this hypothesis? Now suppose under 0, we obtain

dln = 20328
(01162)

+ 04515
(00247)

ln1 − 03722
(00635)

ln2

2 = 09801

Perform an F-test for 0 : 3 = 4 = 0 at  = 5%
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Solution: Given

ln = 0 + 1 ln1 + 2 ln2 + 3 ln3 + 4 ln4 + .

(a)

 =
 ln

 ln

=
 ln









 ln
=









= elasticity of  with respect to  for  = 1 2 3 4

Thus,

b1 = estimated elasticity of per capita consumption w.r.t. disposable

per capita income (income elasticity)b2 = estimated elasticity of per capita consumption w.r.t. price of chicken

(price elasticity)b3 = estimated elasticity of per capita consumption w.r.t. price of pork

(cross price elasticity)b4 = estimated elasticity of per capita consumption w.r.t. price of beef

(cross price elasticity)

exp
³b0´ = estimated autonomous amount of per capita consumption when

1, 2, 3 and 4 equal one.

To test the hypotheses 0 :  = 0 for  = 0 1 2 3 4, we find out

the critical value of the -statistic at 5% level of significance with degree of

freedom (30− 5) = 25.

 = 2060.
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The calculated -statistics are

When  = 0  =
b0b³b0´ =

21898

01557
= 1406. 0 is rejected.

When  = 1  =
b1b³b1´ =

03425

00833
= 411. 0 is rejected.

When  = 2  =
b2b³b2´ =

05046

01109
= 455. 0 is rejected.

When  = 3  =
b3b³b3´ =

01485

00997
= 149. 0 cannot be rejected.

When  = 4  =
b4b³b4´ =

00997

01007
= 099. 0 cannot be rejected.

(b) The purpose of testing hypothesis 0 : 3 = 4 = 0 is to test the

relevance of the variables 3 and 4. If the hypothesis cannot be rejected,

this implies that we do not need to introduce the variables 3 and 4 into

the model.

Note that 2 = 1− 


. Then,

 =
( −)  ( − )

  

=
[ (1−2)−  (1−2)]  ( − )

 (1−2)  

=
(2 −2)  ( − )

(1−2)  

=
(09823− 09801)
1− 09823 × 25

27− 25
= 15537

Thus,   005 (2 25) = 339. The hypothesis 0 : 3 = 4 = 0

cannot be rejected at 5% level of significance.
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Exercise 1: A model of deaths due to heart disease is estimated as

follows:

\ = 13968 + 1071 + 338 + 2675 − 413

 = Sample size = 34

 = 4 = Number of explanatory variables excluding the constant term

 =

34X
=1

³
 −\

´2
= 2122


2
= 1− ( −  − 1)

( − 1) = 0672

where

 =Death rate (per million population) due to coronary heart disease

in the U.S. during each of the years 1947-1980.

 =Per capita consumption of cigarettes measured in pounds of to-

bacco.

 = Per capita intake of edible fats and oil, measured in pounds.

 =Per capita consumption of distilled spirits in gallons.

 = Per capita consumption of malted liquor in gallons.

a) Find the value of2, Total Sum of Squares ( =
34P
=1

¡
 − 

¢2
)

and the Regression Sum of Squares () in the above model.

b) Suppose we want to test the joint hypothesis 0 : 1 = 2 = 3 =

4 = 0, and run the restricted model as:

 = 0 + 
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i) Show that the Ordinary Least Squares estimate for 0 is
b0 = ,

where  =

34P
=1



34


ii) Show that \ =  for all  = 1 2  34 What is the value of

the restricted error sum of squares  =
34P
=1

³
 −\

´2
?

iii) Perform an F test on 0 : 1 = 2 = 3 = 4 = 0 at  = 5% using

the F-statistic defined as  =
( −)  ( − )


.

5.4 The Trivariate Model

Consider the following model

 = 0 + 11 + 22 + 

Our objective is to

Min
012

X
=1

( − 0 − 11 − 22)
2


The first-order conditions are:


P
=1

( − 0 − 11 − 22)
2

0
= −2

X
=1

( − 0 − 11 − 22) = 0


P
=1

( − 0 − 11 − 22)
2

1
= −2

X
=1

( − 0 − 11 − 22)1 = 0


P
=1

( − 0 − 11 − 22)
2

2
= −2

X
=1

( − 0 − 11 − 22)2 = 0
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Solving these three normal equations gives the Least Squares Estimators:

b1 =
122 − 212

1122 − 212


b2 = 211 − 112

1122 − 212


b0 =  − b11 − b22

where

1 =

X
=1

¡
1 −1

¢ ¡
 − 

¢


2 =

X
=1

¡
2 −2

¢ ¡
 − 

¢


11 =

X
=1

¡
1 −1

¢2


22 =

X
=1

¡
2 −2

¢2


12 =

X
=1

¡
1 −1

¢ ¡
2 −2

¢


Exercise 2: Suppose we have 4 observations of a trivariate model.

 = 1  = 2  = 3  = 4

1 3 1 2 0

2 1 2 3 4

 2 1 4 5



104 CHAPTER 5. MULTIPLE REGRESSION

a) Find 1 2 11 22 12;

b) Find b0, b1, b2;
c) Find b =  − b0 − b11 − b22for  = 1 2 3 4;

d) Find b2 =
P
=1

b2
 −  − 1;

e) Find b³b´ for  = 0 1 2;
f) Test

0 :  = 0

1 :  6= 0

for  = 0 1 2

Exercise 3: Show that in a trivariate model, the  estimates b2, b1,
and b0 are unbiased.

Exercise 4: Consider the model:

 = 0 + 1 + 2 + 

 = 1 2  19.

where

 is the price of house  (thousands of dollars)

 is the living areas of house . (square feet)

 is the number of bedrooms in house 

Suppose we estimate the model and get
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\ = 1422
(153)

+ 0313
(673)

 + 439
(2545)



 = Sample size = 19

 = 2 = Number of explanatory variables excluding the constant term,

 =

19X
=1

³
 − \

´2
= 1332 = Error Sum of Squares,


2
= 1− ( −  − 1)

( − 1) = 075

and the figures in the parentheses are t-ratios.

a) Interpret each of the above coefficient estimates

b) Perform the t-test for 0 :  = 0 vs. 1 :  6= 0,  = 0 1 2 at

 = 5%.

c) Find the value of2, Total Sum of Squares ( =
19P
=1

¡
 − 

¢2
)

and the Regression Sum of Squares ( = −) in the above model.

d) Suppose we want to test the joint hypothesis 0 : 1 = 2 = 0, and

run the restricted model as:

 = 0 + 

i) Show that the Ordinary Least Squares estimate for 0 is
b0 =  =

19P
=1



19


ii) Show that \ =  for all  = 1 2  19What is the value

of the restricted error sum of squares  =
19P
=1

³
 − \

´2
?

(3 points)

iii) Perform an F test on0 : 1 = 2 = 0 at  = 5% using the F-statistic

defined as  =
( −)  ( − )


.
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5.5 Inclusion of an Irrelevant Variable

Suppose the true model is a bivariate model

 = 0 + 11 + 

But we estimate a trivariate model

 = 0 + 11 + 22 + 

Are the OLS estimators still unbiased? The answer is yes. To see why,

recall how we estimate a trivariate model

b1 = 122 − 212

1122 − 212

where

1 =

X
=1

¡
1 −1

¢


=

X
=1

¡
1 −1

¢
(0 + 11 + )

= 1

X
=1

¡
1 −1

¢
1 +

X
=1

¡
1 −1

¢


= 111 +

X
=1

¡
1 −1

¢


(note that we always plug in the true )

Thus
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 (1) = 111

Similarly,

 (2) = 112

Thus


³b1´ =  (1)22 − (2)12

1122 − 212
= 1


³b2´ =  (2)11 − (1)12

1122 − 212
= 0


³b0´ = 

¡

¢−

³b1´1 −
³b2´2

= 
¡
0 + 11 + 

¢− 11 − 0
= 0

Thus all the estimators are unbiased. The reason why the inclusion of an

irrelevant variable does no harm (except we have one less degrees of freedom)

is that all of the information in the true model are included in the estimated

model.

Exercise 4: If the true model is a bivariate model, but we estimate a

trivariate model. If 2 = 0, then 1 will be over-estimated. True/False/Uncertain.

Explain.

5.6 Exclusion of a Pertinent Variable

Suppose the true model is a trivariate model
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 = 0 + 11 + 22 + 

However, we estimate a bivariate model

 = 0 + 11 + 

The OLS estimators are biased now. To see why, recall how we estimate

a bivariate model, b1 = 1

11


where

1 =

X
=1

¡
1 −1

¢


=

X
=1

¡
1 −1

¢
(0 + 11 + 22 + )

= 1

X
=1

¡
1 −1

¢
1 + 2

X
=1

¡
1 −1

¢
2 +

X
=1

¡
1 −1

¢


= 111 + 212 +

X
=1

¡
1 −1

¢


 (1) = 111 + 212


³b1´ =  (1)

11
= 1 + 2

12

11
6= 1

in general.

Therefore, all of the estimators are biased in general. Excluding a relevant

variable is a serious problem as far as unbiasedness is concerned. The reason

why we cannot obtain unbiased estimator is because we lack some information

in the true model.
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5.7 Retrieving the Trivariate Estimates from

Bivariate Estimates

In the past when computers were not available, estimating a trivariate model

was a nightmare for researchers, but estimating a bivariate model is relatively

easier. As such, people used to retrieve the trivariate estimates from several

bivariate models. Note that:

b1 = 122 − 212

1122 − 212
=

1
11
− 2

22

12
11

1− 212
1122

=
b1 − b2b21
1− 212

b2 = 211 − 112

1122 − 212
=

2
22
− 1

11

12
22

1− 212
1122

=
b2 − b1b12
1− 212

whereb1 is the  slope estimate when we regress  on one and 1,b2 is the  slope estimate when we regress  on one and 2,b12 is the  slope estimate when we regress 1 on one and 2,b21 is the  slope estimate when we regress 2 on one and 1,

212 is the 
2 when regressing 1 on an intercept and 2.

Example 3: Given the data (1 2 ),  = 1 2   , suppose we run

a regression of 1 on 2, and obtain the following results:

b1 = 1 + 082 2 = 064

and we know 2 = 30 Now suppose we run a regression of 2 on 1,

and obtain the following results:

b2 = + 1 2 = 



110 CHAPTER 5. MULTIPLE REGRESSION

Now suppose we run a regression of  on 1, and obtain the following

results:

b = 2 + 061 2 = 08

Now suppose we run a regression of  on 2, and obtain the following

results:

b = +2 2 = 07

Now suppose we run a regression of  on 2, and obtain the following

results:

b = + 1 + 2

Find the values of      and 

Solution: Regression of 2 on 1 yields

e2 =  =

³P

=1

¡
1 −1

¢ ¡
2 −2

¢´2
P

=1

¡
1 −1

¢2P

=1

¡
2 −2

¢2
Regression of 1 on 2 yields

2 =

³P

=1

¡
1 −1

¢ ¡
2 −2

¢´2
P

=1

¡
1 −1

¢2P

=1

¡
2 −2

¢2 = 064
Thus,

 = 064.

Also,
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2 =

P

=1

¡
1 −1

¢ ¡
2 −2

¢P

=1

¡
1 −1

¢2 ×
P

=1

¡
1 −1

¢ ¡
2 −2

¢P

=1

¡
2 −2

¢2
064 = (08) 

⇒  = 08.

Since 1 = 1 + 082 = 25 and 2 = + 1

30 = + (08) (25)

⇒  = 10.

As we know  = 2 + 061 = 17 and  = +2,

17 = + 30

⇒  = −13.

On the other hand, b = + 1 + 2

 =
06− (1) (08)
1− 064

= − 1
18
.

 =
1− (06) (08)
1− 064

=
13

9
.

 =  − 1 − 2

= 17−
µ
− 1
18

¶
(25)−

µ
13

9

¶
(30)

= −2494.
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Exercise 5: Go to the following webpage:

http://osc.universityofcalifornia.edu/journals/journals_a.html.

Let

=List Price;

1=Impact factor.

2=Online uses.

Skip the journals without data. For all the journals (A-Z) with data

i) Run the following regression model

 = 0 + 11 + 12 + 

Find the values of b0, b1 b2 What is the meaning of b0 in this case?
Interpret b1 and b2
ii) Test 0 : 1 = 0 against 1 : 1 6= 0 at  = 005 Is the journal list

price affected by the impact factor and/or the online uses?

iii) Compare your results with those from the simple regressions in the

previous chapter. What are the differences. Can the results in this section

be applied to extract the trivariate estimates? Why or why not? If not, fix

the problem and show that the results apply.

5.8 Multicollinearity

Multicollinearity, introduced by Ragnar Frisch in his book “Statistical Con-

fluence Analysis by Means of Complete Regression Systems,” published in
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1934, nowadays refers to situations where two or more regressors are lin-

early related, so that it is difficult to disentangle their separate effects on the

dependent variable.

As we have mentioned before, in a trivariate model, if the two regressors

are orthogonal to each other, in the sense that 12 = 0, then the OLS estimateb1 will be the same in both the bivariate and trivariate models. Thus an
additional regressor will be of no impact on the original slope estimates as

long as it is orthogonal to all the existing regressors. However, if we add a

new regressor which is not totally orthogonal to all the existing regressors,

then some distortions on the estimates are unavoidable. In extreme cases,

when the new regressor is perfectly linearly related to one or more of the

existing regressors, the new model is not estimable. We call this problem the

Perfect Collinearity.

To show the problem more explicitly, consider the following model:

 = 0 + 11 + 22 + 

If 2 = 21 the model is reduced to

 = 0 + (1 + 22)1 + 

Thus it is a simple regression model, and we can obtain the OLS estima-

tors b0 and \1 + 22. However, we cannot obtain estimates for 1 and 2,

which means the original trivariate model is not estimable.

Let 212 =
12

1122
. As long as 212 = 1, the trivariate model is not estimable,

since

b1 = 122 − 212

1122 − 212
=

122 − 212

1122 (1− 212)
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b2 = 211 − 112

1122 − 212
=

211 − 112

1122 (1− 212)

are undefined.

In general, if our model is

 = 0 + 11 + 22 + +  + 

The model is not estimable if there are constants 0 1 2   (at least

some of them are non-zero) such that for all ,

0 + 11 + 22 + +  = 0

5.9 Consequences of near or highMulticollinear-

ity

Recall that if the assumptions of the classical model are satisfied, the OLS

estimators of the regression estimators are BLUE. The existence of multi-

collinearity does not violate any one of the classical assumptions, so if the

model is still estimable, the OLS estimator will still be consistent, efficient,

linear, and unbiased. So why do we care about multicollinearity? Although

multicollinearity does not affect the estimation, it will affect the

hypothesis testing.

1: Large Variances of OLS Estimators

Consider the trivariate model

 = 0 + 11 + 22 + 
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³b1´ =  

µ
122 − 212

1122 − 212

¶
=  

µ
122 − 212

1122 (1− 212)

¶
= 1

[1122(1−212)]
2  (122 − 212)

= 1

[1122(1−212)]
2 (  (122) +   (212)− 2 (122 212))

= 1

[1122(1−212)]
2 (

2
2211

2 + 21222
2 − 21222 (1 2))

= 1

[1122(1−212)]
2 (

2
2211

2 + 21222
2 − 2212222)

= 1

[1122(1−212)]
211

2
22 (1− 212)

2 =
2

11 (1− 212)


Similarly, it can be shown that

 
³b2´ = 2

22 (1− 212)


Thus, the variances of the estimators increase as the relationship between

regressors increase. In extreme cases, they explode when there is perfect

multicollinearity.

2: Wider Confidence Intervals

Because of the large standard errors, the confidence intervals for the rel-

evant population parameters tend to be larger. Therefore, in cases of high

multicollinearity, the chance of accepting the null hypothesis increases, hence

Type II error (Accept0 when0 is false) increases. Even if the explanatory

variable does individually explain the dependent variable well, we may still

tend to conclude that each of them is not significant if there is multicollinear-

ity.

3: Insignificant t Ratio

Recall that the t statistic for the hypothesis 0 :  = 0 ( = 0 1 2  )

is
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 =
brd  ³b2´

In cases of high collinearity, the estimated standard errors increase dra-

matically, thereby making the t values smaller for any given values of b.
Therefore, one will over-accept the null that  = 0

5.10 Detection of Multicollinearity

Multicollinearity is a question of degree, not of kind. Therefore, we do not

test for the presence of multicollinearity, but instead we measure its degree

in any particular sample.

Since multicollinearity refers to the condition of the explanatory variables

that are assumed to be nonstochastic, it is essentially a sample phenomenon,

arising out of the largely nonexperimental data collected in most social sci-

ences, we do not have one unique method of detecting it or measuring its

strength.

Our rule of thumb is that, if we run a regression and find a High R2

but few significant t Ratios, then this is a sign of multicollinearity. If

2 is high, the F test in most cases will reject the hypothesis that the slope

coefficients are zero simultaneously. However, very few or even none of the

individual t tests will be significant.

Other symptoms of multicollinearity include: (1) Small changes in the

data can produce wide swings in the parameter estimates, and (2) Coefficients

will have the wrong sign or an implausible magnitude.
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5.11 Remedial Measures

What can be done if multicollinearity is serious? The following methods can

be tried.

1. A priori information

Suppose we consider the model

 = 0 + 11 + 22 + 

Suppose a priori we believe or economic theory suggests that 1 = 22,

then we can run the following regression,

 = 0 + 221 + 22 + 

 = 0 + 2 + 

where  = 21 +2. Once we obtain b2, we can define b1 = 2b2.
2. Using first differences or ratios

Suppose we have

 = 0 + 11 + 22 + 

where 1 and 2 are highly collinear. To reduce the degree of collinear-

ity, we can still estimate 1 and 2 by the “first difference” model, i.e. we

estimate

 − −1 = 1
¡
1 −1(−1)

¢
+ 2

¡
2 −2(−1)

¢
+ ( − −1)
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Although the first difference model may reduce the severity of multi-

collinearity, it creates some additional problems. In the transformed model,

the new error terms ( − −1) is not serially independent as ( − −1 −1 − −2) =

−  (−1) = −2 6= 0. We will discuss the problem of serial correlation

later. Here, we alleviate multicollinearity at the expense of violating one of

the classical assumptions “serial independence”, this implies that the Gauss-

Markov theorem will not hold anymore, and the OLS estimators are not

BLUE in the “first difference” model. Further, since the new observations

become { − −1}=2, there is a loss of one observation due to the differenc-
ing procedure, and therefore the degrees of freedom are reduced by one.

The problem is similar if we use ratios and estimate an equation of the

form



2

= 2 + 0
1

2

+ 1
1

2

+


2

Now the new residuals will be heteroskedastic.

3. Dropping a variable(s)

When faced with severe multicollinearity, the simplest thing to do is to

drop one of the collinear variables. However, we may commit a specification

error if a variable is dropped from the model. While multicollinearity may

prevent precise estimation of the parameters of the model, omitting a variable

may make the estimators inconsistent.

4. Increasing the sample size

Since multicollinearity is a sample feature, it is possible that in another

sample the problem may not be as serious as in the first sample. Sometimes

simply increasing the sample size may attenuate the problem, for example,
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in the trivariate model, we have

 
³b1´ = 2

11 (1− 212)
and  

³b2´ = 2

22 (1− 212)
since 11 and

22 increase as the sample size increases, hence  
³b1´ and   ³b2´ will

decline as a result.

5. Benign Neglect

If we are less interested in interpreting individual coefficients but more

interested in forecasting, multicollinearity is not a serious problem. We can

simply ignore it.
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Chapter 6

Dummy Variables

6.1 Introduction

If a variable is useful in a regression but is not quantifiable, how do we make

it a feasible regressor? For example, variables such as gender, race, religion,

political background, season and so on are not quantifiable. Consider a simple

example. Suppose the wage of a person depends on his/her educational level

and gender, we write

 = 0 + 1 + 2 + 

Now suppose we define

 = 1 if person t is a man,

and

 = 0 if person t is a woman.

Then, what is the meaning of 2? You may consider 2 as the amount of

121
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wage increases if  is increased by 1 unit, holding  constant. In

other words, 2 is by how much more a man is paid over a woman.

Thus, testing0 : 2 = 0 is testing whether there is sexual discrimination

on workers’ compensation.

Theoretically, there is no reason to index male by 1, and female by 0, one

can do it the other way around. We do not even need to use 1 and 0, we

may pick −1 and 4, or 989 and −108677675, any two numbers you want.
The reason why we use the zero-one combination is totally based on practical

consideration, as 2 can be easily interpreted in this setting.

Suppose we split people into two groups by their gender, then the wage

model for men is:

 = (0 + 2) + 1 + 

and the wage model for women is:

 = 0 + 1 + 

After plotting the two regression lines, you will see that one line is parallel

to the other, which line is higher depends on the sign of 2. If 2  0

the wage of men will generally be higher than that of women of the same

education level.

Without using dummy variables, we have to run two regressions. By

using them, we only need to run one regression, and we can still distinguish

the different features between subgroups.

Example 1: Consider a wage model:

Model A:

 = 0 + 1 + 2 + 



6.1. INTRODUCTION 123

 = 1 2  40.

where

 is the wage of individual  (dollars).

 is the years of education of individual .

 is the gender of individual , which defined to be 1 if the individual

is a male, and 0 otherwise.

(a) What is the purpose of including  in the model?

(b) Suppose there 20 men and 20 women in the sample, and the average

education for all people in the sample is 10 years. Suppose we run OLS on

model A and obtain

\ = 5 + 15 + 10

Now suppose we run the model on all the observations without ,

and obtain

\ = 5 + b1

Find the value of b1
Solution:

(a) To differentiate the effect of gender on wage income.

(b) Since  = 10 and  =
20

40
=
1

2
,

 = 5 + (15) (10) + (10)

µ
1

2

¶
= 25



124 CHAPTER 6. DUMMY VARIABLES

 = 5 + b1 (10)
b1 =

25− 5
10

= 2.

6.2 Slope Dummy

Thus far, we have only considered the intercept dummy, i.e. allowing the

intercept of the regression lines to be different for different categories, but

their slopes are the same. Suppose the value of an additional year of edu-

cation differs between men and women, how do we reformulate the model

to capture this feature? We add an interaction term  into the

model, where

 =  × 

Now we have

 = 0 + 1 + 2 + 3 + 

Then the model for male will be

 = (0 + 2) + (1 + 3) + 

and the model for female is

 = 0 + 1 + 

Now testing 0 : 3 = 0 is testing the gender equality of marginal effect

of education on wage.
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Exercise 1: Consider a wage model:

Model A:

 = 0 + 1 + 2 + 3 + 

 = 1 2  40.

where

 is the wage of individual  (dollars).

 is the years of education of individual .

 is the gender of individual , which defined to be 1 if the individual

is a male, and 0 otherwise.

 =  × 

(a) What is the purpose of including  and  in the model?

(b) Suppose there 20 men and 20 women with the average education of

10 years in the sample, while the average education for all men is 8 years.

Suppose we run OLS on model A and obtain

\ = 5 + 15 + 10 + 2

Now suppose we run the model on all the observations without  and

, and obtain

\ = 5 + b1

Find the value of b1
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6.3 Seasonal Dummy

Some products like ice-cream, swimming suits, air-conditioners, and clothes

are highly seasonally dependent. However, we do not need to run four re-

gressions to tell the difference on sales between seasons. We can create three

dummy variables:

 = 1 if the season is spring, and = 0 otherwise;

 = 1 if the season is summer, and = 0 otherwise;

 = 1 if the season is fall, and = 0 otherwise.

The model is:

 = 0+1+2+3+4+

Now, to interpret 2 3 and 4 and to obtain some additional insight,

let us look at the individual models.

The model for Spring is

 = (0 + 2) + 1 + 

The model for Summer is

 = (0 + 3) + 1 + 

The model for Fall is

 = (0 + 4) + 1 + 

The model for Winter is
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 = 0 + 1 + 

Now, it is clear that 2 is by how much the sales in the spring are higher

than those in the winter, if the prices are the same. Similar interpretations

hold for 3 and 4. All the first three models are compared to the winter

model (the control group).

One may wonder why we do not run the following model:

 = 0 + 1 + 2 + 

where

 = 1 if Spring;

 = 2 if Summer;

 = 3 if Fall;

 = 4 if Winter.

The reason is that if you do so, the model will imply:

For Spring,

 = (0 + 2) + 1 + 

For Summer,

 = (0 + 22) + 1 + 

For Fall,

 = (0 + 32) + 1 + 

For Winter,
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 = (0 + 42) + 1 + 

Which means for any given price, either

       if 2  0

or

       if 2  0

or

 =  =  =  if 2 = 0

This is not very realistic, as there is no reason to presume that 

are either increasing or declining for the four consecutive seasons. Not only

are we presuming their  are in order, but we are also restricting the

increment of jump in  (2) to be the same between each consecutive

season.

6.4 Dummy Variable Trap

One may ask why we do not create two dummy variables in the gender case

and four in the season case. The problem is perfect collinearity.

If we define  = 1 if the person is a male and zero otherwise, and

define  = 1 if the person is a female, and zero otherwise, and run

 = 0 + 1 + 2 + 3 + 
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then by definition+ = 1, and there is perfect collinear-

ity between regressors, and the model is not estimable since

 = 0 + 1 + 2 + 3(1−) + 

 = (0 + 3) + 1 + (2 − 3) + 

which means we cannot solve all the 0 individually.

Thus, we usually use  − 1 dummy variables, where  is the number of

categories. In the gender case,  = 2, so we use one dummy. In the season’s

case,  = 4, so we use three dummy variables.

If one is not happy with using  − 1 dummy and want to use  dummy,

he/she may avoid the dummy variable trap by dropping the intercept term.

i.e. we run

 = 1 + 2 + 3 + 

 = 1 + 2 + 3(1−) + 

 = 3 + 1 + (2 − 3) + 

Thus, running a regression of wage on ,, and ,

without an intercept is equivalent to regressing  on an intercept,

, and .

Therefore, we can obtain the estimates b3, b1, and \2 − 3

If we define b2 = \2 − 3 +
b3, then all the three 0 can be retrieved.
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Exercise 2: Suppose the model is

  :  = 1 + 2 + 

where 0      ∼ (0 2)  = 1 2  

1 = 1 for  ≤ ;

1 = 0 for   ;

2 = 0 for  ≤ ;

2 = 1 for   

(a) Is the model estimable? Why or why not?

(b) For any given , with 0     , derive the  estimators b ()
and b (), and show that they are unbiased estimators for  and 

(c) Which of the following models are estimable? Explain.

  :  =  + 1 + 

  :  =  + 1 + 2 + 

  :  = 1 + 2 + 12 + 

  :  = 1 + 2 + 
2
1 + 

(d) Suppose the true model is
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  :  = 11 + 22 + 33 + 

where 0  1  2    ∼ (0 2)

1 = 1 for 0   ≤ 1 and = 0 otherwise;

2 = 1 for 1   ≤ 2 and = 0 otherwise;

3 = 1 for   2 and = 0 otherwise.

However, we misspecify the model and estimate Find
³b ()´

and 
³b ()´ for the following cases:

i) 0   ≤ 1;

ii) 1   ≤ 2;

iii) 2   ≤ 

(e) Suppose we know the values of . Suppose we estimate Model A and

obtain

b = 101 + 52
Now instead of using a 0-1 dummy, we use a 1-2 dummy defined as follows:

∗1 = 1 for  ≤ 

∗1 = 2 for   

∗2 = 2 for  ≤ 

∗2 = 1 for   

and obtain

b = b + b∗2
Find b and b.
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Exercise 3: True/False.

(a) When we regress a variable  on an intercept only, the 
2
will be

negative.

(b) When dummy variables are used, OLS estimators are biased only in

large sample.

Exercise 4: Consider the following model

 = 0 + 1 + 

where both  and  are zero-one dummy variable, how will the follow-

ings affect the values of b0, b1, t-ratio of b0, t-ratio of b1, and 2 of the

model:

a)  is redefined from zero-one to zero-two.

b)  is redefined from zero-one to five-ten.

c)  is redefined from zero-one to two-zero.

d)  is redefined from zero-one to two-zero and  is redefined from

zero-one to zero-two.

e) the sample size  increases.

Exercise 5: Go to the following webpage:

http://osc.universityofcalifornia.edu/journals/journals_a.html.

Let
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=List Price;

∆=average annual increase in price (for the unobserved value, let the

price increase be zero)

1=Impact factor.

2=Online uses.

Define =dummy variable for publisher i (i=Elsevier,Kluwer,...), except

Blackwell, which serves as a control dummy.

i) Construct an excel data file, delete the journals without  , 1 or 2

data, as well as the extreme data of ∆ that seem to be unreasonably large.

ii) For all the journals (A-Z) with data, run the following regression mod-

els

 = 0 + 11 + 22 +
X

 + 

∆ = 0 + 11 + 22 + 3 +
X

 + 

and

1 = 0 + 1 + 22 + 3 +
X

 + 

iii) For each of the above models, delete the insignificant variables one at

a time and report the model with the highest adjusted R square.
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Chapter 7

Heteroskedasticity

7.1 Introduction

Recall that in the OLS estimation, we have an assumption that   () = 2

for all , which means the errors have the same variance. This is the ho-

moskedasticity assumption. Why do we need this assumption? What is the

problem of relaxing it? In fact, this assumption may be quite unrealistic.

Consider the consumption model:  = 0 + 1 + , where  is the con-

sumption of individual ,  is the income of individual , 0 can be defined as

the autonomous spending, and 1 can be treated as the marginal propensity

to consume. It is quite possible that the fluctuation of consumption may be

higher for higher-income group, i.e,.   () may be an increasing function

of , say,  () =  = 2 or = 2 2
 , etc. Also,   () may not

depend on  but depend on another variable  This problem is called het-

eroskedasticity, meaning that the variance of errors is not a constant. We

will study the consequences of heteroskedasticity, the remedies for it and the

test for its existence.

135
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7.2 The Consequences of Ignoring Heteroskedas-

ticity

Amajor consequence heteroskedasticity is that the OLS estimators for 0 and

1 will be inefficient. Also, the estimated variances of regression coefficients

will be biased and inconsistent, and hence tests of hypothesis are invalid.

Fortunately, the estimates will still be unbiased.

The Unbiasedness of OLS Estimator under Heteroskedasticity

To see the unbiasedness of b0 and b1, it should be noted that

b1 = 1 +

P
=1

¡
 −

¢


P
=1

¡
 −

¢2 

Thus 
³b1´ = 1 as long as  () = 0, so does 

³b0´ = 0 Therefore,

the unbiasedness of the OLS estimators for  does not depend on the variance

of 

Inefficiency of OLS Estimator under Heteroskedasticity

However, the OLS estimators will be inefficient since there exists another

linear unbiased estimator which has a smaller variance. To see this, consider

the model

 = 0 + 1 + 

with   () = 2 
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Recall that the OLS b1 = 
=1
(−)


=1
(−)2

=
P
=1

, where  =
−


=1
(−)2

,

we will show that this  does not minimize the variance of b1, and will find
another weight  such that the new estimator e1 = P

=1

 is the best linear

unbiased estimator for 1 First, for
e1 to be unbiased, we need


³e1´ = 

Ã
X
=1



!
=

X
=1

 (0 + 1) = 0

X
=1

 + 1

X
=1

 = 1

In other words,

X
=1

 = 0

X
=1

 = 1

The variance of e1 is given by
 

³e1´ =  

Ã
X
=1



!
=  

Ã
X
=1



!
=

X
=1

2
2
 

Our problem is to choose a series of weight  to minimize  
³e1´

subject to
P
=1

 = 0 and
P
=1

 = 1 We apply the Lagrangian multiplier

method. Let

 =

X
=1

2
2
 − 1

Ã
X
=1



!
− 2

Ã
X
=1

 − 1
!


The first-order conditions are




= 2

2
 − 1 − 2 = 0
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for  = 1 2  

and



1
= −

X
=1

 = 0



2
= −

X
=1

 + 1 = 0

The first  equations give

 =
1

22
(1 + 2)

for  = 1 2  

Adding up all the  gives

X
=1

 =

X
=1

1

22
(1 + 2) = 0

Adding up all the  gives

X
=1

 =

X
=1

1

22

¡
1 + 2

2


¢
= 1

Solving the two equations above gives

1 =

−2
P
=1

−2 

P
=1

−2
P
=1

−2 2
 −

µ
P
=1

−2 

¶2 

2 =

2
P
=1

−2

P
=1

−2
P
=1

−2 2
 −

µ
P
=1

−2 

¶2 
Plugging the solutions for 1 and 2 back into the equations for ,  =

1 2   , we obtain
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 =

−−2
P
=1

−2  + −2 

P
=1

−2

P
=1

−2
P
=1

−2 2
 −

µ
P
=1

−2 

¶2 
which is generally different from the OLS weight  unless 

2
 = 2 for all

. Of course we also have to verify the second order condition to make sure

that  is actually minimizing  
³e1´.

Note that if 2 = 2 for all , the  will be reduced to

 =

−
P
=1

 +


P
=1

2
 −

µ
P
=1



¶2 =  −
P
=1

¡
 −

¢2 = 

Now, we know that OLS estimator will be inefficient if there is het-

eroskedasticity, but which estimator is the most efficient one? Of course

the most efficient estimator will be obtained if we rewrite the model such

that the error terms become homoskedastic. How should we do it? Suppose

that our model is

 = 0 + 1 + 

with   () = 22 , where  is a variable independent of , it may or

may not be a function of . If we divide the whole equation by , which

gives





= 0
1



+ 1




+










= 0
1



+ 1




+ 

where
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 =






We claim that  is homoskedastic, to see this, note that

  () =  

µ




¶
=
1

2
  () =

1

2
22 = 2

Thus, the new error term is homoskedastic, and if we apply OLS on

the transformed model, the estimators will be BLUE by the Gauss Markov

Theorem. We call this method the Generalized Least Squares method (GLS)

or the Weighted Least Squares method (WLS).

Example 1: Suppose the model is

 = 0 + 1 +   = 1 2  

Suppose we have three observations, i.e.  = 3

 8 4 0

 9 2 0

then the OLS estimator of 1

b1 =
3P

=1

( − ) 

3P
=1

( − )
2

=
(8− 4) 9 + (4− 4) 2 + (0− 4) 0
(8− 4)2 + (4− 4)2 + (0− 4)2 = 1125

Suppose there is heteroskedasticity of the form   () = 2 where 

is another variable.

If we transform the previous model by dividing all the observations by

√
, the new model becomes
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√

= 0

1√

+ 1

√

+

√



and the variance of the new error term will be a constant since

 

µ
√


¶
=
1


  () =

1


2 = 2

Assume that we observe the values of  and construct the following table:

  
√


√


1√


√


8 9 1 1 8 1 9

4 2 16 4 1
1

4

1

2

0 0 9 3 0
1

3
0

b1 =

3P
=1

√


√


3P
=1

µ
1√


¶2
−

3P
=1

√


1√


3P
=1

1√


√


3P
=1

µ
√


¶2 3P
=1

µ
1√


¶2
−
µ

3P
=1

1√


√


¶2

=

3P
=1





3P
=1

1


−

3P
=1





3P
=1




3P

=1

2


3P
=1

1


−
µ

3P
=1





¶2
6= b1

Example 2: Suppose the model is

 = 0 + 1 +   = 1 2  

Suppose we have three observations, i.e.  = 3

 1 2 3

 2 3 4
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b1 =
3P

=1

( − ) 

3P
=1

( − )
2

=
(1− 2) 2 + (2− 2) 3 + (3− 2) 4
(1− 2)2 + (2− 2)2 + (3− 2)2 = 1

b0 =  − b0 = 3− 1 (2) = 1
If there is heteroskedasticity of the form   () = 22 , the new model

will become




= 1 + 0

1


+





and the variance of the new error term will be a constant since

 

µ




¶
=
1

2
  () =

1

2
22 = 2

We can construct the following table:

 
1







1 2 1 2

2 3
1

2

3

2

3 4
1

3

4

3

(1) = (1 + 12 + 13) 3 =
11

18


b0 =
3P

=1

Ã
1


−
µ
1



¶!




3P
=1

Ã
1


−
µ
1



¶!2 =

µ
1− 11

18

¶
2 +

µ
1

2
− 11
18

¶
3

2
+

µ
1

3
− 11
18

¶
4

3µ
1− 11

18

¶2
+

µ
1

2
− 11
18

¶2
+

µ
1

3
− 11
18

¶2 = 1



7.3. TESTING FOR HETEROSKEDASTICITY 143

b1 = ³´− b0
µ
1



¶
=
29

18
− 1

µ
11

18

¶
= 1

Thus, the OLS and GLS estimates are identical in this case.

7.3 Testing for Heteroskedasticity

The Goldfeld-Quandt (G-Q) test

The Goldfeld-Quandt (G-Q) test begins with the idea that the variance

can be related monotonically to a variable . Therefore, if we sort our data

by values of  so that  = 1 corresponds to the smallest value of  while  is

the largest, it follows that 2 should increase monotonically with . Thus, we

need to determine whether 2 is larger for large  than for small . The G-Q

test is a good test for heteroskedasticity, but it does have a few problems.

First, for the test to work well, one must be able to order the 2  This may

be presumptuous since we know so little about heteroskedasticity, though.

Second, it relies upon one being able to create a sample in which there is a

difference between the first and the second part. For example, if there were

11 observations with 2 = 2 +  (− 6)2, then clearly if we split {1  5}
and {6  11} we would obtain the sameP2 in both samples. Hence, even

though there is heteroskedasticity, it does not show up. This is because the

heteroskedasticity is not monotonic in .

The G-Q test is basically an F test, where

0 : 
2
 = 2

1 : 
2
  2

 =
b2b2 = (2 −  − 1)

(1 −  − 1) 
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where  =
1P
=1

b2 and  = P
=−2+1

b2 ,  is the number of regres-
sion coefficients excluding the intercept term.

We divide the sample of  observations into first 1 and the last 2 ob-

servations, and estimate separate regressions for both subsamples. We omit

the middle 1 + 1 through  − 2 observations The number of observations

to be omitted is arbitrary and is usually between one-sixth and one-third of

total observations. Johnston suggests one-third. Of course, 1 and 2 must

be greater than the number of coefficients to be estimated.

If    ∗,where  ∗ is the point on the F-distribution such that the

area to the right is 5%, then reject the null.

Performing the G-Q Test

Suppose the model is

 = 0 + 1 + 

 = 1 2  

Assume that we have ten observations, i.e.  = 10

 1 3 4 2 5 2 1 4 5 3

 0 0 0 0 0 4 2 8 10 6

If there is heteroskedasticity of the form   () = 2, we first arrange

the observations according to increasing values of , i.e.,

 1 1 2 2 3 3 4 4 5 5

 0 2 0 4 0 6 0 8 0 10

Now suppose we drop the middle 2 observations and divide the data into

two groups, the first group is
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 1 1 2 2

 0 2 0 4

b1 =

4P
=1

( − ) 

4P
=1

( − )
2

=
(1− 15) 0 + (1− 15) 2 + (2− 15) 0 + (2− 15) 4
(1− 15)2 + (1− 15)2 + (2− 15)2 + (2− 15)2

= 1

b0 =  − b0 = 15− 1 (15) = 0
thus

b = b0 + b1 = 

The error sum of squares for the first group is

 =

4X
=1

( − b)2 = 4X
=1

( − )
2

= (0− 1)2 + (2− 1)2 + (0− 2)2 + (4− 2)2 = 10

For the second group

 4 4 5 5

 0 8 0 10

b1 =
4P

=1

( − ) 

4P
=1

( − )
2

=
(4− 45) 0 + (4− 45) 8 + (5− 45) 0 + (5− 45) 10
(4− 45)2 + (4− 45)2 + (5− 45)2 + (5− 45)2 = 1
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b0 =  − b0 = 45− 1 (45) = 0
b = b0 + b1 = 

The error sum of squares for the second group is

 =

4X
=1

( − b)2 = 4X
=1

( − )
2
= (0− 4)2+(8− 4)2+(0− 5)2+(10− 5)2 = 82

We would like to test

0: homoskedasticity

1: heteroskedasticity

or

0 : 
2
 = 2

1 : 
2
  2

 =
b2b2 =  (2 −  − 1)

 (1 −  − 1) =
82 (4− 1− 1)
10 (4− 1− 1) = 82

From the F-Table, the critical F-value at 5% level of significance with

d.f. (2,2),  ∗5% (2 2) = 1900 Since    ∗5% (2 2), so we do not reject

0 : 
2
 = 2 at  = 5%. i.e. We cannot conclude that the variance of  is

increasing with 

Breusch-Pagan test(B-P test)

Let the model be

 = 0 + 11 + 22 + +  + 

2 = 0 + 11 + 22 + + 
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where  may include some of the variables of .

We would like to test

0 : 1 = 2 =  =  = 0

Step 1: Estimate the first model above by OLS and compute

b =  − b0 − b11 − b22 − − b

and define

b2 = 1



X
=1

b2 
Step 2: Run another regression

b2b2 = 0 + 11 + 22 + +  + 

Step 3: Breusch and Pagan show that for large samples, under the null

hypothesis

0 : 1 = 2 =  =  = 0

one-half of the regression sum of squares,


2
, follows the Chi-square

distribution with  degrees of freedom. We reject 0 if



2
 2 () 

where  is the level of significance.

White’s Test

The B-P test has been shown to be sensitive to any violation of the

normality assumption. Also, the previous test assumes prior knowledge of
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heteroskedasticity. White (1980) has proposed a direct test for heteroskedas-

ticity that is very closely related to the B-P test. The advantage of White’s

test over the B-P test is that White’s test is not sensitive to the normality as-

sumption and we do not need any prior knowledge of the heteroskedasticity.

Suppose the model is

 = 0 + 11 + 22 + 

2 = 0 + 11 + 22 + 3
2
1 + 4

2
2 + 512

We estimate the first model by OLS, then obtain the estimated residualsb = −b0−b11−b22 and square it. Regress b2 against a constant one,
1 2 

2
1

2
2 and 12. This is the auxiliary regression corresponding

to the second model above. We now calculate the 2 where  is the sample

size, and 2 is the unadjusted -squared from the auxiliary regression. We

reject the null 0 : 1 = 2 = 3 = 4 = 5 = 0 at the significance level 

if 2  25 (),  = 5. The White’s test for models with more than two

variables can be extended easily.

Exercise 1: Consider the model  = 0+ 1+ ,   () = , 

is a 0 − 1 dummy variable. How do we obtain the most efficient estimators
for 0 and 1 under this kind of heteroskedasticity? Be careful that dividing

the whole equation by
√
 may not work as  may be zero.

Exercise 2: Consider a simple linear regression model:  = 0+11+

22 + ,   () = 22
1,  = 1 2   .

i) Are the OLS estimates b0 and b1 still unbiased in the presence of
heteroskedasticity?
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ii) Describe how you can obtain the BLUE estimator in the above model.

Exercise 3: Consider the model

 =  +   = 1 2  

where

 is a single explanatory variable,

 is a scalar parameter,

 () = 0   () = 2 = 2 
2,  ( ) = 0 for all  6= 

a) Describe how we can transform the model and obtain the Best Linear

Unbiased Estimator(BLUE).

b) Under what  is each of the following estimators best linear unbiased?

Explain.

(i) b =
P
=1



P
=1

2


;

(ii) b =
P
=1



P
=1



;

(iii) b = 1



P
=1

µ




¶


c) Let b be the generalized least squares estimator, and b the
ordinary least squares estimator. Suppose 2 = 22

 , show that

(i)  
³b´ = 2

P
=1

4
µ

P
=1

2


¶2 ;
(ii)  

³b´ = 2


;

(iii)  
³b´ ≤  

³b´ 



150 CHAPTER 7. HETEROSKEDASTICITY

d) Consider the model

 = 0 + 11 + 22 +   = 1 2  

If   () = (1 +2)
2
2, is it possible to obtain BLUE estimators

when (i) 0 6= 0, and (ii) 0 = 0? Why or why not?

Exercise 4: Consider the model

 =  +   = 1 2  

where

 () = 0   () = 2 = 2, 0  2  ∞,  ( ) = 0 for all

 6= 

Show that

(i)  
³b´ = 2 ( + 1)

2
and lim→∞  

³b´ = 2

2
 Is b a

consistent estimator for ? If yes, why? If not, why not and what does b
converge to?

(ii)  
³b´ = 2P

=1 
−1 and lim→∞  

³b´ = 0. Is b a
consistent estimator for ? If yes, why? If not, why not and what does b
converge to?

Exercise 5: Consider the following model

 =  + 

 = 1 2  

Suppose we estimate the model by OLS and obtain b = 2 and 2 = 1.
Now suppose there is heteroskedasticity of the form   () = 22 where



7.3. TESTING FOR HETEROSKEDASTICITY 151

 is any variable. If we use GLS to estimate the model, can we say thatb = 2 and 2 in the transformed model also equals one? If yes, prove it.

If not, give a counter example.

Exercise 6: When there is multicollinearity, there is heteroskedasticity.

Exercise 7: When dummy variables are used, OLS estimators are biased

only in large sample.

Exercise 8: Consider the model

 =  +   = 1 2  

where

 is a single explanatory variable;  is a scalar parameter;  () = 0

  () = 2 =
2

2


  ( ) = 0 for all  6=  Find the Best Linear

Unbiased Estimator (BLUE).

Exercise 9: Consider the following model

 = 0 + 1 + 

where both  and  are zero-one dummy variable, how will the follow-

ings affect the values of b0, b1, t-ratio of b0, t-ratio of b1, and 2 of the

model:

a)  is redefined from zero-one to zero-two.

b)  is redefined from zero-one to five-ten.

c)  is redefined from zero-one to two-zero.
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d)  is redefined from zero-one to two-zero and  is redefined from

zero-one to zero-two.

e) the sample size  increases.

Exercise 10: Suppose the model is

 = 0 + 1 + 

 = 1 2  

Assume that we have eight observations, i.e.  = 8

 1 −3 4 −2 −5 2 1 4

 0 0 0 0 0 4 2 8

Suppose there is heteroskedasticity of the form   () = 22 , perform

the Goldfeld-Quandt (−) test without deleting any obseravtion.



Chapter 8

Serial Correlation

8.1 Introduction

In discussing the problem of heteroskedasticity, we have learned that the

estimators are still unbiased but will be inefficient. Inefficiency, however, is

not the most serious problem. The most problematic issue is inconsistency,

which means that the estimator does not converge to the true parameter even

if the sample size goes to infinity. One possible cause for inconsistency is the

misspecification of the model. As discussed previously, if the true model is a

trivariate model, but we estimate a bivariate model, then the OLS estimator

is biased, and is inconsistent too. Another possible cause for inconsistency is

the violation of the assumption of serial independence.

Consider a simple bivariate model

 = 0 + 1 + 

The error term  is said to be serially dependent if  ( ) 6= 0 for
some  6= . Consider a simple case where  is generated by the process

153



154 CHAPTER 8. SERIAL CORRELATION

 = −1 + 

where ||  1 and  ∼  (0 2) 

 ( −1) =  (−1)

=  ((−1 + )−1)

= 
¡
2−1

¢
+ (−1)

= 2

 ( −1) =
 ( −1)p

  ()  (−1)
=

2

2
= 

One can easily show that  ( −) = || for all  and .

Example 1: Consider the model:

 = 0 + 1 + 

 = −2 + 

 = 1 2   , ||  1,  ∼  (0 2) 

Find  ( +) in terms of  and , for  = − 2−1 0 1 2 

Solution: Given that

 = −2 + .

Lead the expression by  periods and we have
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+ = +−2 + +

+ = +−2 + +

 (+) =  (+−2) + (+)

=  (+−2) since  ∼ 

When  is even and  ≥ 0,

 (+) = 2 (+−4)

= 3 (+−6)

= 2
¡
2
¢

= 22.

When  is even and   0,

 (+) =  (+) since  is a stationary process.

= −22

Hence,

 (+) = |2|2

Then,

 (+) =
 (+)

  ()

=
|2|2

2

= |2|.
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Similarly, when  is odd and   0,

 (+) = (−1)2 (+1) .

Now,  (+1) =  (−1)  Since  is a stationary process,  (+1) =

 (−1)  We have

 (+1) (1− ) = 0.

Since ||  1,  (+1) = 0 This result can also be applied to the case
  0 Thus,  (+) = 0 and  (+) = 0 when  is odd.

We will now examine the properties of estimators in the above model.

Recall that

b1 = 1 +

P
=1

¡
 −

¢


P
=1

¡
 −

¢2 

Thus, 
³b1´ = 1 as long as  ( ) = 0 and  () = 0

However, the variance of the estimator is not easy to figure out now.
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³b1´ =  

⎛⎜⎜⎝1 +

P
=1

¡
 −

¢


P
=1

¡
 −

¢2
⎞⎟⎟⎠

=

 

µ
P
=1

¡
 −

¢


¶
µ

P
=1

¡
 −

¢2¶2

=

P
=1

 
¡¡
 −

¢

¢
+

P
=1

P
 6=


¡¡
 −

¢

¡
 −

¢

¢

µ
P
=1

¡
 −

¢2¶2

=
2

P
=1

¡
 −

¢2 +
P
=1

P
 6=

¡
 −

¢ ¡
 −

¢
 ( )µ

P
=1

¡
 −

¢2¶2 

Note very carefully that by saying the OLS estimator is inefficient, we

are not saying the OLS estimator has a larger variance in the case of serial

correlation. We may even obtain a smaller variance as the covariance terms

above may end up with a negative value. The variance of the estimator in the

presence of serial correlation may be bigger or smaller than in the case of serial

independence. The main issue is that even though the OLS estimator has a

smaller variance in the case of serial correlation than the OLS estimator in the

absence of serial correlation, it does not achieve the global minimum. This

result is obvious as the objective Lagrangian function is different. Referring

to the chapter on heteroskedasticity, for a linear estimator
P
=1

 to be the

best unbiased estimator in the presence of serial correlation, we apply the

Lagrangian multiplier method to minimize:
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 = 2
X
=1

2 +
X
6=

 ( )− 1

Ã
X
=1



!
− 2

Ã
X
=1

 − 1
!


Thus, the solution for  will be different from the OLS weight

 =
 −

P
=1

¡
 −

¢2
which minimizes

 = 2
X
=1

2 − 1

Ã
X
=1



!
− 2

Ã
X
=1

 − 1
!


8.2 Cases where b is Inconsistent
The problem becomes more serious when the regressors include the lag of 

Consider the following model:

 = −1 + 

 = −1 + 

where 0 = 0 −1    1, and  ∼  (0 2) 

Now since

b =  +

P
=1

−1

P
=1

 2
−1
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The estimator is inconsistent as the term

P
=1

−1

P
=1

 2
−1

does not converge to

zero, i.e. b does not converge to  even if  goes to infinity. To see this,
 = −1 +  =  (−2 + −1) +  =

X
=0

−

Thus as  →∞

P
=1

−1

P
=1

 2
−1

=

1


P
=1

−1

1


P
=1

 2
−1

→  (−1 )
  ()



 (−1 ) = 

Ã
−1X
=0

−1− 

!

= 

Ã
−1X
=0

−1−

!

=

−1X
=0

 (−1−)

= 2
−1X
=0

1+

6= 0

and   ()  0 as  is not a constant.

Exercise 1: True/False/Uncertain. Explain.

a. If there is serial correlation, the OLS estimators will be biased.

b. If there is serial correlation, the OLS estimators will be inconsistent.
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Exercise 2: Show that in the model

 = −1 + 

 = −1 + 

||  1

0 = 0

b →  +

¡
1− 2

¢
1 + 

as  →∞

8.3 Estimation under Serial Correlation

Cochrane-Orcutt Iterative Procedure (COIP)

Recall that in the chapter on heteroskedasticity, the way to get rid of het-

eroskedasticity is to transform the model so that the new error term becomes

homoskedastic. In the case of serial correlation, we transform the model until

the new error term does not have serial correlation. Consider the following

model:

 = 0 + 11 + 22 + +  + 

 = −1 +  − 1    1

If we use the lag of the first model and multiple it by , we get

−1 = 0+ 11(−1) + 22(−1) + + (−1) + −1

Subtract this model from the first model, we get
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 − −1 = 0 (1− ) + 1
¡
1 − 1(−1)

¢
+ 2

¡
2 − 2(−1)

¢
+ 

+ 
¡
 − (−1)

¢
+  − −1

 ∗ = ∗0 + 1
∗
1 + 2

∗
2 + + 

∗
 + 

where

∗0 = 0 (1− ) 

 ∗ =  − −1

∗
 =  − (−1)  = 1 2  

The new error term  is now serially independent as we have already

assumed it to be i.i.d..

If  is known, then we can perform the OLS on the quasi-differencing

model above, and obtain the best linear unbiased estimators. Of course,  is

rarely known and has to be estimated. We estimate the original model

 = 0 + 11 + 22 + +  + 

using OLS first, obtain the OLS estimators b0 and define
b =  − b0 − b11 − b22 − − b

Then we run a regression using OLS on

b = b−1 + 

and obtain the OLS estimator b
Then we can replace the unknown parameter  by b in the quasi-differencing

model, i.e. we run
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 ∗ = ∗0 + 1
∗
1 + 2

∗
2 + + 

∗
 + 

where

∗0 = 0 (1− b) 
 ∗ =  − b−1
∗

 =  − b(−1)  = 1 2  

Now we can obtain the new estimators b1 b2  b and define b0 =b∗0
1− b
The procedure, however, does not end here. Since we have better esti-

mates for 0 we can now use these new estimates to obtain a better estimate

for  and hence  by repeating the above procedure. Getting a better esti-

mate for  enables us to obtain an even better estimate for 0. The procedure

is repeated until the estimate of  from two successive iterations differ by no

more than some prespecified value such as 0000001.

The Cochrane-Orcutt Iterative procedure is a fast way to obtain efficient

estimates. However, it has a deficiency. Like most iterative procedures,

the COIP only brings us to the local maximum/minimum. If there is more

than one local extremum, we may miss the global maximum/minimum. To

correct this deficiency, another estimation method in the presence of serial

correlation is proposed.

Hildreth-Lu Search Procedure

The basic idea behind the Hildreth-Lu search procedure is to grid search

a value of  between −1 an 1 such that the error sum of squares in the

regression is minimized. First, we choose a value of , say 1, and use this
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value to run the Quasi-differencing model. We then record the value of the

error sum of squares,  (1). We next choose a different 2 and find out

 (2). For example, we may systemically define  = −1 + 001. We

then find which  minimizes the error sum of squares. i.e. we calculate


−11

 () 

8.4 Tests for Serial Correlation

Suppose our model is

 = 0 + 1 + 

 = −1 +  − 1    1

A test for the first order serial correlation is to test the hypothesis that

0 :  = 0 But how to test it? If we can observe the value of {}=1,
then we can run a regression of  on −1, and perform the t-test. However,

 is not observable. The only thing observable is { }=1, so we have
to extract the information of {}=1 from the { }=1, which means we
have to estimate 0 and 1 first.

The first step to test a hypothesis is to identify the null hypothesis, i.e.,

what are you interested in? The second step is to find out the estimator for

the parameter of interest in the null hypothesis. The third step is to construct

a test-statistic by transforming or standardizing the estimator. The last step

is to find out the theoretical distribution for the test-statistic. It is not an

easy task to derive the asymptotic distribution of the estimator and the test-

statistic. Even if we know the theoretical result, we may not know the shape
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of the distribution, and have to rely on high-powered computers to simulate

the distribution. After we obtain the distribution for the test-statistic, we

will be able to perform the test.

The Durbin-Watson (D-W) test

The most commonly used test for serial correlation is the Durbin-Watson

test. The D-W test statistic is defined as

 =

P
=2

(b − b−1)2
P
=1

b2 

Let’s investigate why this test-statistic can be used to test serial corre-

lation. Recall that the null hypothesis is that there is no first order serial

correlation, i.e. 0 :  = 0

 =

P
=2

(b − b−1)2
P
=1

b2 =

P
=2

b2 + P
=2

b2−1 − 2 P
=2

bb−1
P
=1

b2 ' 2− 2

P
=2

bb−1
P
=1

b2 

Suppose the assumption  ( ) = 0 still hold, then the b0 and b1
are consistent estimators for 0 and 1 respectively. Thus,

1


P
=2

bb−1 will
converge to  (−1) and 1



P
=2

b2 will converge to   () 
Therefore, as  →∞, the D-W test statistic


→ 2− 2 (−1)

  ()
= 2− 2

2

2
= 2 (1− ) 

Thus, under 0 :  = 0 ,  will converge to 2.

If   0,  will converge to a number less than 2.

If   0,  will converge to a number greater than 2
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Thus, we can tell the direction of serial correlation by observing the value

of the D-W statistic . The problem again, is still "how close is close?".

The D-W statistic is tabulated in most Econometrics texts. However, people

always have difficulties in reading the table. Once you have the number of

observations and number of explanatory variables, the D-W table will give

you a 5%(and 1%) critical upper and lower bound values  and .

To test 0 :  = 0 against 1 :   0.

If  ≤  we reject 0

If  ≥   we cannot reject 0

If       the test is inconclusive

To test 0 :  = 0 against 1 :   0,

If 4−  ≤  we reject 0

If 4−  ≥   we cannot reject 0

If   4−     the test is inconclusive

The major shortcoming of the D-W test is that there is an inconclusive

region.

Sometimes the autocorrelation may not be of first order. If a variable

is seasonally dependent, and if we are using quarterly data, then we may

specify the data generating process of  as
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 = 4−4 + 

This extension of the D-W test was given by Wallis (1972). He also

provided tables similar to the D-W tables for the test-statistic

4 =

P
=5

(b − b−4)2
P
=1

b2 

Example 2: If  = 40 (sample size),  = 4 (number of explanatory

variables excluding the constant term), then  = 1285  = 1721

Exercise 3: A least squares regression based on 24 observations produces

the following results:

b = 3
(01)

+ 121
(02)

 
2 = 0982 = 131

Test the hypothesis that the disturbances are not autocorrelated.

The Lagrange Multiplier (LM) Test

The LM test for the null 0 :  = 0 is performed as follows:

Suppose our model is

 = 0 + 11 + 22 + +  + 

 = −1 +  − 1    1

This model is equivalent to

 = 0 + 11 + 22 + +  + −1 + 
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Thus, the test for  = 0 can be treated as a LM test for the additional

variable −1

We estimate the original model by OLS and obtain the estimated residualsb
We then regress b on a constant, all the ’s and b−1
Compute ( − 1)2 from this auxiliary regression.

We reject the null at the significance level  if

( − 1)2  21 () 

The LM test does not have the inconclusiveness of the D-W test. However,

it is a large-sample test and would need at least 30 degrees of freedom for

the test to be meaningful.

Example 3: A model of demand for ice cream is estimated below:

\ = 0157
(05)

− 0892
(−11)

 + 00032
(207)

 + 000356
(642)



 = Sample size = 29

 = 3 = Number of explanatory variables excluding the constant term,

 =

29X
=1

³
 − \

´2
= 124


2
= 1− ( −  − 1)

( − 1) = 072

 = Durbin-Watson Statistic = 155

where

 = per capita consumption of ice cream in pints,

 = price per pint in dollars,

 = weekly family income in dollars,
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 = mean temperature in Fahrenheit,

and the figures in the parentheses are the t-ratios

a) Interpret each of the above coefficient estimates Perform the t-test for

0 :  = 0 v.s. 1 :  6= 0,  = 0 1 2 3 at  = 5%.

b) Find the value of2, Total Sum of Squares=
29P
=1

¡
 −

¢2
and the Regression Sum of Squares () in the above model.

c) Suppose we want to test the joint hypothesis 0 : 1 = 2 = 3 = 0,

and run the restricted model as:

 = 0 + 

i) Show that the Ordinary Least Squares estimate for 0 is
b0 = ,

where  =

29P
=1



29


ii) Show that \ =  for all  = 1 2  29 What is

the value of the restricted error sum of squares=
29P
=1

³
 − \

´2
?

iii) Perform an F-test on 0 : 1 = 2 = 3 = 0 at  = 5% using the

F-statistic defined as  =
( −)  ( − )


.

d) We suspect that the error term  has a first order serial correlation

, i.e.  = −1 + , where  are i.i.d. random variables. Perform the

Durbin-Watson (DW) Test on 0 :  = 0 v.s. 1 :   0 at  = 5%

e) If we use the residual b from the above unrestricted model, and esti-

mate an auxiliary regression:
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bb = 03− 162 + 001 + 0078 + 026b−1
with 2 = 0348. Perform the Lagrange Multiplier (LM) Test on 0 :

 = 0 v.s. 1 :  6= 0 at  = 5%

Solution:

(a)

1 = Marginal Effect of change in price on the demand for ice-cream

2 = Marginal Effect of change in income on the demand for ice-cream

3 = Marginal Effect of change in temperature on the demand for ice-cream

0 = Effect on the demand for ice-cream when the other variables are zero

To test the hypotheses0 :  = 0 for  = 0 1 2 3, we find out the critical

value of the -statistic at 5% level of significance with degree of freedom

(29− 4) = 25.

 = 2060.

The calculated -statistics are

When  = 0  = 05. 0 cannot be rejected.

When  = 1  = −11. 0 cannot be rejected.

When  = 2  = 207. 0 is rejected.

When  = 3  = 642. 0 is rejected.

(b) Since 
2
= 1−  − 1

 −  − 1 (1−2),
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2 = 1−  −  − 1
 − 1

³
1−

2
´

= 1− 29− 3− 1
29− 1 (1− 072)

= 075

2 = 1− 



⇒  =


1−2

=
124

1− 075
= 496.

2 =




⇒  =  ×2

= 496× 075
= 372,

or

 =  −

= 496− 124
= 372.

(c)(i) The OLS estimate of 0 is given by
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b0 =

P29

=1 1×P29

=1 1
2

=
1

29

29X
=1



= .

(c)(ii)

\ = b0 = ,

by the result in (i)

 =

29X
=1

³
 − \

´2
=

29X
=1

¡
 −

¢2
= 

= 496.

(c)(iii)

 =
(496− 124) 3
124 (29− 3− 1) = 25  325 = 299

Then, we can reject the null hypothesis 1 = 2 = 3 = 0 at 5% level of

significance.

(d)  = 155  = 1198  = 1650Since       the test is

inconclusive.

(e)
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( − 1)2 = (28) (0348) = 9774  21 = 3841.

Thus, the null hypothesis of no serial correlation is rejected at 5% level

of significance.

Exercise 4: A model of deaths due to heart disease is estimated below:

\ = 13968 + 1071 + 338 + 2675 − 413

 = sample size = 34

 = 4 = number of explanatory variables excluding the constant term,

 =

34X
=1

³
 −\

´2
= 2122


2
= 1− ( −  − 1)

( − 1) = 0672

 = Durbin-Watson Statistic = 1485

where

 = death rate (per million population) due to coronary heart disease

in the U.S. during each of the years 1947-1980,

 =per capita consumption of cigarettes measured in pounds of to-

bacco,

 = per capita intake of edible fats and oil, measured in pounds,

 =per capita consumption of distilled spirits in gallons,

 = per capita consumption of malted liquor in gallons.

a) We suspect that the error term  has a first order serial correlation

, i.e.  = −1 + , where  are i.i.d. random variables. Perform the

Durbin-Watson (DW) Test on 0 :  = 0 v.s. 1 :   0 at  = 5%
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b) If we use the residual b from the above unrestricted model, and esti-

mate an auxiliary regression:

bb = 11363− 468 − 158 + 036 + 021 + 026b−1
2 = 0137

Perform the Lagrange Multiplier(LM) Test on 0 :  = 0 v.s. 1 :  6= 0
at  = 5%

Exercise 5: A model of annual demand for ice-cream during the period

1967-1996 is estimated below:

\ = 0157
(05)

− 0892
(−11)

 + 00032
(207)

 + 000356
(642)

 − 05
(02)



 = Sample size = 30

 = 4 = Number of explanatory variables excluding the constant term

 =

30X
=1

³
 − \

´2
= 125


2
= 1− ( −  − 1)

( − 1) = 05

 = Durbin-Watson Statistic = 251

where

 = Consumption of ice-cream in pints in year .

 = Price of ice-cream per pint in year t. (dollars)

 = GDP per capita in year . (dollars)

 = Mean temperature in Fahrenheit in year .
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 = 1 if the year is after 1981,  = 0 if the year is in or before 1981.

The figures in the parentheses are the t-ratio.

a) Interpret each of the above coefficient estimates Perform the t-test for

0 :  = 0 v.s. 1 :  6= 0,  = 0 1 2 3 4, at  = 5%.

b) Find the value of2, Total Sum of Squares=
30P
=1

¡
 −

¢2
and the Regression Sum of Squares () in the above model.

c) Suppose we want to test the joint hypothesis 0 : 1 = 2 = 3 = 0,

and get the restricted model as:

\ = 6− 2

i) Show that \ =  −1 after 1981 and \ =

 +1 in or before 1981, where  =

30P
=1



30


ii) Let the average demand for ice-cream after 1981 be .

Show that the restricted error sum of squares can be written as

 =  + 60 − 270

iii) If  = 3. Perform an F test on 0 : 1 = 2 = 3 = 0 at

 = 5% using the F-statistic defined as  =
( −)  ( − )


.

d) If we use the residual b from the above unrestricted model, and esti-

mate an auxiliary regression:
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bb = 03−162+001+0078−003+026b−1
with 2 = 0236. Perform the Lagrange Multiplier (LM) Test on 0 :

 = 0 v.s. 1 :  6= 0 at  = 5%

e) We suspect that the error term  has a first order serial correlation

, i.e.  = −1 + , where  are i.i.d. random variables. Perform the

Durbin-Watson (DW) Test on 0 :  = 0 v.s. 1 :   0 at  = 5%

Exercise 6: True/False

(a). When there is serial correlation, the OLS estimators will be BLUE.

(b). The Durbin-Watson Test is a test for Heteroskedasticity.
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Chapter 9

Discrete and Limited

Dependent Variable Models

9.1 Introduction

Thus far, we have assumed that the dependent variable in a model takes

continuous values. However, this is not always the case. For example, assume

that we are just interested in whether people participate in the labor force;

whether people are married or not; whether people own a car or not, etc. All

of these yes-no decisions are not easily quantifiable. In chapter 6 we have

studied situations where the independent variables are qualitative. Thus, we

can also use a similar technique here. For example, if a person is married,

we assign a value of 1 to him/her, and assign 0 otherwise.

9.2 Linear Probability Model

Suppose  is a 0− 1 variable, consider a simple regression model

177
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 = 0 + 1 + 

Note very carefully that we cannot simply assume  to be  (0 
2), as

 cannot be treated as a predicted value in a regression line plus an arbitrary

residual. This is because  only takes either 0 or 1, so the residuals also take

only two possible values for a given value of .

First, note that

 () = 1× Pr ( = 1) + 0× Pr ( = 0) = Pr ( = 1) 

Further, if  = 1, then  = 1−0−1, and if  = 0,  = −0−1

 () = (1− 0 − 1) Pr ( = 1) + (−0 − 1) Pr ( = 0)

= (1− 0 − 1) Pr ( = 1) + (−0 − 1) (1− Pr ( = 1))
= Pr ( = 1)− 0 − 1

We can still assume  () = 0 in order to obtain an unbiased estimator.

This will imply

Pr ( = 1)− 0 − 1 = 0

or

Pr ( = 1) = 0 + 1

We call this a linear probability model, and 1 is interpreted as the mar-

ginal effect of  on the probability of getting  = 1 To give a concrete

example, suppose we have data on two groups of people, one group purchase

sports car while the other purchase family car. We define  = 1 if a family
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car is purchased and  = 0 if a sports car is purchased. Suppose  is the

family size. Then 1 is interpreted as: if there is one more member in the

family, what will be the increase in probability of buying a family car? An

advantage of using the linear probability model is that it is very convenient to

carry out. By running a regression we can obtain the parameters of interest.

However, there are a lot of problems associated with the linear probability

model.

Heteroskedasticity

The first problem is that we cannot assume   () to be a constant in

this framework. To see why, note that

  () = 
¡
2
¢−2 () = 

¡
2
¢

= (1− 0 − 1)
2
Pr ( = 1) + (−0 − 1)

2
Pr ( = 0)

= (1− 0 − 1)
2
Pr ( = 1) + (0 + 1)

2
Pr ( = 0)

= (1− Pr ( = 1))2 Pr ( = 1) + Pr ( = 1)2 Pr ( = 0)
= Pr ( = 0)

2
Pr ( = 1) + Pr ( = 1)

2
Pr ( = 0)

= Pr ( = 0)Pr ( = 1) [Pr ( = 0) + Pr ( = 1)]

= Pr ( = 0)Pr ( = 1)

= (1− 0 − 1) (0 + 1) 

which is not a constant and will vary with . Further, it may even be

negative. Thus, we have the problem of heteroskedasticity, and the estimators

will be inefficient. Now since the disturbance is heteroskedastic, the OLS

estimator will be inefficient, therefore we may use GLS to obtain efficient

estimates. If 0  b  1 for all , we can obtain GLS estimators by dividing
all the observations by

r³
1− b0 − b1

´³b0 + b1

´
=

r³
1− b´ b.
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Non-normality of the disturbances

An additional problem is that the error distribution is not normal. This

is because given the value of , the disturbance  only takes 2 values,

namely,  = 1 − 0 − 1 or  = −0 − 1. Thus,  actually follows

the binomial distribution. We cannot apply the classical statistical tests to

the estimated parameters when the sample is small, since the tests depend

on the normality of the errors. However, as sample size increases indefinitely,

it can be shown that the OLS estimators tend to be normally distributed

generally. Therefore, in large samples the statistical inference of the LPM

will follow the usual OLS procedure under the normality assumption.

Questionable value of 2 as a measure of goodness of fit

The conventionally computed 2 is of limited value in the dichotomous

response models. Since all the  values will either lie along the  axis or

along the line corresponding to 1, no LPM is expected to fit such a scatter

well. As a result, the conventionally computed 2 is likely to be much lower

than 1 for such models. In most practical applications the 2 ranges from

02 to 06.

Nonfulfillment of 0  \Pr ( = 1) 1

The other problem is on prediction and forecasting. Since

b = b0 + b1 = \Pr ( = 1)

is the predicted probability of  being equal to 1 given , which must

be bounded between 0 and 1 theoretically. However, the predicted value

here is unbounded as we do not impose any restrictions on the values of
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. The obvious solution to this problem is to set extreme predictions equal

to 1 or 0, thereby constraining predicted probabilities within the zero-one

interval. This solution is not perfect, as it suggests that we might predict

an occurrence with a probability of 1 when it is entirely possible that it may

not occur, or we might predict an occurrence with probability 0 when it

may actually occur. While the estimation procedure might yield unbiased

estimates, the predictions obtained from the estimation process are clearly

biased.

An alternative approach is to re-estimate the parameters subject to the

constraint that the predicted value is bounded between zero and one. How-

ever, the predicted value is the value in a regression curve, so in order

to fulfil this restriction, we must find a function b =  ( ) such that

0 ≤  ( ) ≤ 1 for all  and  Clearly  ( ) cannot be linear in either

 or , i.e.  ( ) = 0 + 1 will not work. If we can find a function

which is bounded between zero and one, then we can solve the problem of

unrealistic prediction. What kind of functions will be bounded between zero

and one? Actually there are a lot of such functions, one of them is the cu-

mulative distribution function. For example, a normal distribution has an

increasing, S-shaped CDF bounded between zero and one. Another example

is

 ( ) =
1

1 + exp [− (0 + 1)]


Note that as 1 → −∞,  ( )→ 0, and as 1 →∞,  ( )→
1. Since  ( ) is not linear in , we cannot use the linear least squares

method. Instead, the non-linear least squares or Maximum Likelihood esti-

mation methods should be used.
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Example 1: Consider the following linear probability model:

 = 0 + 1 + 2 + 

where

 = 1 if individual  purchased a car in the year of the survey and  = 0

if not.

 =monthly income of individual  (in dollars).

 = 1 if individual  is married and  = 0 if not.

a) Show that  () = Pr ( = 1).

b) Show that  () = 0 implies

Pr ( = 1) = 0 + 1 + 2

c) Show that Var() = Pr ( = 1)Pr ( = 0).

d) Suppose we estimate the model by OLS and obtain:

b = −1 + 00001 + 03

Interpret each of the above coefficient estimates

e) Referring to the estimated model in part d), what is the chance of

purchasing a car for:

i) an individual who is married and has a monthly income of 5000 dollars.

ii) an individual who is married and has a monthly income of 10000

dollars.
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iii) an individual who is not married and has a monthly income of 1000

dollars.

f) State the advantages and shortcomings of the linear probability model.

Solution:

(a)

 () = 0× Pr ( = 0) + 1× Pr ( = 1) = Pr ( = 1) .

(b)

 () = 0

⇒  () = 0 + 1 + 2.

By using the result of part (a), i.e.  () = Pr ( = 1)  we have

Pr ( = 1) = 0 + 1 + 2

(c)

When  = 1,

 = 1− 0 − 1 − 2

= 1− Pr ( = 1)
= Pr ( = 0) .

When  = 0,
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 = 0− 0 − 1 − 2

= −Pr ( = 1) .

Now,

  () = 
¡
2
¢
since  () = 0

= Pr ( = 0)
2 × Pr ( = 1) + (−Pr ( = 1))2 × Pr ( = 0)

= Pr ( = 1)Pr ( = 0) [Pr ( = 0) + Pr ( = 1)]

= Pr ( = 1)Pr ( = 0) .

(d)

1 = Marginal Effect of change in monthly income on the probability

of  = 1

2 = Marginal Effect of change in marriage on the probability of  = 1

0 = Effect on the probability of  = 1 when the other variables are zero.

(e)

(i)

b = −01 + (00001) (5000) + (03) (1)
= 07.

(ii)

b = −01 + (00001) (10000) + (03) (1)
= 12.



9.3. RANDOM UTILITY MODEL 185

(iii)

b = −01 + (00001) (1000) + (03) (0)
= 0.

(f) Advantage : It is convenient to carry out. Disadvantage : 0  b  1

may not be satisfied.

9.3 Random Utility Model

Suppose you have to make a decision on two alternatives. For example,

whether to buy a sports car or a family car. Given the characteristics  of

individual  , for example, his/her family size, income, etc. Let

1 = 0 + 1 + 1

2 = 0 + 1 + 2

where 1 is the utility derived from a family car, and 2 is the utility

derived from a sports car. The individual will buy a family car if 1  2,

or 1 − 2  0 Subtracting the second equation from the first equation

gives

1 − 2 = 0 − 0 + (1 − 1) + 1 − 2

Suppose we define  ∗ = 1−2, 0 = 0−0, 1 = 1−1,  = 1−2
We can rewrite the model as

 ∗ = 0 + 1 + 
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However, we cannot observe the exact value of  ∗ , what we observe is

whether the individual buy a family car or not. That is, we only observe

whether  ∗  0 or  ∗  0. If  ∗  0, the individual will buy a family car,

we assign a value  = 1 for this observation, and assign  = 0 otherwise.

In other words, we have  = 1 if 
∗
  0 and  = 0 if 

∗
  0. Denote the

density function and distribution function of  by  (·) and  (·) respectively,
and suppose it is symmetric about zero, i.e.  () =  (−), and  () =

1−  (−). We then have:

Pr ( = 1) = Pr ( ∗  0)

= Pr (0 + 1 +   0)

= Pr (  −0 − 1)

= Pr (−  0 + 1)

= Pr (  0 + 1) since  is symmetrically distributed about zero,

=  (0 + 1) 

and

Pr ( = 0) = 1− Pr ( = 1) = 1−  (0 + 1) 

9.4 Maximum Likelihood Estimation (MLE)

of the Probit and Logit Models

Let  (1 2   ;) be the joint probability density of the sample obser-

vations when the true parameter is . This is a function of 1 2   and

. As a function of the sample observation it is called a joint probability



9.4. MAXIMUMLIKELIHOODESTIMATION (MLE) OFTHEPROBITANDLOGITMODELS18

density function of 1 2   . As a function of the parameter  it is called

the likelihood function for . The MLE method is to choose a value of 

which maximizes  (1 2   ;).

Intuitively speaking, if you are faced with several values of , each of

which might be the true value, your best guess is the value which would have

made the sample actually observed have the highest probability.

Suppose we have  observations of  and , where  takes the value

zero or one. The probability of getting such observations is

 = Pr (1 = 1 2 = 2   =  )

= Pr (1 = 1) Pr (2 = 2) Pr ( =  )

by the independence of 

Since  only takes either zero or one, we can group them into two groups.

 =
Y
=1

Pr ( = 1)
Y
=0

Pr ( = 0)

=
Y
=1

 (0 + 1)
Y
=0

[1−  (0 + 1)]

=

Y
=1

[ (0 + 1)]
 [1−  (0 + 1)]

1− 

ln = ln

(
Y
=1

[ (0 + 1)]
 [1−  (0 + 1)]

1−
)

=

X
=1

ln
n
[ (0 + 1)]

 [1−  (0 + 1)]
1−

o
=

X
=1

 ln (0 + 1) +

X
=1

(1− ) ln [1−  (0 + 1)] 
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We want to maximize  or equivalently, maximize ln, since ln (·) is a
monotonic increasing function. The first order conditions are

 ln

0
=

X
=1


 (0 + 1)

 (0 + 1)
−

X
=1

(1− )
 (0 + 1)

1−  (0 + 1)
= 0

 ln

1
=

X
=1



 (0 + 1)

 (0 + 1)
−

X
=1

(1− )

 (0 + 1)

1−  (0 + 1)
= 0

These two equations can be solved to obtain estimators for 0. How-

ever, as ln is a highly nonlinear function of 0, we cannot easily obtain

the estimator of 0 by simple substitution. We may use grid-search method

and a computer algorithm to solve them. The MLE procedure has a number

of desirable properties. When sample size is large, all parameter estimators

are consistent and also efficient if there is no misspecification in the prob-

ability distribution. In addition, all parameters are known to be normally

distributed when sample size is large.

If we assume  to be normally distributed  (0 2), i.e.,

 (0 + 1) =
1√
2

exp

Ã
−(0 + 1)

2

22

!


 (0 + 1) =

Z 0+1

−∞

1√
2

exp

µ
− 2

22

¶


then we have the Probit Model.

The first order condition can be simplified to

 ln

0
=

X
=1

exp
³
− (0+1)

2

22

´
R 0+1

−∞ exp
¡− 2

22

¢

−
X
=0

exp
³
− (0+1)

2

22

´
R∞
0+1

exp
¡− 2

22

¢

= 0

 ln

1
=

X
=1

 exp
³
− (0+1)

2

22

´
R 0+1

−∞ exp
¡− 2

22

¢

−
X
=0

 exp
³
− (0+1)

2

22

´
R∞
0+1

exp
¡− 2

22

¢

= 0
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Although the normal distribution is a commonly used distribution, its

distribution function is not a closed form function of . As the two first order

conditions above involve the integration operator, the computational cost

will be tremendous. For mathematical convenience, the logistic distribution

is proposed:

 (0 + 1) =
exp (0 + 1)

(1 + exp (0 + 1))
2


 (0 + 1) =
exp (0 + 1)

1 + exp (0 + 1)


If we assume  to have a logistic distribution, then we have the Logit

Model. The first order condition can be simplified to

 ln

0
=

X
=1

1

1 + exp (0 + 1)
−
X
=0

1

1 + exp (−0 − 1)
= 0

 ln

1
=

X
=1



1 + exp (0 + 1)
−
X
=0



1 + exp (−0 − 1)
= 0

We only discuss a simple model with two 0 for simplicity purpose. Of

course, one can easily extend this to multiple-parameter models.

9.5 Truncation of data

Sometimes, we cannot perfectly observe the actual value of the dependent

variable. In the previous section, when decisions are dichotomous (yes-no

decision), we may only observe the sign of the dependent variable. If we only

observe a subpopulation such as individuals with income above a certain

level, then we say the data is being lower-truncated, in the sense that we can

never observe people with income below that level.
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Let  be a random variable which takes values between −∞ and ∞,
with  ( ) ≥ 0 and

Z ∞

−∞
 ( )  = 1. Suppose  is being lower-truncated

at  = , and we can only observe those  that are bigger than . Now

since we only observe   , Pr (  ) =
R∞


 ( )  1, so we have to

change the unconditional density function  ( ) into a conditional density

function  ( |  ) such that
R∞


 ( |  )  = 1 Recall the definition

of conditional probability that Pr (|) =  ( ∩)
 ()

. Let  be the event

that   , and  be the event that   

 (  |  ) = Pr (  |  ) =
 (   ∩   )

 (  )
=

R 

 ( ) R∞


 ( ) 



 ( = |  ) =
 (  |  )


=

 ()R∞


 ( ) 


Example 2: Suppose  is uniformly distributed in the [0 1] interval,

we know that  ( ) = 1 and  ( ) =  . Thus, it is easy to find the

unconditional probability Pr (  34) = 14. But suppose now we know

that  must be greater than 12, how will this re-adjust our prediction for

Pr (  34)?

Solution: Using the above rule

Pr

µ
 

3

4

¯̄̄̄
| 

1

2

¶
=
Pr
¡
  3

4
∩   1

2

¢
Pr
¡
  1

2

¢ =
Pr
¡
  3

4

¢
Pr
¡
  1

2

¢ = 1
4
1
2

=
1

2


9.6 Moments of Truncated Distributions

Note that
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 ( ) =

Z ∞

−∞
  ( ) 

=

Z 

−∞
  ( )  +

Z ∞



  ( ) 

=

Z 

−∞


 ( )

Pr (  )
 Pr (  ) +

Z ∞




 ( )

Pr (  )
 Pr (  )

=

Z 

−∞
  ( |  )  Pr (  ) +

Z ∞



  ( |  )  Pr (  )

=  ( |  ) Pr (  ) + ( |  ) Pr (  ) 

Thus,  ( ) is a weighted average of  ( |  ) and  ( |  ), this

implies

min { ( |  ) ,  ( |  )}   ( )  max { ( |  ) ,  ( |  )} 

Since  ( |  )   ( |  ), we have

 ( | ≥ ) =

Z ∞



  ( | ≥ )  ≥  ( ) 

 ( |  ) =

Z 

−∞
  ( |  )  ≤  ( ) 

Further, as the truncated density function has a narrower dispersion, we

have:

  ( | ≥ ) =

Z ∞



[ − ( | ≥ )]
2
 ( | ≥ )  ≤   ( ) 

  ( |  ) =

Z 

−∞
[ − ( |  )]

2
 ( |  )  ≤   ( ) 

If the truncation is from below, the mean of the truncated variable is

greater than the mean of the original one. If the truncation is from above, the
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mean of the truncated variable is smaller than the mean of the original one.

Truncation reduces the variance compared to the variance in the untruncated

distribution.

Example 3: Find  (|  1) and   (|  1) if  () = exp (−),
  0 and compare them to their unconditional means and variances.

Solution:

 ( |   1) =

Z ∞

1

 ( |   1) 

=
1

1−  (1)

Z ∞

1

 () 

=
1

1−  (1)

Z ∞

1

 exp (−) 

=
1

1−  (1)

½
[− exp (−)]∞1 +

Z ∞

1

exp (−) 
¾

=
−1

1−  (1)
+
1−  (1)

1−  (1)
.

Now,

1−  (1) =

Z ∞

1

exp (−) 
= − [exp (−)]∞1
= −1.

Thus,

 ( |   1) = 2   () = 1
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  ( |   1)

= 
¡
2 |   1

¢− [ ( |   1)]
2

=

Z ∞

1

2 ( |   1) − 4

=
1

1−  (1)

Z ∞

1

2 () − 4

= 

Z ∞

1

2 () − 4

= 

Z ∞

1

2 exp (−) − 4

= 

∙£−2 exp (−)¤∞
1
+ 2

Z ∞

1

 exp (−) 
¸
− 4

= 
£
−1 + 2× 2−1¤− 4

= 1 =   () .

9.7 Maximum Likelihood Estimation of the

Truncated Model

Consider the simple model

 = 0 + 1 +   

Pr (  ) = Pr (0 + 1 +   )

= Pr (  − 0 − 1)

= 1−  (− 0 − 1) 

The likelihood function is
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 =  (1 = 1 2 = 2   =  |1   2      )

=  (1 − 0 − 11|1  )  (2 − 0 − 12|2  )  ( − 0 − 1 |  )

ln = ln [ (1 − 0 − 11|1  )  (2 − 0 − 12|2  )  ( − 0 − 1 | 

=

X
=1

ln  ( − 0 − 1|  ) =

X
=1

ln
 ( − 0 − 1)

Pr (  )

=

X
=1

ln  ( − 0 − 1)−
X
=1

ln [1−  (− 0 − 1)] 

First order conditions:

 ln

0
= −

X
=1

 0 ( − 0 − 1)

 ( − 0 − 1)
−

X
=1

 (− 0 − 1)

1−  (− 0 − 1)
= 0

 ln

1
= −

X
=1



 0 ( − 0 − 1)

 ( − 0 − 1)
−

X
=1



 (− 0 − 1)

1−  (− 0 − 1)
= 0

9.8 Censored Data

Sometimes data are censored rather than truncated. When the dependent

variable is censored, values in a certain range are all transformed to a single

value. Suppose we are interested in the demand for a certain hotel’s accom-

modation. If the demand is higher than the hotel’s capacity, we will never

know the value of actual demand, and all of these over-demand values are

reported as the total number of rooms in this hotel. We may also observe

people either work at a certain hour or do not work at all. If people do not

work at all, their optimal working hours may be negative. But we will never
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observe a negative working hour, we will observe zero working hour instead.

Suppose the data is lower-censored at zero.

 ∗ = 0 + 1 + 

 = 0 if  ∗ ≤ 0
 =  ∗ if 

∗
  0

 ∗ is not observable, and we can only observe  and . To fully utilize

the information, if the observation is not censored, we calculate the density

value at that point of observation  ( − 0 − 1). If the observation is

censored, we use the probability of observing a censored value Pr ( = 0).

Note that:

Pr ( = 0) = Pr (0 + 1 +  ≤ 0)
= Pr ( ≤ −0 − 1)

= 1−  (0 + 1) 

The likelihood function is

 =
Y
0

 ( − 0 − 1)
Y
=0

Pr ( = 0) 

ln = ln

"Y
0

 ( − 0 − 1)
Y
=0

Pr ( = 0)

#
=

X
0

ln  ( − 0 − 1) +
X
=0

ln [1−  (0 + 1)] 

First order condition:
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 ln

0
= −

X
0

 0 ( − 0 − 1)

 ( − 0 − 1)
−
X
=0

 (0 + 1)

1−  (0 + 1)
= 0

 ln

1
= −

X
0



 0 ( − 0 − 1)

 ( − 0 − 1)
−
X
=0



 (0 + 1)

1−  (0 + 1)
= 0

If  ∼  (0 2), and let  (·) andΦ (·) denote the density and distribution
functions of an  (0 1) respectively.

 ( − 0 − 1) =
1√
2

exp

Ã
−( − 0 − 1)

2

22

!
=
1




µ
 − 0 − 1



¶


 0 ( − 0 − 1) =
1

2
0
µ
 − 0 − 1



¶


 (0 + 1) =
1




µ
0 + 1



¶


 (0 + 1) = Φ

µ
 − 0 − 1



¶


Then the log-likelihood can be rewritten as

ln =
X
0

ln
1




µ
 − 0 − 1



¶
+
X
=0

ln

∙
1−Φ

µ
 − 0 − 1



¶¸


We have the well-known Tobit Model.

Example 4: Consider the model  = 0 + 1 + . If the dependent

variable is upper-truncated at 1 and lower-censored at 2, for any 2 constants

2  1 ∞. Derive the log-likelihood function of such a model.



9.8. CENSORED DATA 197

Solution: The likelihood function is given by

 =
Y
2

 ( − 0 − 1 |   1)
Y
=2

Pr ( = 2 |   1)

=
Y
2

 ( − 0 − 1)

Pr (  1)

Y
=2

Pr ( = 2)

Pr (  1)
.

where

Pr ( = 2) = Pr (0 + 1 +   2)

= Pr (  2 − 0 − 1)

=  (2 − 0 − 1)

and Pr (  1) = Pr (0 + 1 +   1)

=  (1 − 0 − 1) 

The log-likelihood function is given by

ln =
X
2

ln
 ( − 0 − 1)

Pr (  1)
+
X
=2

ln
Pr ( = 2)

Pr (  1)

=
X
2

ln
 ( − 0 − 1)

 (1 − 0 − 1)
+
X
=2

ln
 (2 − 0 − 1)

 (1 − 0 − 1)


Exercise 1: Find  (|  1) and   (|  1) if  ∼  (0 1), and

compare them to their unconditional means and variances.

Exercise 2: Consider the following linear probability model:

  = 0 + 1 + 2  + 3

+4 + 
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where

  = 1 if couple  got a divorce in the year of the survey, and

  = 0 if not.

 = monthly income of couple  (in dollars).

  =years of marriage of couple .

 = 1 if the husband or the wife (or both) has had an extramar-

ital affair, and  = 0 if not.

 = number of children of couple .

a) Show that  ( ) = Pr (  = 1).

b) Interpret each of the above coefficients 0  4

c) Show that  () = 0 implies

Pr (  = 1) = 0 + 1 + 2  + 3

+4

d) Show that Var() = Pr (  = 1)Pr (  = 0).

e) Suppose the we estimate the model by OLS and obtain:

\  = 5− 0002 − 015  + 9

−03

What is the chance of getting divorce for:

i) a couple married for 6 years, with 2 children, a monthly income of 1000

dollars, and no extramarital affairs.
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ii) a couple married for 1 year, with no children, a monthly income of

2000 dollars, where the husband has had an extramarital affairs.

iii) a couple married for 30 years, with 3 children, a monthly income of

4000 dollars, where the wife has had an extramarital affairs.

f) State an advantage and a shortcoming of the linear probability model.
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Chapter 10

Simultaneous Equation Models

10.1 Introduction

In the previous chapters, we have only discussed the estimation of a single

equation. We will now discuss the method of estimating a system of equa-

tions. For example, suppose we would like to estimate a demand function of

the form

 = 0 + 1 + 

One should be careful that the data we observe { }=1 are actually
the equilibrium price and quantity over time. Therefore, we are observing

the intersections of the demand and supply curves. Neither the demand nor

supply curve can be observed.

How can we identify the demand and supply curves? To identify the

demand curve, we have to shift the supply curve. Similarly, to identify the

supply curve, we have to shift the demand curve. To shift the supply curve,

we can add some variables affecting supply, e.g., weather conditions, to the

supply equation. For the demand curve to be shifted, we can add a factor,

201
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such as income, to the demand equation. Consider the following model:

 = 0 + 1 + 2 + 

 = 0 + 1 + 2+ 

where  stands for income and  denotes the amount of rainfall. The

first equation is the demand equation while the second is the supply equation.

The two equations above are called structural equations. The variables 

and  are called endogenous variables as they are determined within the

system. Solving both equations gives us the equilibrium price and quantity.

The variables  and  are called exogenous variables which are determined

outside the system. We know that at equilibriumm,  =  = , i.e.,

0 + 1 + 2 +  = 0 + 1 + 2+ 

 =
0 − 0

1 − 1
− 2

1 − 1
 +

2
1 − 1

+
 − 

1 − 1


Substituting  back to the demand-supply model, we can solve for 

 =
10 − 01
1 − 1

− 12

1 − 1
 +

12
1 − 1

+
1 − 1

1 − 1


These two equations are known as reduced form equations, which are ob-

tained by solving each of the endogenous variables in terms of the exogenous

variables. We can also obtain the reduced form by making use of matrix

algebra. Note that the structural model can be rewritten as

− 1 = 0 + 2 + 

− 1 = 0 + 2+ 
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In matrix notation, the above is equal to

⎛⎝ 1 −1
1 −1

⎞⎠⎛⎝ 



⎞⎠ =

⎛⎝ 0 2 0

0 0 2

⎞⎠
⎛⎜⎜⎜⎝
1





⎞⎟⎟⎟⎠+
⎛⎝ 



⎞⎠ 

Therefore, the reduced form is:

⎛⎝ 



⎞⎠ =

⎛⎝ 1 −1
1 −1

⎞⎠−1⎛⎝ 0 2 0

0 0 2

⎞⎠
⎛⎜⎜⎜⎝
1





⎞⎟⎟⎟⎠+
⎛⎝ 1 −1
1 −1

⎞⎠−1⎛⎝ 



⎞⎠ 

Why do we need to rewrite the whole system in reduced form? Why not

just estimate the structural equations directly by OLS? The problem is, if we

estimate the structural equations directly, the assumption that ( ) = 0

will be violated in the demand equation. While in the supply equation, the

assumption that ( ) = 0 will be violated. To see this, replace  by its

reduced form, and if we assume ( ) = 0, then

 ( ) = 

µ
0 − 0

1 − 1
− 2

1 − 1
 +

2
1 − 1

+
 − 

1 − 1
 

¶
= − ( )

1 − 1
= − 2

1 − 1
6= 0

and

 ( ) = 

µ
0 − 0

1 − 1
− 2

1 − 1
 +

2
1 − 1

+
 − 

1 − 1
 

¶
=

 ( )

1 − 1
=

2
1 − 1

6= 0
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This is similar to the violation of the assumption () in the regres-

sion model, which will cause inconsistent estimates. To show this, suppose

we estimate the model by OLS

 = 0 + 1 + 2 + 

The OLS estimator for 1 is

b1 =
  −  

  − 2
= 1 +

  −  

  − 2

= 1 +



 

−  








 

(1− 2 )

→ 1 +
 lim 



 lim 

(1− 2 )



where

 =

X
=1

¡
 −

¢ ¡
 − 

¢


  =

X
=1

¡
 − 

¢2
and so on.

Note that

 lim



=  lim

1



X
=1

¡
 − 

¢
( − )

=  ( )

= − 2
1 − 1

6= 0

Thus b1 does not converge to 1. Similarly, all the estimates of ’s and ’s
will be inconsistent. Therefore, the OLS estimator is biased and inconsistent
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if we ignore simultaneity. Thus, estimating the structural equation directly

will give us inconsistent estimates. The problem can be avoided if write the

model in reduced form. Let the reduced form be:

 = 1 + 2 + 3+ 

 = 4 + 5 + 6+ 

However, the reduced form equations will not give us the parameters of

interest (0 1 2 0 1 2) directly. We have to recover them by letting

b1 =
b6b3 b1 =
b5b2 b2 = b3 ³b1 − b1´ b2 = −b2 ³b1 − b1´ b0 = b4 − b1b1b0 = b4 − b1b1

This is called the indirect least-squares method (ILS).

The parameters of interest are all identified in the above case, and we call

this the exact identification. The demand curve is identified because by vary-

ing , we are able to shift the supply curve and trace out the demand curve.

By analogy, changing the values of  allows us to shift the demand curve

and trace out the supply curve. Sometimes it is not possible to identify all

the structural parameters, this problem is known as under-identification.

While sometimes we may obtain more than one set of solution for the struc-

tural parameters, this situation is known as over-identification.
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10.2 Under-identification

Suppose the demand-supply model is

 = 0 + 1 + 2 + 

 = 0 + 1 + 

The reduced form is

 =
0 − 0

1 − 1
− 2

1 − 1
 +

 − 

1 − 1


 =
10 − 01
1 − 1

− 12

1 − 1
 +

1 − 1

1 − 1


or we can write it as

 = 1 + 2 + 

 = 3 + 4 + 

The estimable structural parameters are b1 = b4b2  and b0 = b3 − b1b1
However, there is no way to identify 0, i.e. we cannot identify the demand

equation. This is because there is no factor to shift the supply curve, and

therefore the demand curve is not identifiable. Analogously, if our system is

 = 0 + 1 + 

 = 0 + 1 + 2+ 

then the demand curve is identifiable while the supply curve is not.
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10.3 Over-identification

Sometimes we may end up with more than one set of solution for the para-

meters of interest. Consider the following model:

 = 0 + 1 + 2 + 

 = 0 + 1 + 2+ 3 + 

where  is another exogenous variable. The reduced form is

 =
0 − 0

1 − 1
− 2

1 − 1
 +

2
1 − 1

+
3

1 − 1
 +

 − 

1 − 1


 =
10 − 01
1 − 1

− 12

1 − 1
 +

12
1 − 1

+
13

1 − 1
 +

1 − 1

1 − 1


or

 = 1 + 2 + 3+ 4 + 

 = 5 + 6 + 7+ 8 + 

Thus, we can estimate 1 by
b7b3 or b8b4 , which are two different values in

general. For each possible estimate of 1, we can obtain the estimates for the

rest of the structural parameters. Thus, there is more than one way to recover

the structural equations, leaving us with the problem of over-identification.

10.4 Over-identification and under-identification

at the same time

Suppose our model is
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 = 0 + 1 + 2 + 3+ 

 = 0 + 1 + 

It is not difficult to show that the supply function is over-identified and

the demand function is under-identified.

10.5 The Order Condition

The necessary condition for the model to be identified is called the order

condition.

Let  be the number of structural equations, and let  be the number

of variables excluded from an equation. The order condition for an equation

to be identified is  ≥ − 1. e.g.,

 = 0 + 1 + 2 + 3+ 

 = 0 + 1 + 

Then  = 2 and  − 1 = 1 For the demand equation, the number of

variables excluded is  = 0, so the order condition is not satisfied and the

demand equation is under-identified. For the supply equation, the number of

excluded variables is  = 2 ( and ), so the supply equation is identified.

The order condition is not sufficient because if this condition is not satisfied,

the model is under-identified. Even if the order condition is satisfied, we may

still be unable to identify the equation.
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10.6 The Rank Condition

The rank condition is a necessary and sufficient condition for identification.

To understand the rank condition, one has to be familiar with matrix algebra.

The rank of a matrix is the number of linearly independent rows of the matrix.

Example 1: The rank of

⎛⎜⎜⎜⎝
1 2 3

2 4 6

2 7 5

⎞⎟⎟⎟⎠
is 2, since row two is 2 times row 1. The rank of

⎛⎜⎜⎜⎝
1 2 3

2 5 1

2 7 5

⎞⎟⎟⎟⎠
is 3.

We will only provide a simple illustration of the rank condition here.

Consider the following model with three endogenous variables 1, 2, and

3, and three exogenous variables 1, 2, and 3.

1 2 3 1 2 3

Equation 1 11 0 13 14 0 16

Equation 2 21 0 0 24 0 26

Equation 3 0 32 33 34 35 0

To determine whether the rank condition for identifying equation  ( = 1 2 3)

is satisfied, delete row  and pick up the columns corresponding to the ele-

ments that have zeros in that row. If we can form a matrix of rank  − 1
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from these columns, then the equation is identified, otherwise not. We first

check the order condition, in the above case,  = 3, so − 1 = 2
For equation 1,  = 2 =  − 1, so the order condition is satisfied and

this eqaution is exactly identified.

For equation 2,  = 3   − 1, so the order condition is satisfied and
this eqaution is over-identified.

For equation 3,  = 2 =  − 1, so the order condition is satisfied and
this eqaution is exactly identified.

Thus the order conditions are satisfied for all equations. Now consider

the rank condition.

For equation 1, the resulting matrix is

⎛⎝ 0 0

32 35

⎞⎠ 

The rank of this matrix is 1 because the first row has both element zero.

Thus, the rank condition is not satisfied and therefore the first equation is

not identified.

For equation 2, the resulting matrix is

⎛⎝ 0 13 0

32 33 35

⎞⎠ 

The rank of this matrix is 2. Thus, the rank condition is satisfied and

equation 2 is identified.

For equation 3, the resulting matrix is

⎛⎝ 11 16

21 26

⎞⎠ 
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The rank of this matrix is 2 provided that
11
21

6= 16
26
. Thus, the rank

condition is satisfied and equation 3 is identified.

Note that the failure of the order condition implies the failure of the rank

condition, but the converse is not true. If the rank condition is satisfied, then

the order condition should be satisfied.

10.7 Two-Stage Least Squares (2SLS)

For the indirect least squares method discussed in the previous section, we

have to estimate the reduced form and recover the structural parameters from

the reduced-form estimates. We now present the two-stage least squares

method, a method which enables us to obtain consistent estimates of the

structural parameters. In practice, ILS is not a widely used technique since

it is rare for an equation to be exactly identified. 2SLS is perhaps the most

important and widely used procedure. It is applicable to equations which

are over-identified or exactly identified. Moreover, when the model is exactly

identified, the ILS and the 2SLS will give the same estimates.

The 2SLS method is an instrumental variable method. It is used in sit-

uations where the explanatory variable is not easily observed or when the

assumption ( ) = 0 is violated.

In the demand-supply system, ( ) 6= 0 in the structural equation.
The idea of instrumental variable method is to find a variable  as a proxy

for  so that (  ) 6= 0 and ( ) = 0. The 2SLS uses  = b ,
where b is the predicted values of  obtained from the reduced form. We useb as an instrument because b and  are correlated, and b and the errors

are orthogonal(uncorrelated).

Suppose the structural equations are
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 = 0 + 1 + 2 + 

 = 0 + 1 + 2+ 

We first estimate the reduced form

b = b1 + b2 + b3
We then replace  by b in the structural equations and estimate

 = 0 + 1 b + 2 + ∗

 = 0 + 1
b + 2+ ∗

The 2SLS method gives us consistent estimates of the structural parame-

ters 0 and 0.

Example 2: Consider the following two-equation model in which the ’s

are endogenous and the ’s are exogenous:

1 = 12 + 21 + 

2 = 11 + 22 + 33 + 

Suppose that  ∼  (0 2),  ∼  (0 2), Cov( ) = 0 for all , .

 and  are uncorrelated with 1, 2 and 3.

a) Explicitly derive the reduced form equations for 1 and 2.

b) Find  (2 ) and  (1 ). What is the problem with estimat-

ing the above structural equations directly by OLS?
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c) Check if the order condition is satisfied for each of the structural equa-

tions.

d) Describe the Indirect Least Squares estimation procedure for each of

the structural parameters 0 and 0.

e)Briefly describe the Two-Stage Least Squares estimation procedure in

this example.

f)Can we apply OLS directly to the structural equations if we know that

1 = 0? Why or why not?

Solution:

(a) The reduced form of 1 is given by

1 = 1 (11 + 22 + 33 + ) + 21 + 

=
2

1− 11
1 +

12
1− 11

2 +
13

1− 11
3 +

1 + 

1− 11
= Π11 +Π22 +Π33 + 1.

where Π1 =
2

1− 11
, Π2 =

12
1− 11

, Π3 =
13

1− 11
and 1 =

1 + 

1− 11


The reduced form of 2 is given by

2 = 1 (12 + 21 + ) + 22 + 33 + 

=
21

1− 11
1 +

2
1− 11

2 +
3

1− 11
3 +

 + 1

1− 11
= Π41 +Π52 +Π63 + 2.

where Π4 =
21

1− 11
, Π5 =

2
1− 11

, Π6 =
3

1− 11
and 2 =

 + 1

1− 11
.
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(b)  (1 ) =
1

1− 11
2 6= 0 and  (2 ) =

1
1− 11

2 6= 0.
Thus, the OLS estimates are inconsistent

(c) In this model, − 1 = 1. The order conditions are:
For equation 1,  = 2  − 1, it is over-identified.
For equation 2,  = 1 = − 1, it is exactly identified.

(d)

Step 1 : Regress 1 on 1, 2 and 3 to obtain estimates bΠ1 bΠ2 andbΠ3.
Step 2 : Regress 2 on 1, 2 and 3 to obtain estimates bΠ4 bΠ5 andbΠ6.
Step 3 : Solve the relationships among the bΠ’s, b’s and b’s. Then, we

can obtain the estimates b’s and b’s.
(e)

Step 1 : Regress 1 on 1, 2 and 3 to obtain b1.
Step 2 : Regress 2 on 1, 2 and 3 to obtain b2.
Step 3 : Regress 1 on b2, 1, 2 and 3 to obtain estimates b0, b1,b2 and b3
Step 4 : Regress 2 on b2, 1, 2 and 3 to obtain estimates b0, b1,b2 and b3
(f) The first equation can be estimated by OLS. Since 1 = 0, we can

obtain consistent OLS estimates b’s. The second equation can also be esti-
mated by OLS directly because endogenous variable 2 is absent from the

second equation.

Exercise 1: The structural form of a two-equation model is as follows
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(the t-subscript is omitted) :

 = 1 + 2 + 3 + 4+ 

 = 1 + 2 + 3 + 

where  and  are endogenous and   and  are exogenous.

a. For each equation, examine whether it is underidentified, overidenti-

fied, or exactly identified.

b. What explanatory variables, if any, are correlated with  ? What

explanatory variables, if any, are correlated with  ?

c. What happens if OLS is used to estimate the ’s and the ’s ?

d. Can the ’s be estimated by ILS ? If yes, derive the estimates. Answer

the same question about the ’s.

e. Explain step by step how the 2SLS method can be applied on the

second equation.

Exercise 2: Consider the following simple three-equation model :

 =  − Endogenous : 

 = 1 + 2 + 3 + 4 +  Exogenous :   

 = 1 + 2 + 3+  Error terms :  

a. Check whether the order condition is satisfied for the second and third

equations. What is your conclusion?

b. Derive the reduced form equations.

c. How would you use the TSLS estimation procedure on the third equa-

tion?

d. Explain why we can use the OLS method on the second equation.

What properties do the estimates have?
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e. Suppose we had use OLS to estimate the third equation. What prop-

erties will those estimates have?

Exercise 3: The failure of the rank condition implies the failure of the

order condition. True or False? Explain.

Exercise 4: The following are models in three equations with three

endogenous variables  and three exogenous variables :

a)

Equation no. 1 2 3 1 2 3

1 11 0 13 14 0 16

2 21 22 0 24 25 0

3 31 32 33 34 35 0

b)

Equation no. 1 2 3 1 2 3

1 11 12 0 14 0 16

2 0 22 0 24 25 26

3 0 32 33 34 0 36

Determine the identifiability of each equation for each model with the aid

of the order and rank conditions of identification.

Exercise 5: Consider the following two-equation model in which the y’s

are endogenous and the x’s are exogenous:
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1 = 02 + 11 + 22 + 33 + 

2 = 01 + 11 + 22 + 33 + 

Suppose that  ∼  (0 2),  ∼  (0 2),  ( ) = 0 for all 

and ,  and  are uncorrelated with 1, 2 and 3.

a) Find  (2 ) and  (1 ). What is the problem of estimating

the above structural equations directly by OLS?

b) Verify that neither equation is identified.

c) Explicitly derive the reduced form equations for 1 and 2.

d) Establish whether or not the following restrictions are sufficient to

identify (or partially identify) the model:

i) 2 = 3 = 0

ii) 1 = 2 = 0

iii) 0 = 0

iv) 0 = 0, and 3 = 0

v) 2 + 2 = 1

vi) 3 = 0

vii) 2 = 3 = 1 = 0

viii) 2 = 3 = 2 = 3 = 0

ix) 1 = 2 = 3 = 2 = 3 = 0



218 CHAPTER 10. SIMULTANEOUS EQUATION MODELS

e) Suppose 3 = 3 = 0 The model becomes

1 = 02 + 11 + 22 + 

2 = 01 + 11 + 22 + 

Find cov(2 ) and cov(1 ). Explicitly derive the reduced form equa-

tions for 1 and 2.

f) Establish whether or not the following restrictions are sufficient to

identify (or partially identify) the model in part e).

i) 1 = 2 = 0

ii) 0 = 0

iii) 2 + 2 = 1

iv) 2 = 2 = 0

v) 1 = 2 = 2 = 0



Chapter 11

Large Sample Theory

11.1 Introduction

Recall that an estimator is constructed by the observations  and , and 

has a random component . That means the estimator is a combination of all

the error residuals, once we have assumed a certain distributional properties

on , we may be able to find out the distribution for the estimator. For

example, consider the simple regression model

 = 0 + 1 + 

b1 = 1 +

P
=1

¡
 −

¢


P
=1

¡
 −

¢2

If we assume  ∼  (0 2)  then b1 ∼ 

⎛⎜⎜⎝1
2

P
=1

¡
 −

¢2
⎞⎟⎟⎠, or

219
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b1 − 1r
 

³b1´ ∼  (0 1). However, different assumptions of  and  affect

the asymptotic behavior of the estimators. To understand the asymptotics of

the estimators, we first have to understand some basic large sample theory.

Definition 1: Let Ω be a sample space, and  be events in Ω The collection

= of subsets of Ω is called −algebra if it satisfies the following properties:

() Ω ∈ =
()  ∈ = ⇒  ∈ =
where  refers to the complement of  with respect to Ω.

()   ∈ = ⇒  ∪ ∈ = for all  .
()  ∈ =,  = 1 2  ⇒ ∪∞=1 ∈ =

Definition 2: A probability measure, denoted by  (·), is a real-valued
set function that is defined over a −algebra = and satisfies the following
properties:

()  (Ω) = 1

()  ∈ = ⇒  () ≥ 0
() If {} is a countable collection of disjoint sets in=, then  (∪=1) =P

  () 

Definition 3: Given a sample space Ω, a −algebra = associated with Ω,

and a probability measure  (·) defined over =, we call the triplet (Ω=  )
a probability space.
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Definition 4: A random variable on (Ω=  ) is a real-valued function
defined over a sample space Ω, denoted by  () for  ∈ Ω, such that for

any real number , {| ()  } ∈ =.

Limits of Sequences

Let {}∞=1 be a sequence of real numbers. The sequence is said to

converge to  if for any   0, there exists an  such that | − |  

whenever  ≥  ; This is indicated as

lim
→∞

 = 

or equivalently,

 →  as →∞

e.g.

a) If  =
1


, lim
→∞

 = 0

b) If  =
³
1 +





´
, lim
→∞

 = exp ()

c) If  = 2, lim
→∞

 =∞

b) If  = (−1), Then no limit exists.

A sequence of deterministic matrices C converges to C if each element

of C converges to the corresponding element of C.

Definition 6: The supremum of the sequence, denoted by
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sup
→∞



is the least upper bound (l.u.b.) of the sequence, i.e., the smallest

number, say, , such that  ≤ , for all .

Definition 7: The infimum of the sequence, denoted by

inf
→∞



is the greatest lower bound (g.l.b.) of the sequence, i.e., the largest

number, say, , such that  ≥ , for all .

Definition 8: The sequence {}∞=1 is said to be amonotone non-increasing
sequence if

+1 ≤ , for all 

and it is said to be a monotone non-decreasing sequence if

+1 ≥ , for all 

Definition 9: Let {}∞=1 be a sequence of real numbers and put

 = sup
≥



 = inf
≥



Then, the sequences {}, {} are, respectively, monotone non-increasing
and non-decreasing, and their limits are said to be the limit superior and limit

inferior of the original sequence and are denoted, respectively, by
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lim sup lim inf or lim lim

Thus we write

lim
→∞

 = lim
→∞

sup
≥



lim
→∞

 = lim
→∞

inf
≥



We immediately have

Let {}∞=1 be a sequence of real numbers, then

lim sup  ≥ lim inf 

Let {}∞=1 be a sequence of real numbers, then its limit exists, if and
only if

lim sup  = lim inf 

e.g. If  = (−1), then lim sup  = 1, lim inf  = −1, so the limit does
not exist.

e.g. If  =

µ
−1


¶

, then lim sup  = 0, lim inf  = 0, so the limit

exists and is equal to zero.

Definition 10: The sequence {} is at most of order n, denoted 
¡

¢
,

if and only if for some real number∆, 0  ∆ ∞, there exists a finite integer
 such that for all  ≥  ,

¯̄̄̄




¯̄̄̄
 ∆
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Definition 11: The sequence {} is of order smaller than n, denoted

¡

¢
, if and only if for every real number   0, 0   ∞, there exists a

finite integer  () such that for all  ≥  () 

¯̄̄̄




¯̄̄̄
 

In other words, {} is 
¡

¢
if



is eventually bounded, where as {}

is 
¡

¢
if




→ 0

Obviously, if {} is 
¡

¢
, then {} is 

¡

¢


In particular, {} is  (1) if  is eventually bounded, where as {} is
 (1) if  → 0

e.g.

()Let  = 4+2+6
2 Then {} is  (2) and 

¡
2+

¢
for every   0.

()Let  = (−1)  Then {} is  (1) and 
¡

¢
for every   0.

()Let  = exp (−)  Then {} is 
¡
−

¢
for every   0 and also


¡
−

¢


Proposition 1:

() If {} is 
¡

¢
and {} is  (), then  is 

¡
+

¢
and

( + ) is  (
), where  = max [ ].

() If {} is 
¡

¢
and {} is  (), then  is 

¡
+

¢
and ( + )

is  ().

() If {} is 
¡

¢
and {} is  (), then  is 

¡
+

¢
and

( + ) is  (
).
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Definition 12: The sequence { ()} is at most of order n in prob-
ability, denoted 

¡

¢
, if there exists an  (1) nonstochastic sequence 

such that
 ()


− 

→ 0

When a sequence { ()} is 

¡

¢
, we say it is bounded in proba-

bility.

e.g. If  ∼  (0 2) with 2 ∞, then  is  (1) 

e.g. Note that

b1 − 1 =

P
=1

¡
 −

¢


P
=1

¡
 −

¢2 =
1√


1√


P
=1

¡
 −

¢


1


P
=1

¡
 −

¢2
Since

1√


X
=1

¡
 −

¢
 =  (1)

1



X
=1

¡
 −

¢2
=  (1)

therefore

b1 − 1 = 

¡
−12

¢
=  (1)

which means b1− 1
→ 0 or equivalently b1 → 1, i.e.

b1 is a consistent
estimator for 1.

We can also write
√

³b1 − 1

´
=  (1), as

√

³b1 − 1

´
converges

in distribution to a normal distribution, mathematically, we write
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√

³b1 − 1

´
→ 

⎛⎜⎜⎝0 2

lim
→∞

1


P
=1

¡
 −

¢2
⎞⎟⎟⎠

Definition 13: The sequence { ()} is of order smaller than n in
probability, denoted 

¡

¢
, if

 ()


→ 0

Proposition 2:Let  and  be random scalars.

() If {} is 

¡

¢
and {} is  (

), then  is 

¡
+

¢
and

( + ) is  (
), where  = max [ ].

() If {} is 
¡

¢
and {} is  (), then  is 

¡
+

¢
and

( + ) is  (
).

() If {} is 

¡

¢
and {} is  (), then  is 

¡
+

¢
and

( + ) is  (
).

Definition 14: Let  () be a sequence of real-valued random variables. If

there exists a real number  such that for every   0  (| ()− |  )→ 0

as →∞, then  () converges in probability to , written  ()
→ 

Definition 15: Let  () be a sequence of real-valued random variables.

If there exists a real number  such that  (| ()− |) → 0 as  → ∞
for some   0, then  () converges in the rth mean to , written

 ()
→ 

The most commonly encountered occurrence is that in which  = 2, in

which case convergence is said to occur in quadratic mean, denoted  ()
→



11.1. INTRODUCTION 227



A useful property of convergence in the  mean is that it implies con-

vergence in the  mean for   . To prove this, we first introduce the

Jensen’s inequality.

Proposition 3: (Jensen’s Inequality)

Let  :  →  be a convex function on an interval  ⊂  and let  be

a random variable such that  ( ∈ ) = 1. Then  ( ()) ≤  ( ())  If

g is concave on , then  ( ()) ≥  ( ()) 

e.g. 1: Let  () = ||. It follows from the Jensen’s inequality that

| ()| ≤  || 

e.g. 2: Let  () = 2. It follows from the Jensen’s inequality that

2 () ≤  (2) 

Theorem 1: If  ()
→  and   , then  ()

→ 

Proof: Let  () = ,   1,  ≥ 0. Then g is concave. set  = | ()− |
and  =




. From Jensen’s inequality,

 (| ()− |) = 
³
{| ()− |}

´
≤ { (| ()− |)}

Since (| ()− |)→ 0, it follows that (| ()− |)→ 0,  ()
→



Q.E.D.

Convergence in the  mean is a stronger convergence concept than

convergence in probability, and in fact implies convergence in probability.

To show this, we use the generalized Chebyshev inequality.
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Theorem 2: (Chebyshev’s Inequality)

If  is a r.v. with finite variance 2, then

 (| − |  ) ≥ 1− 1

2

 (| − | ≥ ) ≤ 1

2

Proof: (for continuous r.v.)

2 =

Z ∞

−∞
( − )

2
 () 

≥
Z −

−∞
( − )

2
 ()  +

Z ∞

+

( − )
2
 () 

≥
Z −

−∞
22 ()  +

Z ∞

+

22 () 

= 22 ( ≤ − ) + 22 ( ≥ + )

= 22 (| − | ≥ )

this implies

 (| − | ≥ ) ≤ 1

2

Q.E.D.

Proposition 4: (Generalized Chebyshev Inequality)

Let  be a random variable such that  || ∞   0. Then for every

  0,

 (|| ≥ ) ≤  ||


Setting  = 2 gives the familiar Chebyshev inequality.
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Theorem 3: If  ()
→  and   , then  ()

→ 

Proof: Let  =  ()−  and apply the Generalized Chebyshev inequal-

ity, for every   0

 (| ()− | ≥ ) ≤  | ()− |


Since  ()
→ , we have | ()− | → 0, and as a result  (| ()− | ≥ )→

0. Thus, we have  ()
→ 
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Chapter 12

Stationarity

Definition 1 A process  is said to be covariance-stationary or weakly

stationary if

 () =  ∞ for all 


¡
 2


¢
 ∞ for all 

 ( − ) (− − ) = || ∞ for all  and any  = ±1±2 

Notice that if a process is covariance-stationary, the covariance between

 and − depends only on , the length of time separating the observations.

Definition 2 A process is said to be strictly stationary if the joint distri-

bution of

( +1 +2 +) depends only on (1 2  )  for all , and

any 1 2   . i.e. The joint density

 ( +1 +2 +) =  ( +1 +2 +)

231
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for any  and .

Weakly stationary and strictly stationary do not imply each other, a

process can be strictly stationary but not weakly stationary. For example,

if the process has a Cauchy distribution, then its moments do not exist, so

it is not weakly stationary. But as long as its distribution does not change

over time, it is strongly stationary. It is also possible to imagine a process

that is covariance-stationary but not strictly stationary, e.g., the mean and

covariance are not functions of time, but perhaps higher moment such as

 ( 4
 ) and  ( 5

 ) are.

If a process is strictly stationary with finite second moments, then it must

be covariance-stationary.

12.1 AR(1) Process

Consider an autoregressive process of order 1

 = −1 + 

0 = 0

 ∼ 
¡
0 2

¢
We are interested in finding the mean and variance of the process .

Note that by repeating substitution, we can show that

 =  (−2 + −1) +  = 2−2 + −1 + 

= 2 (−3 + −2) + −1 + 

= 

=  + −1 + 2−2 + 3−3 + + −11
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=
−1P
=0

−

 () = 

µ
−1P
=0

−

¶
=

−1P
=0

 (−) = 0

  () =  

µ
−1P
=0

−

¶
=

−1P
=0

2  (−) = 2
−1P
=0

2

= 2
1− 2

1− 2
→ 2

1− 2
as →∞

As long as ||  1, the process  has a finite long run variance, and

it is covariance stationary. However, when  equals 1, the variance of  is

undefined as it explodes to infinity, and  is nonstationary. To see this

  () =  

Ã
−1X
=0

−

!
=

−1X
=0

  (−) = 2 →∞ as →∞

When  = 1, we call the process  an integrated process of order 1 ,

(1), or sometimes it is called the Unit-root Process, random walk process,

etc..

The (1) process is widely used in Economics, for example, in the stock

market, many people believe that the stock price is a random walk process,

in the sense that we cannot predict the future price of stock. Given the

information set Ω in period , the prediction of tomorrow stock price is

today’s price, mathematically speaking,

+1 =  + +1

 (+1|Ω) =  (|Ω) + (+1|Ω) =  + 0 = 
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12.2 AR(1) process with AR(1) error term

Consider the process

 = −1 + 

 = −1 + 

where  is iid and independent of −1.

We know that the OLS estimate for  is biased and inconsistent in this

case. We want to see what will it converge to. Note that

b =  +

P
=1

−1

P
=1

 2
−1

=  +

P
=1

−1

P
=1

 2
−1

→  +
lim
→∞

 (−1)

lim
→∞


¡
 2
−1
¢

−1 = −1 + −2 + 2−3 + 3−4 + + −21 =
−2P
=0

−−1

−1 =
−2P
=0

−−1

 (−1) = 

µ
−2P
=0

−−1

¶
=

−2P
=0

 (−−1)

=
−2P
=0

+12 = 2

−2P
=0

()

=

2
¡
1− ()−1¢
1− 

lim
→∞

 (−1) = lim
→∞

2
¡
1− ()−1¢
1− 

=
2
1− 

 2
−1 =

µ
−2P
=0

−−1

¶2
=

−2P
=0

22−−1 + 2
−3P
=0

−2P
=+1

+−−1−−1
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¡
 2
−1
¢
=

−2P
=0

2
¡
2−−1

¢
+ 2

−3P
=0

−2P
=+1

+ (−−1−−1)

=
−2P
=0

22 + 2
−3P
=0

−2P
=+1

+−2

= 2

−2P
=0

2 + 22

−3P
=0

2
−2P

=+1

−−

lim
→∞


¡
 2
−1
¢
= 2

∞P
=0

2 + 22

Ã
∞P
=0

2

!Ã
∞P

=+1

−−
!

=
2

1− 2
+ 22

µ
1

1− 2

¶µ


1− 

¶
=

1 + ¡
1− 2

¢
(1− )

2

Thus,

b →  +
lim
→∞

 (−1)

lim
→∞


¡
 2
−1
¢ =  +

2
1− 

1 + ¡
1− 2

¢
(1− )

2

=  +

¡
1− 2

¢
1 + 

Q.E.D.

Questions

1. Explain why the variance of an I(1) process does not exist.

2. (i) Find the limsup and liminf of the following sequences and determine

if the limits of these sequences exist.

a) { :  = (−1)   ≥ 1}
b)

½
 :  = (−1) 2


  ≥ 1

¾
c) { :  =  −   ≥ 1}
(ii) Which of the above sequences is(are)  (1), and which is(are)  (1)?

3. Suppose the business cycle of an economy can be divided into two states,

namely, the contraction , and the expansion , so that the sample space

Ω = {}. Find the corresponding −algebra and explain your answer.
*******

Thus far I have distributed three handouts to you. Each chapter is not
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simply a summary of the texts. It is written based on my past teaching

experiences on the similar courses. I would like to make the handout as self-

contained as possible. When I teach this course, I will make every concept

as clear as I can. When you study, do not just memorize the formula of an

estimator. You must ask yourself what is the purpose of this estimator, how

do you derive it, what is its distributional properties, what assumptions are

made, and what are the consequences of relaxing any one of the assumptions.

Does the model make economics sense? How could I improve the model?

This course used to be one of the most difficult undergraduate course in our

department as well as in most US schools. Students didn’t study this course

well largely because they do not pay attention in the very beginning. If you

understand the handout, pay attention in class, and finish the homework

on your own, you will be fine. Don’t skip classes unless you have special

reasons for doing so. If you find any difficulties in studying this course,

please approach me and speak out the problems. If you find any typo and

mistakes in the handout, please inform me also.

************

12.3 Revision of Optimization

If  () is a function of , its local minimum or local maximum ∗ is obtained

by solving
 ()


= 0

Evaluate at ∗ , if
2 ()

2
 0, it is a local minimum. If

2 ()

2
 0, it

is a local maximum.

If  ( ) is a function of  and , its local minimum or local maximum

(∗  ∗) is obtained by solving
 ( )


= 0 and

 ( )


= 0

Evaluate at (∗  ∗), if
2 ( )

2
 0,

2 ( )

2
 0, and

2 ( )

2
2 ( )

2
−
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2 ( )



¶2
 0, it is a local minimum.

If
2 ( )

2
 0,

2 ( )

2
 0, and

2 ( )

2
2 ( )

2
−
µ
2 ( )



¶2


0, it is a local maximum.

*************
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Chapter 13

Multicollinearity

13.1 Introduction

Multicollinearity, introduced by Ragnar Frisch in his book “Statistical Con-

fluence Analysis by Means of Complete Regression Systems,” published in

1934, nowadays refers to situations where there are two or more regressors be-

ing linearly related, so that it is difficult to disentangle their separate effects

on the dependent variable.

As we have mentioned before that, in a trivariate model, if the two re-

gressors are orthogonal to each other, in the sense that 12 = 0, then the

OLS estimate b1 will be the same in both the bivariate and trivariate mod-
els. Thus an additional regressor will be of no impact on the original slope

estimates as long as it is orthogonal to all the existing regressors. However,

if we add a new regressor which is not totally orthogonal to all the existing

regressors, then some distortions on the estimates are unavoidable. In the

extreme case, when the new regressor is perfectly linearly related to one or

more of the existing regressors, the new model is not estimable. We call this

problem the Perfect Collinearity.

239
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To show the problem more explicitly, consider the following model

 = 0 + 11 + 22 + 

If 2 = 21

The model is reduced to

 = 0 + (1 + 22)1 + 

Thus it is a simple regression model, and we can obtain the OLS estima-

tors b0 and \1 + 22. However, we cannot obtain estimates for 1 and 2,

which means the original trivariate model is not estimable.

Let 212 =
12

1122
. As long as 212 = 1, the trivariate model is not estimable,

since

b1 = 122 − 212

1122 − 212
=

122 − 212

1122 (1− 212)

b2 = 211 − 112

1122 − 212
=

211 − 112

1122 (1− 212)

are undefined. In general, if our model is

 = 0 + 11 + 22 + +  + 

The model is not estimable if there are constants 0 1 2   (at least

some of them are non-zero) such that for all ,

0 + 11 + 22 + +  = 0

Example 3 If there is multicollinearity, the OLS estimators will be biased.

True/False/Uncertain. Explain.
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Solution: False.

Consider the following model :

 = 0 + 11 + 22 + .

Then, OLS estimators are given by

b1 =
122 − 212

1122 (1− 212)
= 1 +

122 − 212

1122 (1− 212)
,

b2 =
211 − 112

1122 (1− 212)
= 2 +

211 − 112

1122 (1− 212)


b0 =  − b11 − b22.

Taking expectations on all estimators, we have


³b1´ = 1 +

 (1)22 − (2)12

1122 (1− 212)
,


³b2´ = 2 +

 (2)11 − (1)12

1122 (1− 212)



³b0´ = 

¡

¢−

³b1´1 −
³b2´2.

Since  (1) = 
³P

=1

¡
1 −1

¢


´
=
P

=1

¡
1 −1

¢
 () = 0

and  (2) = 0


³b1´ = 1, 

³b2´ = 2 and 
³b0´ = 0.

Thus, b0, b1 and b2 are unbiased estimators even though 212 6= 0.

Example 4 If there is multicollinearity, the OLS estimators will be incon-

sistent. True/False/Uncertain. Explain.
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Solution: False.

Consider the following model :

 = 0 + 11 + 22 + .

Then, OLS estimators are given by

b1 =
122 − 212

1122 (1− 212)
= 1 +

122 − 212

1122 (1− 212)
,

b2 =
211 − 112

1122 (1− 212)
= 2 +

211 − 112

1122 (1− 212)


b0 =  − b11 − b22.

Taking probability limits on all estimators, we have

 b1 = 1 + 
122 − 212

1122 (1− 212)
,

 b2 = 2 + 
211 − 112

1122 (1− 212)


 b0 = 
³
 − b11 − b22

´
.

In particular, we consider the term 
122 − 212

1122 (1− 212)
only.


122 − 212

1122 (1− 212)
=

 (122 − 212) 
2

 (1122 (1− 212)) 
2

=


1




22


− 

2




12




11




22


(1− 212)

=
 (1 )  (2)−  (2 ) (12)

  (1)  (2) (1− 212)

By the assumption of OLS,  (1 ) =  (2 ) = 0. Then,
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 b1 = 1.

Similarly, we can show that

 b2 = 2.

The probability limit of b0 is given by
 b0 = 

³
0 +

³
1 − b1´1 +

³
2 − b2´2 + 

´
= 0 +1

³
1 − b1´+2

³
2 − b2´+ 

1



X
=1



= 0 since 
b1 = 1, 

b2 = 2 and 
1



X
=1

 =  () = 0.

Thus, b0, b1 and b2 are consistent estimators even though 212 6= 0.

13.2 Consequences of near or highMulticollinear-

ity

Recall that if the assumptions of the classical model are satisfied, the OLS

estimators of the regression estimators are BLUE. The existence of multi-

collinearity does not violate any one of the classical assumptions, so if the

model is still estimable, the OLS estimator will still be consistent, efficient,

linear, and unbiased. So why do we care about multicollinearity? Although

multicollinearity does not affect the estimation, it will affect the hypothesis

testing.

1: Large Variances of OLS Estimators
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Consider the trivariate model

 = 0 + 11 + 22 + 

 
³b1´ =  

µ
122 − 212

1122 − 212

¶
=  

µ
122 − 212

1122 (1− 212)

¶
= 1

[1122(1−212)]
2  (122 − 212)

= 1

[1122(1−212)]
2 (  (122) +   (212)− 2 (122 212))

= 1

[1122(1−212)]
2 (

2
2211

2 + 21222
2 − 21222 (1 2))

= 1

[1122(1−212)]
2 (

2
2211

2 + 21222
2 − 2212222)

= 1

[1122(1−212)]
211

2
22 (1− 212)

2 =
2

11 (1− 212)

Similarly, it can be shown that

 
³b2´ = 2

22 (1− 212)

Thus, the variances of the estimators increase as the relationship between

regressors increase. In the extreme case, they explode when there is perfect

multicollinearity.

2: Wider Confidence Intervals

Because of the large standard errors, the confidence intervals for the rel-

evant population parameters tend to be larger. Therefore, in cases of high

multicollinearity, the chance of accepting the null hypothesis increases, hence

Type II error (Accept 0 when 0 is false) increases. Therefore, even if the

explanatory variable does individually explain the dependent variable well,

we may still tend to conclude that each of them is not significant if there is

multicollinearity.

3: Insignificant t Ratio
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Recall that the t statistic for the hypothesis 0 :  = 0 ( = 0 1 2  )

is

 =
brd  ³b2´

In cases of high collinearity, the estimated standard errors increase dra-

matically, thereby making the t values smaller for any given values of b.
Therefore, one will over-accept the null that  = 0

13.3 Detection of Multicollinearity

Multicollinearity is a question of degree and not of kind. The meaningful

distinction is not between its presence or absence, but between its various

degrees. Therefore, we do not test for multicollinearity but instead, measure

its degree in any particular sample.

Since multicollinearity refers to the condition of the explanatory variables

that are assumed to be nonstochastic, it is essentially a sample phenomenon,

arising out of the largely nonexperimental data collected in most social sci-

ences, we do not have one unique method of detecting it or measuring its

strength.

Our rule of thumb is, if we run a regression and find a High R2 but

few significant t Ratios, then this is a symptom of multicollinearity. If

2 is high, the F test in most cases will reject the hypothesis that the slope

coefficients are zero simultaneously. However, very few or even none of the

individual t tests will be significant.

Other symptoms of multicollinearity include: (1) Small changes in the

data can produce wide swings in the parameter estimates, and (2) Coefficients



246 CHAPTER 13. MULTICOLLINEARITY

will have the wrong sign or an implausible magnitude.

13.4 Remedial Measures

What can be done if multicollinearity is serious? The following methods can

be tried.

1. A priori information

Suppose we consider the model

 = 0 + 11 + 22 + 

Suppose a priori we believe or economic theory suggests that 1 = 22,

then we can run the following regression,

 = 0 + 221 + 22 + 

 = 0 + 2 + 

where  = 21 +2. Once we obtain b2, we can define b1 = 2b2.
2. Using first differences or ratios

Suppose we have

 = 0 + 11 + 22 + 

where 1 and 2 are highly collinear. To reduce the degree of collinear-

ity, we can still estimate 1 and 2 by the “first difference” model, i.e. we

estimate
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 − −1 = 1
¡
1 −1(−1)

¢
+ 2

¡
2 −2(−1)

¢
+ ( − −1)

Although the first difference model may reduce the severity of multi-

collinearity, it creates some additional problems. In the transformed model,

the new error terms ( − −1) is not serially independent as ( − −1 −1 − −2) =

−  (−1) = −2 6= 0. We will discuss the problem of serial correlation in

the next chapter. But here we alleviate multicollinearity at the expense of

violating one of the classical assumptions “serial independence”, this implies

that the Gauss-Markov theorem will not hold anymore, and the OLS esti-

mators are not BLUE in the “first difference” model. Further, since the new

observations become { − −1}=2, there is a loss of one observation due to
the difference procedure, and therefore the degrees of freedom are reduced

by one.

The problem is similar if we use ratios and estimate an equation of the

form



2

= 2 + 0
1

2

+ 1
1

2

+


2

Now the new residuals will be heteroskedastic.

3. Dropping a variable(s)

When faced with severe multicollinearity, the simplest thing to do is to

drop one of the collinear variables. However, we may commit a specification

error if a variable is dropped from the model. While multicollinearity may

prevent precise estimation of the parameters of the model, omitting a variable

may make the estimators inconsistent.
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4. Increasing the sample size

Since multicollinearity is a sample feature, it is possible that in another

sample the problem may not be as serious as in the first sample. Sometimes

simply increasing the sample size may attenuate the problem, for example,

in the trivariate model, we have

 
³b1´ = 2

11 (1− 212)
and  

³b2´ = 2

22 (1− 212)
since 11 and

22 increase as the sample size increases, hence  
³b1´ and   ³b2´ will

decline as a result.

5. Benign Neglect

If we are less interested in interpreting individual coefficients but more

interested in forecasting, multicollinearity is not a serious problem. We can

simply ignore it.

Questions:

1. Suppose the true model is

 = 0 + 11 + 22 + 

 are iid(0 
2), we have observations {12}=1 and run the fol-

lowing models:

b = b0 + b11 + b22

b = b0 + b11

b = b0 + b22
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Let 12 =
P
=1

¡
1 −1

¢ ¡
2 −2

¢
,

a. Compare the values of b1 and b1 when 12 = 0, 12  0, 12  0

b. Compare the values of b2 and b2 when 12 = 0, 12  0, 12  0

c. Compare the values of b0, b0 and b0 when 12 = 0, 12  0, 12  0

d. Redo (a), (b), and (c), by comparing their expectations.

e. Redo (a), (b), and (c), by comparing their variances.

2. Suppose we have observations {1 2}=1 with
11 =

P
=1

¡
1 −1

¢2
= 200

12 =
P
=1

¡
1 −1

¢ ¡
2 −2

¢
= 150

22 =
P
=1

¡
2 −2

¢2
= 113

1 =
P
=1

¡
1 −1

¢ ¡
 − 

¢
= 350

2 =
P
=1

¡
2 −2

¢ ¡
 − 

¢
= 263

and run the following models:

 = 0 + 11 + 22 + 

a. Calculate b1, b2, and 212. Is the problem of multicollinearity between

1 and 2 serious?

b. Suppose we drop an observation and obtain 11 = 199, 12 = 149,

22 = 112, 1 = 3475, 2 = 2615. Are the new estimates close to the

previous estimates in part (a) when using the full sample?

Example 3: Let  and  be two random variables with
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 ( ) =
¡
1− −

¢ ¡
1− −

¢
for   0 and   0

= 0 elsewhere

then

 ( ) =
2


 ( ) = −− for   0 and   0

= 0 elsewhere

 () =



 ( ) = −

¡
1− −

¢
for   0 and   0

= 0 elsewhere

 () =



 ( ) =

¡
1− −

¢
− for   0 and   0

= 0 elsewhere

Since  ( ) 6=  ()  (),  and  are not independent.

***

13.5 Functions of Random Variable

Suppose we would like to find the density function of a function of a particular

variable, say suppose  is a standard normal random variable, we know that

2 will have a 21 distribution. How do we derive the density function of a

21 from a  (0 1) ?
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Consider a random variable, let  (·) be a continuous, differentiable and
monotonic function, suppose the distribution function and density function

of  are  () and  () respectively, what is the density function of

 =  ()?

Denote the capital  as a random variable, and small letter  be a par-

ticular value. We know that

Pr ( ≤ ) = Pr ( () ≤  ())

= Pr ( ≤ ) 

 () =  () 

Differentiate with respect to  and use the fact that  and  must

take non-negative values, we have:

 () =  ()

¯̄̄̄




¯̄̄̄
or

 () =  ()

¯̄̄̄




¯̄̄̄


Substitute  by −1 ()

 () = 
¡
−1 ()

¢ ¯̄̄̄


¯̄̄̄


Example 5: If  = ln ( ) ∼  ( 2), then  = exp () will follow a

lognormal distribution. To find its density function, note that:

¯̄̄̄




¯̄̄̄
=

¯̄̄̄
1



¯̄̄̄
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 () =
1


√
2
exp

Ã
−1
2

µ
− 



¶2!


−1 () = ln 

We have

 () = 
¡
−1 ()

¢ ¯̄̄̄


¯̄̄̄
=

1


√
2
exp

Ã
−1
2

µ
ln  − 



¶2!
1




Example 6: What is the density function of  = 2 if: (a).  ∼
 (0 1); (b).  ∼  (0 1).

Solution:

(a) Given  = 2 and  ∼ (0 1) we have

 =  12 and



=
1

2
−12

By the transformation of random variable, the density function of  is

given by

 () = (
−1())

¯̄̄̄




¯̄̄̄


In particular,

 () =
1

2
−12 when 1    0.

When  ≤ 0,  () = 0.
(b) Given  = 2 and () =

1√
2
exp

∙
−

2

2

¸
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 () = Pr ( ≤ )

= Pr (−√ ≤  ≤ √)
=  ()−  (−) where  =

√


By differentiation, we have

 () = [ (
√
) +  (−√)]

µ




¶


Since  cannot be negative,  () = 0 when   0; the value of  (0) is

set equal to 0 arbitrarily As we know () = (−), it follows that

 () = 2 (
√
)

µ




¶
= 2

1√
2
exp

h
−
2

iµ1
2
−12

¶
=

1√
2

−12 exp
h
−
2

i
when   0

Note that  has a chi-square distribution.

Exercise 4: Let  ∼  (0 1), suppose  () ∼  (0 1), what is the

functional form of  ()?

******

Example 2: Let  and  be two independent standardized normal

random variables. Find:

(i) Cov(max { }) ; (ii) Var(max { }) 
Solution:

(i)
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(max{ })
=  [( −()) ( −())|   ] Pr (   )

+ [ ( −()) ( −( ))|   ] Pr(   )

=  [( −()) ( −())] Pr(   )

+ [( −()) ( −( ))] Pr(   )

(since  and  are independent)

=   ()

µ
1

2

¶
= (1)

1

2
=
1

2
 (since  ∼  (0 1) )

(ii) (max{ })
= 

£
( −( ))

2
¯̄
  

¤
Pr(   )+

£
( −())

2
¯̄
  

¤
Pr( 

 )

= 
£
( −( ))

2
¤
Pr(   ) +

£
( −())

2
¤
Pr(   )

(since  and  are independent)

= 1

Exercise 2: Let  and  be two independent standardized normal

random variables. Find:

i) Cov(min { }) ;
ii) Cov(min { } max { }) ;
iii) Var(min { }) 
*******************

Dependent but Identical Distribution

If all the  have the same distribution, but  depends on  for some

 6= .

e.g. if  is symmetrically distributed around zero for all  and  = −−1
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Independent but Non-Identical Distribution

If  does not depend on  for any  6= , but  and  have different

distributions.

e.g.   () = , in this case, the   () 6=   () for all  6= 

Dependent and Non-Identical Distribution

If  depends on  for some  6= , and  and  have different distribu-

tions.

e.g.  = −2−1
*****************

Note that we assume total independence and only require the existence

of the first and second moments in the above simplest versions. There are

many different versions of Law of Large Numbers and Central Limit The-

orem generated from the trade-off between degrees of dependence and the

moment requirements. In other words, we may allow and to be slightly

dependent, but we may require the existence of higher moments of . e.g.,

We may need  (4) ∞, etc.. Note that we only require the existence of
the first and second moments in the simplest version above.

*****

Of course, since b0 and b1 are estimators which are subjected to errors,
the predicted value of  also has error. The error depends on the location

of , and it will be shown that the error will be minimal when  is at 

Now we look at  
³b´ 

 
³b´ =  

³b0 + b1

´
=  

³
 − b1 + b1

´
=  

³
 + b1 ¡ −

¢´


Note that  and b1 are random variables since they depend on .
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Substituting  = 0 + 1 +  gives

 
³
0 + 1 + + b1 ¡ −

¢´
=  

³
+ b1 ¡ −

¢´
since 0 + 1 is constant and fixed

=   () +
¡
 −

¢2
 

³b1´ since  ³ b1 ¡ −
¢´
= 0 why?

=
2


+
¡
 −

¢2 2

P
=1

¡
 −

¢2 
Thus

 
³b´ =

⎛⎜⎜⎝ 1 +
¡
 −

¢2
P
=1

¡
 −

¢2
⎞⎟⎟⎠2

which is minimized when  equals  , and getting larger as  getting

farther away from 

Sometimes  and/or  are meaningless in some regions. For example, if

 is the quantity of any tangible product, it must be non-negative. But the

predicted value of  may be negative. Another example is when  is the

probability of something happening given the value of , we may predict 

to be negative or of values bigger than one. In such cases, we should use

other estimation methods instead of linear regression to make the forecast

sensible, e.g. Maximum Likelihood method or non-linear regressions.


