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Chapter 1

Probability and Distribution

Theory

1.1 Revision of the Summation Operator

The summation operator
P
has the following properties:

1. If  is a constant, then
P
=1

 = ;

2. If  is a constant, then
P
=1

 = 
P
=1

;

3.
P
=1

( + ) =
P
=1

 +
P
=1

;

4.
P
=1

( − ) = 0;

5.
P
=1

( − ) ( − ) =
P
=1

( − )  =
P
=1

( − );

6.

µ
P

=1



¶Ã
P

=1



!
=

P
=1

P
=1



= 11 + 12 + + 1 + 21 + + 2 + + 1 + +  ;

7.

µ
P
=1



¶2
=

P
=1

2 + 2
−1P
=1

P




Exercise 1.1:

(a) Compute

(i)
P3

=1 (+ 4) 
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8 CHAPTER 1. PROBABILITY AND DISTRIBUTION THEORY

(ii)
P3

=1 3


(iii)
P3

=1

P2

=1 

(iv)
P
=1

( − )

(b) True/False.

(i).
P
=1

( − ) = 1

(ii).
P
=1

 =
P
=1



(c) The daily return of a stock is defined as  = ln − ln−1, where

 is the closing price of a stock on day . Extract the daily closing price of

HUIYUAN JUICE [01886] from yahoo finance for the period 31/8/2013 to

31/8/2014. Let 2/9/2014 be day 1. Find the sample mean  = 1


P
=1

 and

sample standard deviation  =

r
1

−1
P
=1

( − )
2
, where  is the sample size.

Definition 1.1: A random experiment is an experiment satisfying

the following three conditions:

(i) All possible distinct outcomes are known a priori.

(ii) In any particular trial the outcome is not known a priori

(iii) It can be repeated under identical conditions.

For example, tossing a coin and throwing a dice are random experiments.

Definition 1.2: The sample space S is defined to be the set of all

possible outcomes of the random experiment. The elements of  are called

elementary events.

For example, when tossing a coin,  = {}, elementary events are
=head and =tail.

When throwing a dice,  = {1 2 3 4 5 6}, the elementary events are 1,
2, 3, 4, 5 and 6.

Definition 1.3: An event is a subset of the sample space. Every subset
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is an event. It may be empty, a proper subset of the sample space, or the

sample space itself. An elementary event is an event while an event may not

be an elementary event.

For example, when tossing a coin, the subsets of  are  {}  {} and
{}, where  is an empty set. The event “ and  appear at the same

time” belongs to 

Consider the sum of points in throwing two dices, the sample space is

 = {2 3 4 5 6 7 8 9 10 11 12}
The event that the sum is an even number will be

 = {2 4 6 8 10 12} 
The event that the sum is bigger than 13 will be , or a null event.

The event that the sum is smaller than 13will be {2 3 4 5 6 7 8 9 10 11 12},
or equal the sample space.

Axiom 1.1: Kolmogorov Axioms of Probability

Let  be an event, then

(i) 0 ≤ Pr () ≤ 1;
(ii) Pr () = 1;

(iii) Pr ( ∪) = Pr () + Pr () if ∩  =  where “ ∪ ” is the union
of sets, meaning “or”. “ ∩ ” stands for intersection of sets, meaning “and”.

Example 1.1: For what values of  can

Pr ( = ) = (1− ) 

serve as the values of the probability distribution of a random variable with

the countably infinite range  = 0 1 2 ?

Solution: Since

(i) 0 ≤ Pr( = ) ≤ 1 Thus, 0 ≤ (1− )  ≤ 1, which implies 0≤  ≤ 1.
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(ii) Pr ( = 0 or 1 or 2 or 3 or....) = 1;

(iii) Since the event “ =  and  = ” =  for all  6= , we have

Pr ( = 0 or 1 or 2 or 3 or....) = Pr ( = 0) + Pr ( = 1) + 

Further, by using property (ii), we have

∞X
=0

Pr( = ) = 1

∞X
=0

(1− ) = 1

(1− )

∞X
=0

 = 1

Thus, we rule out the cases where  = 0 and  = 1, since otherwise the

equality will not hold. Since  is strictly bigger than zero and strictly smaller

than one, we have

(1− )
1

1− 
= 1

1 = 1

Thus, any value of  with 0    1 is a solution.

Definition 1.4: The conditional probability of  occurring, given

that  has occurred is

Pr (|) = Pr ( ∩)
Pr ()

if  () 6= 0. If Pr () = 0, we define Pr (|) =
0 The result implies that

Pr ( ∩) = Pr (|) Pr () 

For example, consider a card game, let  be the event that a “Heart”

appears,  be the event that an “Ace” appears.



1.1. REVISION OF THE SUMMATION OPERATOR 11

Pr (Ace|Heart) = Pr (Ace ∩Heart)
Pr (Heart)

=
152

1352
=
1

13


Definition 1.5: Two events  and  are independent if and only if

Pr ( ∩) = Pr () Pr (), i.e., Pr (|) = Pr () 

The statement “if and only if” is different from “if”. When we say “A

if and only if B”, we mean “if A then B” and “if B then A” are both

true. Thus, “if and only if” is a formal definition. Therefore, if two events

are independent, we must have Pr ( ∩) = Pr () Pr (). If we known

Pr ( ∩) = Pr () Pr (), then  and  must be independent.

Exercise 1.2: Give two independent events and two dependent events.

Exercise 1.3: The Mark Six lottery is a lottery game conducted by

HKJC Lotteries Limited using the facilities of The Hong Kong Jockey Club.

Since its inception in 1975, the Mark Six has contributed over HK$24 billion

to the Hong Kong SAR Government Treasury and the Lotteries Fund, being

a fund that supports charitable causes in Hong Kong. To win the first prize

of the Mark Six, one needs to get 6 numbers correct out of a pool of 49

numbers indexed from 1 to 49. Suppose each number has the same chance

of being drawn,

(a) Find the probability of winning the first prize of the Mark Six.

(b) Suppose you have to bet 5 dollars for the first prize of 50,000,000

dollars. If there is only one first prize winner, find the expected gain (or loss)

of your game.

(c) Suppose Chinese people have preference over the "lucky" numbers 8,

18, 28, 38, and a large proportion of people like to put these numbers on

their Mark-Six tickets. Suppose the amount of money for the first the prize

is fixed, and has to be shared among winners. Should we avoid these "lucky"

numbers when buying Mark Six? Explain.
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Definition 1.6: A random variable  is a real-valued function of

the elements of a sample space. It is discrete if its range forms a dis-

crete(countable) set of real number. It is continuous if its range forms a con-

tinuous(uncountable) set of real numbers and the probability of  equalling

any single value in its range is zero.

Thus, the value of a random variable corresponds to the outcome of a

random experiment.

For example, tossing a coin is a random experiment, the outcomes are

represented by Heads and Tails. However, Heads and Tails are not real-value

numbers, thus Heads and Tails are not random variables. If we define  = 1

if the outcome is Head and  = 2 if the outcome is Tail, then  is a random

variable.

1.2 Probability Distribution Function and Den-

sity Function

Let ,  be two continuous random variables.

Definition 1.7: The probability distribution function of  is de-

fined as  () = Pr (−∞   ≤ )  with  (∞) = 1.

Definition 1.8: The density function is  () =
 ()


, with  () ≥

0, and  (−∞) =  (∞) = 0

Example 1.2: Let be a random variable evenly distributed in zero-one

interval, then

Pr (  0) = 0   0;

Pr (0 ≤  ≤ ) =  0 ≤  ≤ 1;
Pr (  ) = 0   1
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 () = 0   0

=  0 ≤  ≤ 1
= 1   1

 () = 0   0

= 1 0 ≤  ≤ 1
= 0   1

Definition 1.9: The joint distribution function of and  is defined

as  ( ) = Pr ( ≤  and  ≤ ). Their joint density function is  ( ) 

The relationship between  ( )   ( )   () and  () is:

 ( ) =

Z 

−∞

Z 

−∞
 ( ) 

 ( ) =
2


 ( ) 

 () =

Z ∞

−∞
 ( ) 

 () =

Z ∞

−∞
 ( ) 

Further,  (−∞−∞) = Pr ( ≤ −∞ and  ≤ −∞) = 0,  (∞∞) =
Pr ( ≤ ∞ and  ≤ ∞) = 1, and  ( ) ≥ 0.  and  are independent if

and only if  ( ) =  ()  () 

Exercise 1.4: Suppose a continuous random variable  has density

function

 (; ) = + 05 for −1    1

 (; ) = 0 otherwise

(i) Find values of  such that  (; ) is a density function.
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(ii) Find the mean and median of .

(iii) For what value of  is the variance of  maximized.

Exercise 1.5: Suppose the joint density of  and  is given by:

 ( ) = 2 for   0   0, +   1

 ( ) = 0 otherwise

Find

(i) Pr
¡
 ≤ 1

2
and  ≤ 1

2

¢


(ii) Pr
¡
 +   2

3

¢


(iii) Pr (  2 ) 

Exercise 1.6: Let  be a discrete random variable with the probability

distribution as follows:

 = −1 with probability 1
2


 = 1 with probability
1

2


Suppose we draw two observations, 1 and 2 independently from this

distribution. For the following  variables, what are the possible values that

 will take and what is the associate probability of each value?

(a)  = 2.

(b)  =
1

2

.

(c)  = 

(d)  = min{12}

Exercise 1.7: Let  be a discrete random variable with the probability

distribution as follows:
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 = −2 with probability 1
3
;

 = 0 with probability
1

3
;

 = 2 with probability
1

3


Suppose we draw two observations, 1 and 2 independently from this

distribution.

For the following  variables,

(a)  =
1 +2

2
;

(b)  = 2
1 +2

2 ;

What are the possible values that ? What is the probability for each

possible value? (e.g., write it in the form Pr ( = 0) = 05 and so on).

Exercise 1.8: Let ,  be two independent identical discrete random

variable with the probability distribution as follows:

 = −1 with probability 1
2


 = 1 with probability 1
2


 = −1 with probability 1
2


 = 1 with probability 1
2


Find the distribution of  if:

a)  =  −  .

b)  =





c)  = max { } 

Exercise 1.9: If  and  are two continuous random variables, then

 +  must be continuous too. True or false? Explain.
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Exercise 1.10: Let  be a random variable with a symmetrical distrib-

ution about zero and a finite variance. Give a random variable  such that

 and  are uncorrelated but not independent.

1.3 Mathematical Expectation

Definition 1.10: The first moment, mean or expected value of a

random variable , is defined as:

 () =
X


 () if  is discrete

 () =

Z ∞

−∞
 ()  if  is continuous

It has the following properties: For any random variables ,  and any

constants , .

()  () = ;

()  ( ()) =  () ;

()  () =  () ;

()  ( +  ) =  () +  ( ) 

Other measures of central tendency are the median, which is the value

that is exceeded by the random variable with probability one-half, and the

mode, which is the value of  at which  () takes its maximum.

Exercise 1.11: True/False/Uncertain. Explain.

(a).
1

 ()
= 

µ
1



¶


(b) Let  and  be two independent random variables, if 

µ




¶
 1,

then
 ()

 ( )
 1.
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Definition 1.11: The second moment around the mean or vari-

ance of a random variable is

  () =  ( − ())
2
=  (2)−2 () =

P


( − ())
2
 ()

if  is discrete.

  () =

Z ∞

−∞
(− ())

2
 ()  if  is continuous.

It has the following properties: for any random variables ,  and any

constant ,

()   () = 0;

()   () = 2  () ;

()   ( ±  ) =   () +   ( )± 2 ( ) if  and  are

not independent;

()   ( ±  ) =   () +   ( ) if  and  are independent.

Note:   ( −  ) 6=   ()−   ( )!

Definition 1.12: The covariance of two random variables  and  , is

defined as ( ) =  ( − ()) ( − ( )) =  ( )− () ( ),
where

 ( ) =
P


 Pr ( ) if  and  are discrete.

 ( ) =

Z ∞

−∞

Z ∞

−∞
 ( )  if  and  are continuous.

 ( ) =  () ( ) if  and  are independent, i.e., if  and  are

independent, ( ) will be equal to zero. However, the reverse is not

necessarily true.

Example 1.3: Let,  , and  be three random variables, if () 6=
0 and  () 6= 0, then  ( ) 6= 0 True/False/Uncertain. Explain.

Solution: The statement is false. Consider the following counter exam-

ple:

Define  =  +  where  and  are defined to be independent and

 () and  ( ) 6= 0.
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() = ( + )

= () + ()

=  () 6= 0
(  ) =  ( ) 6= 0 similarly.
( ) = 0 (given)

(Note that independence of  and  implies ( ) = 0.)

Definition 1.13: The correlation coefficient between  and  is

defined as:

 =
( )p

  ()  ( )


Example 1.4: Prove that for any two random variables  and  , −1 ≤
 ≤ 1

Solution: For any random variables  and  , and any real-valued con-

stant , we have

 ( +  ) ≥ 0

  () + 2(  ) +   ( ) ≥ 0

  () 2 + 2( )+   ( ) ≥ 0

since the variance for any random variable is positive.

Consider the solution of a quadratic equation in ,

2 + +  = 0

The solution is

∗ =
−±√2 − 4

2
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There will be two solutions if 2 − 4  0, 1 solutions if 2 − 4 = 0,
and no solution if 2 − 4  0.
In our case,  =   () ≥ 0,  = 2( ),  =   ( ) 

Since for any value of  the function 2+ +  ≥ 0, it means 2+ + 

never cross the X-axis, so there is at most 1 solution of t such that 2++ =

0. When 2 + +   0, there is no solution.

Hence, we have 2 − 4 = 0 or 2 − 4  0
It implies that 2 − 4 ≤ 0, or
(2( ))

2 − 4  ()  ( ) ≤ 0
⇐⇒ (( ))

2 ≤   ()  ( )

⇐⇒ (( ))
2

  ()  ( )
≤ 1

⇐⇒ −1 ≤ ( )p
  ()  ( )

≤ 1

Exercise 1.12: The daily return of a stock is defined as  = ln −
ln−1, where  is the closing price of a stock on day . Extract the daily

closing price of [5] Hong Kong Bank and [11] Hang Seng Bank from yahoo

finance for the period 31/8/2013 to 31/8/2014. Let 2/9/2013 be day 1. Let

  be the daily return of Hong Kong Bank and Hang Seng Bank

from 2/9/2013-31/8/2014 respectively.

(a) Plot (, ) on the X-Y plane.

(b) Calculate the sample variance of  and ,

(c) Calculate the sample covariance of  and 

(= 1


P
=1

( − ) ( − ) and the sample correlation co-

efficient.

Exercise 1.13: Let ,  ,  , and  be random variables, and , , , 

be constants. Show that:

(a)   ( + ) =   (− − ).

(b)  (  ) =  ( ).

(c)  () =   () 
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(d) ( +   + ) =  ( )+ ()+ ( )+

 () 

Suppose  = 3 + 5, and  = 4− 8 .
(e) Is  = 1? Prove or disprove.

(f) Is  = ? Prove or disprove.

Exercise 1.14: True/False/Uncertain. Explain. Let  be a random

variable, then

(a).  ( ()) = 0

(b).  ( ()) =   () 

(c).  ( ()) =   ( ()) 

(d).   (()) = 0

(e).  

µ
1



¶
=

1

 ()


Exercise 1.15: True/False/Uncertain. Explain. Let  and  be two

random variables.

(a) If  (2  2) = 0, then  ( ) = 0.

(b) If and  are independent, then (2  2)   ( ). True/False/Uncertain.

Explain.

(c). If  is symmetrical about zero,  = , and  =
1


, then

 () = 1

(d). If  and  are dependent, let  =  , then  () =

( ) ()

Exercise 1.16: A Poisson random variable X has the following distrib-

ution

Pr ( = ) =
−

!
 = 0  1 2 

where ! =  ( − 1) ( − 2) 1
(a) Graph the distribution of X for  = 0 1 2 3 4.

(b) Find the mean of .

(c) Find the variance of .
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1.4 Special Probability Distributions

1.4.1 Uniform Distribution

 ∼  (0 1) means  is evenly distributed in the interval [0 1], its density

function is defined as:

 () = 1 for  ∈ [0 1] ;
 () = 0 elsewhere.

The distribution function is then

 () = 0 for  ≤ 0;
 () =  for  ∈ (0 1) ;
 () = 1 for  ≥ 1

The mean is obviously equal to
1

2
. To calculate the variance, note that

  () = 
¡
2
¢−2 () = 

¡
2
¢−µ1

2

¶2
=

Z 1

0

2 () − 1
4
=

Z 1

0

2− 1
4

=

∙
3

3

¸1
0

− 1
4
=
1

3
− 1
4
=
1

12


Exercise 1.17: If ∼  (0 1), find (i) Pr (  0) ;(ii)Pr ( ≤ 1) ;(iii)Pr (  0) ;(iv)

Pr ( ≤ 05) ;(v) Pr (  07) ;(vi) Pr (04   ≤ 08) ;(vii) Pr ( = 08) 

Note that the area under the density function has to sum up to 1, so if

we have a random variable which is uniformly distributed between 1 and 3,

i.e., if  ∼  (1 3), then its density function is

 () =
1

2
for  ∈ [1 3] ;

 () = 0 elsewhere.
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The distribution function will be

 () = 0 for  ≤ 1;

 () =
− 1
2

for  ∈ (1 3) ;
 () = 1 for  ≥ 3

Exercise 1.18:

(a) If  ∼  (1 2), find (i)  () ; (ii)  () ; (iii)  () ; (iv)   () 

(b) If  ∼  ( ), where   , find (i)  () ; (ii)  () ; (iii)  () ;

(iv)   () 

1.4.2 Normal Distribution

The normal distribution is the most commonly used distribution, many vari-

ables in the real world follow approximately this distribution.

A random variable which follows a normal distribution with mean  and

variance 2 can be expressed as ∼  ( 2). Its density function is defined

as:

 () =
1


√
2
exp

Ã
−1
2

µ
− 



¶2!
 −∞   ∞

-4 -3 -2 -1 0 1 2 3 4

0.1

0.2

0.3

0.4

x

y

N(0,1)

Exercise 1.19:
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(a) If ∼  (1 4), find (i) Pr (  0) ;(ii)Pr ( ≤ 1) ;(iii)Pr (  0) ;(iv)

Pr ( ≤ −1) ;(v) Pr (  2) ;(vi) Pr (1   ≤ 3) ;(vii) Pr ( = 1) 

(b) If two normally distributed random variables are uncorrelated, then

they are independent. True/False/Uncertain. Explain.

(c)Let   and  be the daily return of [5] Hong Kong

Bank, [11] Hang Seng Bank and [13] Hutchison from 2/9/2013-31/8/2014

respectively.

(i)With the help of computer, plot the histograms of   and

.

(ii) From visual inspection, are they normally distributed?

1.4.3 Standardized Normal Distribution

If  ∼  ( 2), then  =
 − 


follows  (0 1). Its density function is

defined as:

 () =
1√
2
exp

µ
−1
2
2
¶
 −∞   ∞

Example 1.5: If  ∼  (3 4), then  =
 − 3
2

follows  (0 1).

Pr (1 ≤  ≤ 5) = Pr

µ
1− 3
2
≤  − 3

2
≤ 5− 3

2

¶
= Pr (−1 ≤  ≤ 1) ' 067

Exercise 1.20: If ∼  (0 1), find (i) Pr (  0) ;(ii)Pr ( ≤ 1) ;(iii)Pr (  0) ;(iv)

Pr ( ≤ −1) ;(v) Pr (  2) ;(vi) Pr (1   ≤ 3) ;(vii) Pr ( = 1) 

Exercise 1.21: Let 1, 2 be independent  (0 1) random variables, let

 = min {1max {1 2}} 
(a) What is the distribution of ?

(b) Find  () and   ().
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Exercise 1.22: Let  be a  (0 1) random variable

(a) Write down the distribution of 2.

(b) Given that   (2) = 2, find  (4).

(c) Are  and 2 uncorrelated? Explain.

1.4.4 The Lognormal Distribution

When we study the relationship between a person’s IQ score and his income,

we find that they are positively correlated. A person with a higher IQ score

usually makes more money than a person with a lower IQ score. IQ scores are

approximately normally distributed, while the distribution of income skews

to the right and has a long right tail. Thus, it appears that IQ score and

income do not have a linear relationship. We use the lognormal distribution

to approximate the distribution of income. The lognormal distribution is

defined as follows:

If  ∼  ( 2), and  = ln , or equivalently  = exp (), then 

follows a lognormal distribution.

Its density function is:

 () =
1


√
2
exp

Ã
−1
2

µ
ln  − 



¶2!
 for 0   ∞

 () = 0, for  ≤ 0

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

x

y

Distribution of Y when lnY is N(0,1).
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Thus, if  is the  score,  is the income of an individual, then we can

treat  as a normally distributed random variable and  as a lognormally

distributed random variable.

Exercise 1.23: If ∼  (0 1), = ln , find (i) Pr (  0) ;(ii)Pr ( ≤ 1)
;(iii)Pr (  0) ;(iv) Pr ( ≤ −1) ;(v) Pr (  2) ;(vi) Pr (1   ≤ 3) ;(vii) Pr ( = 1) 

1.4.5 Chi-square Distribution

Chi-squared distribution

If  ∼  (0 1), then 2 follows a Chi-squared distribution with 1 degree

of freedom.

Example 1.6: If  ∼  (0 1), then  = 2 follows 21.

Pr (0 ≤  ≤ 1) = Pr (−1 ≤  ≤ 1) ' 067,
Pr (0 ≤  ≤ 4) = Pr (−2 ≤  ≤ 2) ' 095,
Pr (0 ≤  ≤ 9) = Pr (−3 ≤  ≤ 3) ' 099.
Thus, a Chi-squared random variable must take non-negative values, and

the distribution has a long right tail.

If 1 2   are independent (0 1), then  = 21 + 22 +  + 2

follows chi-squared distribution with  degrees of freedom, and we write it

as 2.

The mean of a chi-squared distribution equals its degrees of freedom. This

is because


¡
2
¢
=   () +2 () = 1 + 0 = 1

and thus

 () = 
¡
21 + 22 + + 2

¢
= 

It density function of  is
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 () =

−2
2 −2

22Γ (2)
 0   ∞

 () = 0 elsewhere

where Γ () = (− 1)Γ (− 1), Γ (1) = 1 and Γ
¡
1
2

¢
=
√


A Chi-square random variable must take non-negative values, and the

distribution has a long right tail.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

x

y

Chi-square distributions with d.f.=1, 3.

Exercise 1.24: If  ∼  (0 1),  = 2, find (i) Pr (  0) ;(ii)Pr ( ≤ 1)
;(iii)Pr (  0) ;(iv) Pr ( ≤ −1) ;(v) Pr (  2) ;(vi) Pr (1   ≤ 3) ;(vii) Pr ( = 1) 

1.4.6 Exponential Distribution

For   0, if the random variable X has an exponential distribution with

mean , then  has the following density function.

 () =
1


− 0   ∞

 () = 0 elsewhere

Note that a chi-squared distribution with degrees of freedom equal 2 is

identical to an exponential distribution with  = 2.
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Exercise 1.25: If  is an exponential distribution with mean 2, find (i)

Pr (  0) ;(ii)Pr ( ≤ 1) ;(iii)Pr (  0) ;(iv) Pr ( ≤ −1) ;(v) Pr (  2) ;(vi)

Pr (1   ≤ 3) ;(vii) Pr ( = 1) 

1.4.7 Student’s t-Distribution

If  ∼  (0 1),  ∼ 2, and  and  are independent, then:

 =
p


has a t-distribution with  degrees of freedom.

The t-distribution was introduced by W. S. Gosset, who published his

work under the pen name “Student”. The density function of the t-distribution

with degrees of freedom  is given by

 () =
Γ
¡
+1
2

¢
Γ
¡

2

¢√

¡
1 + 2



¢+1
2

−∞   ∞

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

x

y

t-distributions with d.f.=1,10.

The t-distribution has a thicker tail than the normal distribution. When

the degree of freedom goes to infinity, that is when  →∞, the t-distribution
becomes a standardized normal distribution.

This is because as  →∞, the random variable




=

21 + 22 + + 2
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which is the sample average of 2 , ( = 1 2 ) will converge to the true

mean of 2 , i.e.,  (
2
 ). Since  (

2
 ) =   () +2 () = 1 + 0 = 1, we

have




=

21 + 22 + + 2


→ 1

Thus,

 =
p


→ √
1
=  ∼  (0 1) 

Hence, a t-distribution with degrees of freedom infinity is a standardized

normal distribution. You may check the t-table to see if those critical values

for large degrees of freedom are close to the critical values from a  (0 1)

table.

Exercise 1.26: If the random variable  has a t-distribution with de-

gree of freedom 5, find (i) Pr ( ≤ 0) ;(ii)Pr (  0267) ;(iii)Pr (  0727) ;(iv)
Pr ( ≤ 1476) ;(v) Pr (  2015) ;(vi) Pr (2571   ≤ 3365) ;(vii) Pr ( = 1) 

1.4.8 Cauchy Distribution

Let 1 and 2 be independent and follow  (0 1), then the ratio

 =
1

2

will have a Cauchy distribution. A Cauchy distribution is a t-distribution

with 1 degree of freedom.

Its density has the form:

 () =
1

 (1 + 2)
 −∞   ∞

For most distributions, the mean and variance are finite. However, the

mean and variance of a Cauchy distribution do not exist. In other words,

when we draw a sample of size  from a Cauchy distribution, the sample
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average will not converge to a constant no matter how large the sample size

is.

Exercise 1.27: If the random variable  has a Cauchy distribution,

find (i) Pr ( ≤ 0) ;(ii)Pr (  0325) ;(iii)Pr (  1) ;(iv) Pr ( ≤ 3078) ;(v)
Pr (  6314) ;(vi) Pr (12706   ≤ 31821) ;(vii) Pr ( = 1) 

1.4.9 F-Distribution

If  ∼ 2 and  ∼ 2, and if  and  are independent of each other, then

 =




has an F-distribution with  and  degrees of freedom.

Note that:

 (1 ) = 2

The density function of the F-distribution with degrees of freedom ()

is given by

 () =
Γ
¡
+
2

¢
Γ
¡

2

¢
Γ
¡

2

¢ ³


´
2

(

2
−1)
³
1 +





´−+

2

for 0 ≤  ∞

and

 () = 0 for   0
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0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

x

y

F-distributions with d.f.=(1,1) and (3,4).

The F-distribution was named after Sir Ronald A. Fisher, a remarkable

statistician of this century.

Example 1.7: Let 1,..., , +1 be independent  (0 1) random

variables, let

 = 21 + 22 + 23 + + 2−1 + 2

(a) What is the distribution of ? Find  ().

(b) What are the distributions of
+1p


and
2+1


?

(c) If we define another random variable  =  − 2+1 , then  must

have a Chi-square distribution with degrees of freedom  − 1, true or false?
Explain.

Solution:

(a)  ∼ 2.

() = (21 + 22 + + 2)

= (21) +(22) + +(2)

= 1 + 1 + + 1 since (2 ) =  () + [()]
2
for  = 1 2  

= 
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(b) Since +1 and  are independent,
+1p


∼  and
2+1


∼  (1 ).

(c) This statement is false. It is possible that 2+1   and hence   0.

Since, as we know, chi-square distribution should be positive,  does not

have a chi-square distribution.

Exercise 1.28: If the random variable  has a F-distribution with de-

grees of freedom (1 5), find (i) Pr ( ≤ 0) ;(ii)Pr (  0071289) ;(iii)Pr (  0528529) ;(iv)

Pr ( ≤ 2178576) ;(v) Pr (  4060225) ;(vi) Pr (6610041   ≤ 11323225) ;(vii)
Pr ( = 1) 

Exercise 1.29: Let 1, 2 be independent  (0 1) random variables,

and let

 =
1

2


 = 12

(a) Write down the distribution of  .

(b) Is the distribution of  a 22? Why?

Exercise 1.30: For   4, let 1,...,  be independent  (0 1) random

variables, and let

 = 21 + 22 + 23 

 = 24 + 25 + 26 + + 2−1 + 2 

(a) What are the distributions of  and  ? Find  () and  ( ).

(b) What is the distribution of
3

 ( − 3) ? Find 

µ
3

 ( − 3)
¶
and

 ( ).

Exercise 1.31: True/False.

(a). A Cauchy distribution is a t-distribution with 1 degree of freedom.
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(b). A Cauchy distribution is special case of uniform distribution.

(c) An F distribution is a t-distribution with 1 degree of freedom.

Exercise 1.32: Let be a discrete random variable with the probability

distribution as follows:

 = 2 with probability
1

2
for  = 1 2 3 

(a) Find ().

(b) Find 

µ
1



¶
and Var

µ
1



¶
.

Exercise 1.33: True/False/Uncertain. Explain.

(a).

µ
P
=1

( − ) 

¶2
≤

P
=1

( − )
2

P
=1

( − )
2


(b). Let  and  be three random variables, then

 ( )) =  ( )) 

(c). If two random variables and  are independent, then (2  2) =

0

(d). The Central Limit Theorem states that the sample average has a

uniform distribution when sample size is large.

Exercise 1.34: Suppose you are invited to play a game of coin flipping.

The possible outcomes are {H, T}. If H appears in the  trial ( = 1 2 ),

your payoff is HK$ 2 and the game stops. Let  be your payoff. It is a

discrete random variable with the probability distribution as follows:

 = 2 with probability
1

2
for  = 1 2 3 

(a) What is the expected payoff () of this game?
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(b) Suppose you need to pay an amount of money in order to play this

game. Suppose you will play the game as long as the ()   , should

you play the game if (i)  =HK$ 2 and (ii)  =HK$ 2 million?

(c) In reality, will you play this game, assuming that there is no budget

constraint problem.

(d) Suppose your utility (or happiness) of having  dollar is () =

log, i.e., your have a diminishing utility in money. Suppose you do not

have any money to begin with. Show that your expected utility (()) of

this game is (()) =
P∞

=1

1

2
log 2.

(e) Show that (()) = log 4 ∞.

(f) Suppose you will play the game as long as the (())  log , will

you play the game if (i)  =HK$ 2 and (ii)  =HK$ 2 million? Explain.

Exercise 1.35: Suppose  ∼ (0 1). We define a new random variable

 , where

 = 1− if   0

and

 = − if  ≤ 0

(a) Find ( ).

(b) Does  takes continuous or discrete values?

(c) Let  =  +  , what values will  take? What is the associated

probability for each value? Is  a discrete or a continuous random variable?
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(d) Find ().

1.5 More Demanding Material

Theorem 1.1: (Chebyshev’s Inequality) If  is any random variable

with finite variance 2 and  is a finite positive constant, then

Pr (| − | ≥ ) ≤ 1

2


Proof. (for continuous random variable)

2 =

Z ∞

−∞
(− )

2
 () 

≥
Z −

−∞
(− )

2
 () +

Z ∞

+

(− )
2
 () 

≥
Z −

−∞
22 () +

Z ∞

+

22 () 

= 22 ( ≤ − ) + 22 ( ≥ + )

= 22 (| − | ≥ ) 

this implies

 (| − | ≥ ) ≤ 1

2


Theorem 1.2: (Jensen’s Inequality) Let  :  →  be a convex

function on an interval  ⊂  and let  be a random variable such that

 ( ∈ ) = 1. Then  ( ()) ≤  ( ()) 

Proof. (exercise)

Example 1.6: Let  () = ||. It follows from Jensen’s inequality that

| ()| ≤  || 

Example 1.7: Let  () = 2. It follows from Jensen’s inequality that

2 () ≤  (2) 
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Theorem 1.3: For random sample of size  from an infinite population

which has the value  () at , the probability density of the  order

statistic  is given by

 () =
!

( − 1)! (− )!

∙Z 

−∞
 () 

¸−1
 ()

∙Z ∞



 () 

¸−
for 1 ≤  ≤  ≤  ≤ 

Proof. Suppose we divide the real line into 3 intervals, (−∞ ], ( +]

and (+∞), then the probability that − 1 of the sample values fall into
the first interval, one falls into the second interval, and  −  fall into the

last interval is

Pr (   ≤  + )

=
!

( − 1)!1! (− )!
[Pr ( ≤ )]

−1
Pr (   ≤  + ) [Pr (   + )]

−


Let → 0 and use the facts that lim→0
1


Pr (   ≤  + ) =  ()

and lim→0
1


Pr (   ≤  + ) =  (), we have

 () =
!

( − 1)! (− )!

∙Z 

−∞
 () 

¸−1
 ()

∙Z ∞



 () 

¸−
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Chapter 2

Matrix

2.1 Vectors

Definition 2.1: Letting  denote the 
 observation where  goes from 1

to , the × 1 vector x is represented as

x =

⎛⎜⎜⎜⎜⎝
1

2
...



⎞⎟⎟⎟⎟⎠ 

Definition 2.2: The transpose of x is defined as x0 =
³
1 2 · · · 

´


The vector x with  elements represents, geometrically, a point in the

-dimensional Euclidean space. Note that, if the x-y axis rotates, the cor-

responding value of a vector may change. For example, consider a vector

x =

Ã
4

3

!
. If the x-y axis rotate anti-clockwise such that the original point

fall into the new x-axis, then the new vector will be read as

Ã
5

0

!


Definition 2.3: The inner product of two k by 1 vectors x and y is

37
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x0y =
³
1 2 · · · 

´
⎛⎜⎜⎜⎜⎝

1

2
...



⎞⎟⎟⎟⎟⎠ = 11 + 22 + +  =

X
=1



Definition 2.4: Two  by 1 vectors x and y and perpendicular (or called

orthogonal) if x0y = y0x = 0

Definition 2.5: The length of a vector x is defined as  = (x0x)
1
2 =p

21 + 22 + · · ·+ 2

The sum of two × 1 vectors can be defined as

x+ y =

⎛⎜⎜⎜⎜⎝
1

2
...



⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝

1

2
...



⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 + 1

2 + 2
...

 + 

⎞⎟⎟⎟⎟⎠ 

Two vectors x and y are linearly dependent if for some non-zero constants

 and ,

x+ y =

⎛⎜⎜⎜⎜⎝
1 + 1

2 + 2
...

 + 

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0

0
...

0

⎞⎟⎟⎟⎟⎠ = 0

Exercise 2.1: Plot the following x and y vectors. Are x and y orthogo-

nal? Are x and y linearly dependent?

(a) x =

Ã
1

0

!
y =

Ã
0

1

!
; (b) x =

Ã
1

1

!
y =

Ã
1

−1

!
;

(c) x =

Ã
1

0

!
y =

Ã
2

0

!
; (d) x =

Ã
1

1

!
y =

Ã
−1
−1

!
;

(e) x =

Ã
1

1

!
y =

Ã
1

2

!
.
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Exercise 2.2: Let x =

⎛⎜⎝ 1

2

4

⎞⎟⎠ y =

⎛⎜⎝ 3

6

12

⎞⎟⎠. Find
(a) x0 and y0

(b)  and 

(c) x+ y

(d) x0y and y0x Are x and y orthogonal?

(e) Are x and y linearly independent.

Exercise 2.3: Consider the P/E and dividend of the following stocks as

of 14/9/2011.

[4] [19] [267]

Wharf Holding Swire Pacific A Citic Pacific

 332 379 570

(%) 232 363 324

(a) Treat the data as three 2 × 1 vectors, plot the three vectors (using
P/E as the x-axis and Dividend as the y-axis).

(b) Now treat the data as two 3 × 1 vectors called PE and Dividend.
Let

h =

⎛⎜⎝ 1

1

1

⎞⎟⎠ 

x = PE− 1
3
h0 (PE)h

y = Dividend− 1
3
h0 (Dividend)h

(i) Find h0PE. Are h and PE orthogonal to each other?

(ii) Find h0Dividend. Are h and Dividend orthogonal to each other?

(iii) Find h0x. Are h and x orthogonal to each other?

(iv) Find h0y. Are h and y orthogonal to each other?
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2.2 Matrix

Definition 2.6: A ×  matrix  is defined as

 =

⎛⎜⎜⎜⎜⎝
11 12 · · · 1

21 22 · · · 2
...

...
. . .

...

1 2 · · · 

⎞⎟⎟⎟⎟⎠ 

If  = , the matrix is called a square matrix.

Definition 2.7: The transpose of  is defined as

 0 =

⎛⎜⎜⎜⎜⎝
11 12 · · · 1

21 22 · · · 2
...

...
. . .

...

1 2 · · · 

⎞⎟⎟⎟⎟⎠
0

=

⎛⎜⎜⎜⎜⎝
11 21 · · · 1

12 22 · · · 2
...

...
. . .

...

1 2 · · · 

⎞⎟⎟⎟⎟⎠ 

Definition 2.8: The determinant of a 2 by 2 matrix  =

Ã
 

 

!
is

written as || and is equal to − .

The determinant of a  by  matrix is more complicated. One may

calculate it with the help of a computer. This note will use 2 by 2 matrices

as examples for simplicity.

For two  by  matrices  and  , the determinant has the following

properties:

(a) || = | 0| 
(b) If there is a zero row or zero column in , then || = 0
(c) If any two rows (columns) are linearly dependent, then || = 0
(d) The determinant of  equals the product of their determinants, i.e.,

| |=|| | | 
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Definition 2.9: The trace of a square matrix, written as tr(), is the

sum of the diagonal elements. In the above 2 by 2 matrix, tr() = + .

For  by  matrices  and  , the trace has the following properties:

(a) tr() =tr( 0) 

(b) tr( ±  ) =tr()±tr( ) 
(c) tr( ) =tr( ) 

(d) tr( −1 ) =tr() 

(e) For any constant , tr() = tr().

Exercise 2.4: True/ False. Explain. For a  by  matrices  and  ,

(i)| +  | = ||+ | | 
(ii) tr( )=tr()×tr( ) 

Hint: If the statement is true, prove it mathematically. If the statement

is false, give a counter example.

Example 2.1: Let  =

Ã
1 2 2

3 4 5

!
,  =

Ã
2 3 1

6 0 1

!


Find

(a)  0 and  0

(b)  + 

(c)  0 ,  0  0 and   0

(d) Are x and y linearly independent.

Solution:

(a)  0 =

⎛⎜⎝ 1 3

2 4

2 5

⎞⎟⎠ and  0 =

⎛⎜⎝ 2 6

3 0

1 1

⎞⎟⎠ ;
(b)  +  =

Ã
3 5 3

9 4 6

!
;

(c)  0 =

⎛⎜⎝ 1 3

2 4

2 5

⎞⎟⎠Ã 2 3 1

6 0 1

!
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=

⎛⎜⎝ 1× 2 + 3× 6 1× 3 + 3× 0 1× 1 + 3× 1
2× 2 + 4× 6 2× 3 + 4× 0 2× 1 + 4× 1
2× 2 + 5× 6 2× 3 + 5× 0 2× 1 + 5× 1

⎞⎟⎠ =

⎛⎜⎝ 20 3 4

28 6 6

34 6 7

⎞⎟⎠ ;

 0 =

⎛⎜⎝ 2 6

3 0

1 1

⎞⎟⎠Ã 1 2 2

3 4 5

!
=

⎛⎜⎝ 20 28 34

3 6 6

4 6 7

⎞⎟⎠ = ( 0 )0 ;

 0 =

Ã
1 2 2

3 4 5

!⎛⎜⎝ 2 6

3 0

1 1

⎞⎟⎠ =

Ã
10 8

23 23

!
;

  0 =

Ã
2 3 1

6 0 1

!⎛⎜⎝ 1 3

2 4

2 5

⎞⎟⎠ =

Ã
10 23

8 23

!
= ( 0)0 

Exercise 2.5: Let  =

Ã
1 2

3 4

!
  =

Ã
2 3

6 0

!
. Find

(a)  0 and  0

(b)  + 

(c)  0 ,  0  0 and   0

Definition 2.10: The row (column) rank of a matrix is the maximum

number of linearly independent rows (columns).

Example 2.2: Both the row rank and column of

Ã
1 2

2 4

!
is 1.

Definition 2.11: A 2 by 2 symmetric matrix is of the form  =Ã
 

 

!
 It has the property that  0 = 
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Definition 2.12: A 2 by 2 diagonal matrix is of the form =

Ã
 0

0 

!


Definition 2.13: A 2 by 2 identity matrix is defined as  =

Ã
1 0

0 1

!


Exercise 2.6:  0 =  if and only if  = . True or False? Explain.

Definition 2.14: The inverse of a square matrix  is denoted as −1,

it has the property that −1 = −1 = .

How to find the inverse of an matrix? Consider  =

Ã
 

 

!
, and

 = −1 =

Ã
 

 

!


 =

Ã
 

 

!Ã
 

 

!
=

Ã
+   + 

+   + 

!
=  =

Ã
1 0

0 1

!


We have four equations four unknowns.

+  = 1

+  = 0

 +  = 0

 +  = 1

Multiply the four equations by c, a, d , b respectively, we have

+  = 
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+  = 0

 +  = 0

 +  = 

The first equation minus the second, and the third minus the fourth, we

have

(− ) = 

(− ) = −
Then we solve

 =
−

− 


 =
−

− 


Using equations 2 and 3, we also have

 =
−

 =



− 


 = −

 =



− 


Thus, the inverse of  is equal to

−1 =

Ã
 

 

!
=

1

− 

Ã
 −
− 

!


Note:

(a)

Ã
 

 

!−1
6=
Ã

−1 −1

−1 −1

!
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(b) A matrix whose determinant equals zero does not have an inverse.

Example 2.3: Consider a regression model

 = 0 + 11 + 22 + 

We have the following data

 = 1  = 2  = 3  = 4

1 3 1 2 0

2 1 2 3 4

 2 1 4 5

Define

 =

⎛⎜⎜⎜⎜⎝
1 11 21

1 12 22

1 13 23

1 14 24

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 3 1

1 1 2

1 2 3

1 0 4

⎞⎟⎟⎟⎟⎠   =

⎛⎜⎜⎜⎜⎝
1

2

3

4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
2

1

4

5

⎞⎟⎟⎟⎟⎠ 

β =

⎛⎜⎝ 0

1

1

⎞⎟⎠   =

⎛⎜⎜⎜⎜⎝
1

2

3

4

⎞⎟⎟⎟⎟⎠ 

and

 =  + 

The least squares estimator for  is obtained by to minimizing
P

2 =

min 
0 = min ( −)

0
( −)  The first-order condition is

 0 ( −) = 0

and we have
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b = ( 0)−1 0

Thus, we need to find the inverse of  0. Note that

 0 =

⎛⎜⎝ 1 1 1 1

3 1 2 0

1 2 3 4

⎞⎟⎠
⎛⎜⎜⎜⎜⎝
1 3 1

1 1 2

1 2 3

1 0 4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎝ 4 6 10

6 14 11

10 11 30

⎞⎟⎠ 

For a 3 by 3 matrix, the inverse can be calculated by a computer program,

we have

( 0)−1 =

⎛⎜⎝ 4 6 10

6 14 11

10 11 30

⎞⎟⎠
−1

=

⎛⎜⎝
299
36

−35
18
−37
18

−35
18

5
9

4
9

−37
18

4
9

5
9

⎞⎟⎠ 

b =

⎛⎜⎝ b0b1b1
⎞⎟⎠ = ( 0)−1 0

=

⎛⎜⎝
299
36

−35
18
−37
18

−35
18

5
9

4
9

−37
18

4
9

5
9

⎞⎟⎠
⎛⎜⎝ 1 1 1 1

3 1 2 0

1 2 3 4

⎞⎟⎠
⎛⎜⎜⎜⎜⎝
2

1

4

5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎝ −
7
2

1

2

⎞⎟⎠ 

Note: The inverse of a 3 by 3 matrix  is complicated. If  is symmetric

of the form  =

⎛⎜⎝   

  

  

⎞⎟⎠, then

−1 =
1

2 − 2+ 2 + 2 − 

⎛⎜⎝ 2 −   −  − 

 −  2 −  − 

−  −  2 − 

⎞⎟⎠
In particular, if  =  =  = 0, then  is a diagonal matrix of the form

 =

⎛⎜⎝  0 0

0  0

0 0 

⎞⎟⎠ and −1 =

⎛⎜⎝ −1 0 0

0 −1 0

0 0 −1

⎞⎟⎠ 
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Definition 2.15: A square matrix is orthogonal if −1 =  0

An orthogonal matrix has the following properties:

(a)  0 = 

(b) The columns are vectors with length equal one and are mutually

perpendicular.

Let  =

Ã
 

 

!
be an orthogonal matrix, then

 0 =

Ã
 

 

!Ã
 

 

!
=

Ã
2 + 2 + 

+  2 + 2

!
=

Ã
1 0

0 1

!


A 2 by 2 orthogonal matrix must satisfy the followings.

2 + 2 = 1

+  = 0

2 + 2 = 1

The are many solutions. For example,  =
4

5
,  =  =

3

5
,  = −4

5
satisfy

the above conditions. Therefore,  =

Ã
4
5

3
5

3
5
−4
5

!
is an orthogonal matrix

since −1 =

Ã
4
5

3
5

3
5
−4
5

!−1
=

Ã
4
5

3
5

3
5
−4
5

!
=  0

Exercise 2.7:

(a) Verify that  =

Ã
1 0

0 1

!
is an orthogonal matrix.
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(b) Is  =
1

2

⎛⎜⎜⎜⎜⎝
−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

⎞⎟⎟⎟⎟⎠ an orthogonal matrix?

(c) If  =

Ã
4
5

3
5

3
5
−4
5

!
, find 2 =  and 100

Definition 2.16: Let  =

Ã
 

 

!
be a 2 by 2 matrix, its eigenvalues

can be found by setting the determinant of ( − ) to zero. i.e.,¯̄̄̄
¯
Ã

 

 

!
−
Ã

 0

0 

!¯̄̄̄
¯ = 0¯̄̄̄

¯
Ã

−  

 − 

!¯̄̄̄
¯ = 0

(− ) (− )−  = 0

2 − (+ )+ −  = 0

The solutions are:

1 =
1

2

µ
+ +

q
(+ )

2 − 4 (− )

¶


2 =
1

2

µ
+ −

q
(+ )

2 − 4 (− )

¶


The roots can be simplified to

1 =
1

2

µ
+ +

q
(− )

2
+ 4

¶


Note that the eigenvalues may not be real numbers. The eigenvalues of

a matrix has many nice properties.

(1) The determinant of a 2 by 2 matrix is 12.

(2) The trace of a 2 by 2 matrix is equals to 1 + 2

In our case
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12 =
1

2

µ
+ +

q
(− )

2
+ 4

¶
1

2

µ
+ −

q
(− )

2
+ 4

¶
=

1

4

¡
(+ )

2 − (− )
2
+ 4

¢
= − 

1 + 2 = + 

In general, for a  by  matrix

(1) The determinant is 12.

(2) The trace of a 2 by 2 matrix is equal to 1 + 2 + + 

Example 2.4: Find the eigenvalues of  =

Ã
6 2

2 3

!
Solution: ¯̄̄̄

¯
Ã
6 2

2 3

!
−
Ã

 0

0 

!¯̄̄̄
¯ = 0¯̄̄̄

¯
Ã
6−  2

2 3− 

!¯̄̄̄
¯ = 0

(6− ) (3− )− 2 (2) = 0

2 − 9+ 14 = 0

1 =
1

2

µ
9 +

q
(−9)2 − 4 (1) (14)

¶
= 7

2 =
1

2

µ
9−

q
(−9)2 − 4 (1) (14)

¶
= 2

(1) The determinant of  is 12 = 14

(2) The trace of Ais equal to 1 + 2 = 9
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Definition 2.17: Let  be a  by  matrix and  be its eigenvalue. If x

is a nonzero vector such that x = x, then x is said to be an eigenvector

of A.

Example 2.5:

 =

Ã
6 2

2 3

!


x = x

Ã
6 2

2 3

!Ã
1

2

!
=

Ã
1

2

!


61 + 22 = 1

21 + 32 = 2

When  = 7

61 + 22 = 71

21 + 32 = 72

Thus, we have

1 = 22

which gives 1 = 22 and there are infinite number of solutions. To

normalize the solutions, we impose the condition that
p
21 + 22 = 1. i.e., we

require the eigenvectors to have the unit length. Under this condition and

1 = 22, we have

q
(22)

2
+ 22 = 1 2 =

1√
5
and 1 =

2√
5
. So one of the

eigenvector is
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 =

Ã
2√
5
1√
5

!


Similarly, when  = 2

61 + 22 = 21

21 + 32 = 22

We have

2 = −21

The eigenvector is

 =

Ã
1√
5

−2√
5

!


Note that the two eigenvectors are orthogonal.

Definition 2.17: The spectral decomposition of a  by  symmetric

matrix  can be expressed as

 =

X
=1


0


where  is the eigenvector.

Note that
P

=1 
0
 = 

Example 2.6: Find the spectral decomposition of  =

Ã
6 2

2 3

!


Solution:
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X
=1


0
 = 7

Ã
2√
5
1√
5

!³
2√
5

1√
5

´
+ 2

Ã
1√
5

−2√
5

!³
1√
5

−2√
5

´
= 7

Ã
4
5

2
5

2
5

1
5

!
+ 2

Ã
1
5
−2
5

−2
5

4
5

!
=

Ã
6 2

2 3

!
= 

Exercise 2.8: Let  =

Ã
6 2

2 3

!


(a) Show that −1 =

Ã
3
14
−1
7

−1
7

3
7

!


(b) Find the spectral decomposition of −1

Exercise 2.9: Let   ( = 1 2 3 4 5) be the daily closing price

of [267] Citic Pacific and [19] Swire Pacific A from 15/9/2014-19/9/2014

respectively.

(a) Plot ( ) on the  −  plane.

(b) Calculate the sample variance of  and , called them 11 =

1
4

5P
=1

¡
 − 

¢2
and 22 =

1
4

5P
=1

¡
 − 

¢2
respectively.

(c) Calculate the sample covariance 12 = 21 =
1
4

5P
=1

¡
 − 

¢ ¡
 − 

¢


(d) Let  =

Ã
11 12

21 22

!
. Find −1.

(e) Find the spectral decomposition of .

Exercise 2.10: Let x =

⎛⎜⎝ 6

−14
8

⎞⎟⎠ y =

⎛⎜⎝ −96
3

⎞⎟⎠. Find
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(a) x0 and y0

(b)  and 

(c) x+ y

(d) x0y Are x and y orthogonal?

(e) Repeat (a) to (d) if x =

⎛⎜⎝ −74
3

⎞⎟⎠  y =

⎛⎜⎝ 2

1

3

⎞⎟⎠ 

Exercise 2.11: Let  =

Ã
1 0

0 2

!


(a) Show that −1 =

Ã
1 0

0 1
2

!


(b) Find the spectral decomposition of −1

Exercise 2.12: Let

 =

Ã
1 1

0 1

!


(a) Find 2, 3 and 

(b) Write down −1. Verify that −1 = .

(c) Find the spectral decomposition of 0

Exercise 2.13: Let  =

Ã
1 1

1 2

!


(a) Find −1.

(b) Find the spectral decomposition of −1.

Exercise 2.14: Let  =

Ã
2−1 0

0 2

!


(a) Find 

(b) Find −

(c) Find the Eigenvalues of  and −

(d) Find the spectral decomposition of  and −
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Exercise 2.15: True/False.

(i). If the eigenvalue of a square matrix equals zero, then the matrix is

of full rank.

(ii) Let  be a  by  matrix, then 0 =  if and only if  = .

(iii) Let  and  be two square matrices, and || and | | be their
determinants respectively, then | +  | = ||+ | | 
(iv) Let and  be two square matrices, and then  ( ) =  ()×

 ( ) 



Chapter 3

Inference about a Mean Vector

3.1 Point Estimation

Population and sample are two different concepts. We would like to estimate

the unknownmean () and the unknown variance (2) of a population. Given

limited resources, what we can do is to draw a sample from the population.

A sample is a subset of a population. We hope that the sample will be

representive enough for us to retrieve the information of a population. One

can construct estimators to estimate the population mean and variance.

Definition 3.1: An estimator is a rule or formula to estimate an un-

known population quantity, such as the population mean and population

variance.

An estimator is usually constructed based on the sample information. It

is a random variable since it takes different values under different samples.

As a random variable, an estimator itself has a mean, a variance and a

distribution.

Definition 3.2: An estimate is the numerical value taken by an esti-

mator, it usually depends on the sample drawn.

55
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Example 3.1: Suppose we have a sample of size , the sample mean

 =
1 +2 + +



is an estimator of the population mean.

If  turns out to be 3.4, then 3.4 is an estimate of the population mean.

Thus, the estimate differs from sample to sample.

Example 3.2: The statistic

e =
1 +2 + +−1



is also an estimator of the population mean. Conventionally,  denotes

the sample mean, we may use e, b, ∗, etc. to denote other estimators.

Example 3.3: A weighted average

e = 11 + 22 + +  where

X
=1

 = 1

is also estimator of the population mean.

Example 3.4: A single observation 1 is also an estimator of the pop-

ulation mean.

Example 3.5: A constant, for example, 3.551, is also an estimator of the

population mean. In this case, 3.551 is both an estimator and an estimate.

Note that when we use a constant as an estimator, the sample has no role in

this case. No matter what sample we draw, the estimator and the estimate

are always equal to 3.551.

Example 3.6:

∗ =
2
1 +2

2 + +2




can also be estimator of the population mean.
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Thus, there are a lot of estimators for the population mean. The problem

is how to select the best one, and what criteria should be used to evaluate an

estimator. In choosing the best estimator, we usually use criterion such as

linearity, unbiasedness and efficiency. The first criterion in choosing estimator

is linearity, a linear estimator is by construction simpler than a nonlinear

estimator. The mean and variance of a linear estimator are easier to compute

compared to those of a nonlinear estimator.

Definition 3.2: An estimator b is linear if it is a linear combination

of the sample observations. i.e.,

b = 11 + 22 + + 

where  ( = 1 2  ) takes a value between zero and one. In some

cases, they can be negative or larger than 1, and some of them can be zero.

If all  are zero, then b is no longer an estimator. Thus, estimators in

examples 3.1-3.4 are linear, while estimators in example 3.5 and 3.6 are not

linear. The reason why the linear estimator is a desirable estimator because

its mean and variance are easy to calculate. For example, the estimator in

example 3.6 is nonlinear, and its mean and variance are difficult to obtain.

We reduce the set of all possible estimators to the set of linear estimators.

Still, there are plenty of linear estimators, so how should they be compared?

We introduce the concept of unbiasedness.

Definition 3.3: An linear estimator b is unbiased if 
³ b´ = ,

where  is the true mean of the random variable .

It is important to note that any single observation from the sample is

unbiased. i.e.,

 () =   = 1 2  

This is because when an observation is drawn from a population, we
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expect it to be the true mean () of the population. For an estimator con-

structed by using two or more observations, whether it is unbiased depends

on the way it is constructed.

Example 3.7: If ( = 1 2  ) are random variables with () = 

and   () = 2 Show that:

(a)  =

P
=1




is an unbiased estimator for 

(b) Find  (2
 ) and 

³¡

¢2´

in terms of  and 2

(c) Show that
P
=1

¡
 −

¢2
=

P
=1

2
 − 

¡

¢2


(d) Use (a) and (c), show that 2 =

P
=1

¡
 −

¢2
− 1 is an unbiased estima-

tor for 2

Solution:(a)


¡

¢
= 

Ã
1



X
=1



!
=
1



X
=1

 () =
1



X
=1

 =



= .

(b)

  () = 2 = 
¡
2



¢−2 () = 
¡
2



¢− 2

⇒ 
¡
2



¢
= 2 + 2

 () =  

Ã
1



X
=1



!

=
1

2
 

Ã
X
=1



!

=
1

2

X
=1

  () since  is 

=
2

2
=

2
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Also,

 
¡

¢
= 

³

2
´
−2

¡

¢
= 

³

2
´
− 2

⇒ 
³

2
´
=

2


+ 2

(c)

X
=1

¡
 −

¢2
=

X
=1

³
2

 − 2 +
2
´

=

X
=1

2
 − 2

X
=1

 + 
2

=

X
=1

2
 − 2

2
+ 

2

=

X
=1

2
 − 

2
.

(d)


¡
2
¢
= 

µP

=1( −)2

− 1
¶

= 

ÃP

=1
2
 − 

2

− 1

!

=

P

=1 (
2
 )− 

³

2
´

− 1
=

 (2 + 2)−  (2  + 2)

− 1
=

− 1
− 1

2

= 2

Exercise 3.1: Show that the estimators in examples 3.1, 3.3 and 3.4 are

unbiased, and that the estimators in examples 3.2, 3.5 and 3.6 are biased.
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Still, there are many linear and unbiased estimators, how should we com-

pare them? Here, we introduce the concept of efficiency.

Definition 3.4: An estimator b is more efficient than another estima-

tor ∗ if  
³ b´    (∗) 

Example 3.8: If we look at the efficiency criteria, the estimator in ex-

ample 3.5 is the most efficient estimator since the variance of a constant is

zero. However, it is neither linear nor unbiased. A constant as an estimator

gives us no information about the population mean. Thus, despite the fact

that it is efficient, it is not a good estimator.

Exercise 3.2: Suppose we have a sample of 3 independent observations

1 2 and 3 drawn from a distribution with mean  and variance 2.

Which of the following estimators is/are unbiased? Which one is more effi-

cient? Explain.

b =
1 + 22 +3

4


b =
1 +2 +3

3


Exercise 3.3: Rank the efficiency of the estimators in examples 3.1 to

3.5.

Definition 3.5: An estimator b is a consistent estimator of the pop-

ulation mean  if it converges to the  as the sample size goes to infinity.

A necessary condition for an estimator to be consistent is that  
³ b´→

0 as the sample size goes to infinity. If the estimator truly reveals the value of

the population mean , the variation of this estimator should become smaller
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and smaller when the sample is getting larger and larger. In the extreme case,

when the sample size is infinity, the estimator should have no variation at

all.

An unbiased estimator with this condition satisfied can be considered a

consistent estimator. If the estimator is biased, it may also be consistent,

provided that the bias and the variance of this estimator both go to zero as

the sample size goes to infinity.

Consistency is a rather difficult concept as it involves the understanding

of asymptotics. It is very important for an estimator to be consistent since

we would like to retrieve information about the population mean from the

estimator. If an estimator is inconsistent, it tells us nothing about the pop-

ulation no matter how large the sample is. One of the consistent estimators

is the sample mean

 =
1 +2 + +




Note that it is unbiased as


¡

¢
= 

µ
1 +2 + +



¶
=

 (1) + (2) + + ()



=
+ + + 


=




= 

Second, suppose the variance of ,   () = 2 ∞ for  = 1 2 ,

then

 
¡

¢
=  

µ
1 +2 + +



¶
=
1

2
  (1 +2 + +)

=
1

2
[  (1) +   (2) + +   ()]

=
1

2

£
2 + 2 + + 2

¤
=

1

2

£
2

¤
=

2


→ 0 as →∞

Note that consistency and unbiasedness do not imply each other. An

estimator can be biased but consistent. Consider the estimator in example

3.2,
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e =
1 +2 + +−1




For any given value of sample size ,


³ e´ = − 1


 6= 

The bias is

1




which goes to zero as →∞. Thus, we say e is biased in finite sample

but is asymptotically unbiased. Note also that as →∞

 
³ e´ =  

µ
1 +2 + +−1



¶
=

− 1
2

2 =

µ
1


− 1

2

¶
2 → 0

Since both the bias and the variance of e go to zero, e is a consistent

estimator.

An estimator can also be unbiased but inconsistent. Consider the estima-

tor in example 3.4, a single observation as an estimator for the population

mean. It is unbiased. However, it is inconsistent as we only use one observa-

tion from a sample of size , no matter how large  is. Thus, increasing the

number of other observations cannot improve the precision of this estimator.

In general, consistency is a concept for both linear and nonlinear esti-

mators, while unbiasedness is a concept for linear estimators only. This is

because it is hard to evaluate the expected value of a nonlinear estimator.

Exercise 3.4: Construct an estimator which is biased, consistent and

less efficient than the simple average .

Exercise 3.5: Suppose the span of human life follows an i.i.d. distri-

bution with an unknown upper bound   ∞. Suppose we have a sample
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of  observations 12   on people’s life span, construct a consistent

estimator for  and explain why it is consistent.

3.2 The Law of Large Numbers and the Cen-

tral Limit Theorem

Definition 3.6: A sequence of random variables  ( = 1 2 ) follow an

Independent and Identical Distribution (i.i.d.) if all the  have the

same distribution and  does not depend on  for any  6= .

The Law of Large Numbers states that, if  is an i.i.d. with finite

mean  and finite variance 2, the sample average  converges to the true

mean  as the sample size  goes to infinity.

Exercise 3.6: To illustrate the Law of Large Numbers, consider the

random experiment of throwing a dice  times. Let  be the outcome at

the  trial,  = 1 2  . Let  be the sample average of these 

(a) What is the population mean of the outcome for throwing a dice

infinite number of times?

(b) What possible values will  take if  = 1?  = 2?  = 3?

(c) Conduct the experiment, record the value of  and plot a diagram

which indicates its behavior as  increases from 1 to 30. Does  converge to

35?

Theorem 3.1: The Central Limit Theorem states that, if  is an

i.i.d. with finite mean  and finite variance 2, the sample average  con-

verges in distribution to a normal distribution with mean  and variance
2


,

as the sample size  goes to infinity.

It is a powerful theorem because  can come from any distribution.
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Example 3.9: Let 1 and 2 be two independent random variables

distributed as

Pr ( = −1) = Pr ( = 1) =
1

2


where  = 1 2. Then the distribution of

 =
1 +2

2

will be

Pr
¡
 = −1¢ = Pr (1 = −1 and 2 = −1)

= Pr (1 = −1)Pr (2 = −1)
=

1

2
× 1
2
=
1

4


Pr
¡
 = 0

¢
= Pr ({1 = −1 and 2 = 1} or {1 = 1 and 2 = −1} )
= Pr (1 = −1)Pr (2 = 1) + Pr (1 = 1)Pr (2 = −1)
=

1

2


Pr
¡
 = 1

¢
= Pr (1 = 1 and 2 = 1)

= Pr (1 = 1)Pr (2 = 1)

=
1

2
× 1
2
=
1

4


Note that although 1 and 2 are evenly distributed,  is not evenly

distributed but has a bell-shape distribution. As the number of observations

tends to infinity,  will have a normal distribution.

Exercise 3.7: To illustrate the Central Limit Theorem, let us consider

the random experiment of throwing a dice  times in the previous exercise.

(a) Conduct the experiment yourself with  = 30. Record the value of

.
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(b) Throw the dice for another 30 times, record the value of , does the

value of  different from the previous one?

(c) Repeat part (b) until you obtain 20 values of .

(d) Plot the histogram (the frequency diagram) of  for the range 0 to

6, with each increment equal 01.

(e) Repeat part (d) by finding four other classmates and pool the result

of 100 values of .

Exercise 3.8: Use a computer or a calculator to generate 36 random

numbers from the uniform distribution  (0 1); calculate the sample mean,

and repeat this procedure 100 times. Define a variable  =
√
36
¡
  − 05

¢


 = 1 2  100 Now make two frequency tables of  with the length of each

interval 001 and 01 respectively. Plot the two histograms.

3.3 Testing a Statistical Hypothesis

When we observe a phenomenon, we would like to explain it by a hypothesis.

We usually post a null hypothesis, and an alternative hypothesis. The two

hypotheses should be complementary. For example, when we observe that the

death toll in winter is usually higher than the death toll in the other seasons,

we may conjecture that the death toll is negatively related to temperature.

The alternative hypothesis would be that the death toll has nothing to do

with or is positively related to temperature. A hypothesis is not a theorem.

A theorem is always true under certain assumptions. A hypothesis is just a

conjecture, we have to test how likely a hypothesis is going to be correct. In

testing a hypothesis, we may commit errors when making conclusion. There

are two possible types of errors:

Definition 3.7: The rejection of the null hypothesis when it is true is

called the Type I Error; the probability of committing the Type I Error is

denoted by 
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Definition 3.8: The acceptance of the null hypothesis when it is false is

called the Type II Error; the probability of committing the Type II Error

is denoted by 

We would like to reduce both Type I and Type II errors as much as we

can. However, as there is no free lunch, there is no way to reduce both errors

at the same time. Reducing the chance of committing Type I Error will

increase the chance of committing Type II Error, and vice versa.

Exercise 3.9: In a judicial trial, suppose the null hypothesis is that “the

defendant is not guilty”.

(a) State the alternative hypothesis.

(b) What is the Type I Error in this case?

(c) What is the Type II Error in this case?

(d) How can you fully eliminate the Type I Error in this case? How will

this affect the chance of committing the Type II Error?

(e) How can you fully eliminate the Type II Error in this case? How will

this affect the chance of committing the Type I Error?

(f) How can you fully eliminate both Errors in this case?

(g) Suppose the defendant is charged with the murder of first degree,

whose penalty is the capital punishment (death). From your point of view,

which type of error has a more serious consequence?

3.4 Test for mean when 2 is known

Consider a random sample 1, 2,... drawn from a normal distribution

with unknown mean  and a known variance 2. We would like to test

whether  equals a particular value 0. i.e.,

0 :  = 0

0 is a pre-specified value, e.g. 0 = 0
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We construct a test statistic , where

 =
 − 0

√



Under 0 :  = 0,  ∼  (0 
2). Since the sum of normal random

variable is also normal, as a result,  is also normally distributed for all sam-

ple size , no matter  is small or large. Thus,  = 1

(1 +2 + +) ∼



µ
0

2



¶
 Hence,

 ∼  (0 1) 

In the two-sided case (i.e., 1 :  6= 0), we reject 0 at a significance

level  if ||  
2
 For example 0025 = 196.

In the one-sided case (i.e., 1 :   ()0), we reject 0 at a significance

level  if    (  −) 

A 100 (1− )% confidence interval for  isµ
 − 

2

√

 + 

2

√


¶


If 0 does not fall into this interval, we reject 0 at the significance level



This test is of limited use since we have two very strong assumptions: (i)

the observations  come from the normal distribution and (ii) the variance

is known. A more commonly used test is the t-test, which is used when the

population variance is unknown and the sample size is small.

3.5 Test for mean when 2 is unknown

Consider a random sample 1, 2,... drawn from a normal distribution

with unknown mean  and unknown variance 2. We would like to test

whether  equals a particular value 0.

0 :  = 0
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We construct a test statistic, defined as

 =
 − 0

√



where  stands for the observed value of the statistic under the null

hypothesis that  = 0. What is the distribution of ? Recall that

 =

vuuut P
=1

¡
 −

¢2
− 1 

Note that

 =
 − 0

√

=

−0

√
r

1
−1

P
=1

³
−



´2 
Under 0 :  = 0,  ∼  (0 

2). As a result,

 =
1


(1 +2 + +) ∼ 

µ
0

2



¶
and

 − 0

√

∼  (0 1) 

Further, it can be shown that (difficult)

X
=1

µ
 −



¶2
has a Chi-squared distribution with degrees of freedom (− 1), and that

(also difficult)

 − 0

√


and

X
=1

µ
 −



¶2
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are independent. Recall the definition of t-distribution that,

 =
 − 0

√

=

−0

√
r

1
−1

P
=1

³
−



´2 =  (0 1)p
2−1 (− 1)

will have a t-distribution with degrees of freedom (− 1).

In the two-sided case (i.e., 1 :  6= 0), we reject 0 at a significance

level  if ||  
2
−1. For example, 00259= 2262. In the one-sided case

(i.e., 1 :   ()0), we reject 0 at a significance level  if   −1
(  −−1) 

A 100 (1− )% confidence interval for  isµ
 − 

2
−1

√

 + 

2
−1

√


¶


If 0 does not fall into this interval, we reject 0 at the significance level



Example 3.10: Suppose the body height of the population of Hong Kong

is normally distributed  (, 2). Suppose we would like to test the hypoth-

esis that the mean height of the population of Hong Kong is  =160cm.

We test this based on a sample of 10 individuals, the sample mean being

 =165cm and the standard error (note that standard error is the square

root of the sample variance while standard deviation is the square root of

the population variance) is  =5cm.

Thus, we test

0 :  = 160

1 :  6= 160

Since the sample size is small and 2 is unknown, we use the t-test, the

observed t-value is calculated by
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 =
 − 0

√

=
165− 160
5
√
10

= 3163

 will have a -distribution with degrees of freedom equal − 1. In the
two-sided case, we reject 0 at the significance level  if ||  

2
−1. Now,

let  = 5%, then

00259= 2262

Since ||  00259, we reject 0 at  = 5% Thus, we are 95% sure that

the population mean is not equal to 160cm.

A 95% confidence interval for  is

 ∓ 00259

µ
√
10

¶
= 165∓ 2262

µ
5√
10

¶
= (1614 1686) 

Since 160 does not fall into this interval, we reject 0 at  = 5%

Note that the conclusion depends on the value of  that we set, if we set

 = 1%, then

0019= 325

Since ||  0019, we do not reject0 at  = 1% This means we cannot

be 99% sure that the population mean is not equal to 160cm.

Exercise 3.10: A random sample of size  = 12 from a normal popula-

tion has the sample mean  = 28 and sample variance 2 = 3.

(a) Construct a 95% confidence interval for the population mean 

(b) Test the hypothesis 0 :  = 30 against 1 :  6= 30 at  = 5%

Exercise 3.11: Let  = ln− ln−1 be the daily return of [1] Cheung

Kong on day i. Assume that  ∼  ( 2). Consider a sample of  from

22/9/14 to 26/9/14.
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(a) Find  and 2

(b) Use t-test to test the hypothesis 0 :  = 0 against 1 :  6= 0 at

 = 5%

(c) Construct a 95% confidence interval for the population mean 

Exercise 3.12: Let  be the monthly total number of deaths in Hong

Kong. Assume that ∼  ( 2). Consider a sample of from September

2013 to August 2014.

(a) Find  and 2

(b) Use t-test to test the hypothesis 0 :  = 3000 against 1 :   3000

at  = 5%

Exercise 3.13: Let  be the monthly total number of marriages in

Hong Kong. Assume that  ∼  ( 2). Consider a sample of  from

September 2013 to August 2014.

(a) Find  and 2

(b) Use t-test to test the hypothesis 0 :  = 3000 against 1 :   3000

at  = 5%

3.6 Bivariate Normal Distribution

Recall that a random variable which follows a normal distribution with mean

 and variance 2 can be expressed as  ∼  ( 2). Its density function is

defined as

 () =
1√
22

exp

Ã
−1
2

µ
− 



¶2!


When there are two independent random variables which are jointly nor-

mally distributed, their joint density can be expressed as
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 (1 2) =  (1)  (2)

=
1√
211

exp

Ã
−1
2

µ
1 − 1√

11

¶2!
× 1√

222
exp

Ã
−1
2

µ
2 − 2√

22

¶2!

=
1

2
√
1122

exp

Ã
−1
2

"µ
1 − 1√

11

¶2
+

µ
2 − 2√

22

¶2#!


If the two variables are not independent but have a correlation 12 , we

have

 (1 2)

=
1

2
p
1122 (1− 212)

×

exp

Ã
− 1

2 (1− 212)

"µ
1 − 1√

11

¶2
+

µ
2 − 2√

22

¶2
− 212

µ
1 − 1√

11

¶µ
2 − 2√

22

¶#!


Let

Ω =

Ã
11 12

12 22

!


Ω−1 =
1

1122 − 212

Ã
22 −12
−12 11

!

=
1

1122 (1− 212)

Ã
22 −12
−12 11

!


12 =
12√
1122



Exercise 3.14: Let 1 and 2 be jointly normal

ÃÃ
0

0

!


Ã
1 

 1

!!


(a) Find the joint density  (1 2).

(b) Use the computer to plot  (1 2) for  = 0 08 −08 1 −1
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3.7 Multivariate Normal Distribution

In general, for a random vector x =

⎛⎜⎜⎜⎜⎝
1

2
...



⎞⎟⎟⎟⎟⎠, if the variables are jointly
normally distributed  (μΩ), we have

 (1,2,...,p) =
1

(2)
2 |Ω|12

exp

µ
−1
2
(x− μ)0Ω−1 (x−μ)

¶


where |Ω| is the determinant of Ω.
Contours of constant density for the  dimensional normal distribution

are ellipsoids defined by x such that

(x− μ)0Ω−1 (x− μ) = 2

The solid ellipsoid of x values satisfying

(x−μ)0Ω−1 (x− μ) ≤ 2 ()

has probability 1− 

Example 3.11: Contours of constant density for the one dimensional

normal distribution are ellipsoids defined by  such thatµ
− 



¶2
= 2

The solid ellipsoid of  values satisfyingµ
− 



¶2
≤ 21 () 

Suppose  = 5%,  = 2, 2 = 9, then the solid ellipsoid of  is the values

of  such that µ
− 2
3

¶2
≤ 21 (005) = 384
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For example,  = 11 will not be in this solid ellipsoid, while  = 5 will

be in this ellipsoid.

Example 3.12: Let 1 and 2 be jointly normal

ÃÃ
0

0

!


Ã
1 0

0 1

!!
.

Contours of constant density for this two dimensional normal distribution are

ellipsoids defined by x such that

(x− 0)0 I−1 (x− 0) = 2

or

x0x = 2

This implies

21 + 22 = 2

which is a circle on the plane of 2 vs 1. The solid ellipsoid of x values

satisfying

21 + 22 ≤ 22 ()

has probability 1− 

Suppose  = 5%, then the solid ellipsoid of  is the values of  such that

21 + 22 ≤ 22 (005) = 599

For example, x =

Ã
2

2

!
will not be in this solid ellipsoid, while x =Ã

1

−1

!
will be in this ellipsoid.

Exercise 3.15: Let 1 and 2 be jointly normal

ÃÃ
1

2

!


Ã
2 2

2 4

!!
.

(a) Find the joint density  (1 2).
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(b) Use the computer to plot  (1 2).

(c) Is the point (10,-10) in the ellipsoid with  = 5%?

Exercise 3.16: For a random vector x =(1,2,...,20)
0
, if the variables

are jointly normally distributed  (μΩ), then the joint density function is

 (1,2,...,20) =
1

(2)
10 |Ω|12

exp
¡−1

2
x0Ω−1x

¢
, where |Ω| is the determi-

nant of Ω. True/False?

3.8 Hotelling’s  2

Now consider testing the mean vector of a bivariate normal distribution. Our

null hypothesis is 0 :  = μ0, where μ0 is a 2 by 1 vector. The data matrix

is  =

⎛⎜⎜⎜⎜⎝
11 12

21 21
...

...

1 2

⎞⎟⎟⎟⎟⎠ is  by 2. A natural generalization is to use

 2 = 
¡
−μ0

¢0
−1

¡
−μ0

¢


where

 =

Ã
1


P

=1 1
1


P

=1 2

!


 =

Ã
11 12

21 22

!


11 =
1

− 1
X
=1

(1 − 1)
2


12 = 21 =
1

− 1
X
=1

(1 − 1) (2 − 2) 

22 =
1

− 1
X
=1

(2 − 2)
2
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The statistic  2 is called Hotelling’s  2. It is distributed as

2 (− 1)
− 2 2−2

Example 3.13: Let the data matrix for a random sample of size  = 3

from a bivariate normal population be

 =

⎛⎜⎝ 6 9

10 6

8 3

⎞⎟⎠ 

Evaluate the observed  2 for 0 : μ =

Ã
9

5

!
. What is the sampling

distribution of  2 in this case? Should we reject 0 at 5% level?

Solution:

The mean vector is

 =

Ã
6+10+8

3

9+6+3
3

!
=

Ã
8

6

!


3X
=1

(1 − 1)
2
= (6− 8)2 + (10− 8)2 + (8− 8)2 

3X
=1

(1 − 1) (2 − 2) = (6− 8) (9− 6)+(10− 8) (6− 6)+(8− 8) (3− 6) 

3X
=1

(2 − 2)
2
= (9− 6)2 + (6− 6)2 + (3− 6)2 

 =

Ã
1
2

P3

=1 (1 − 1)
2 1

2

P3

=1 (1 − 1) (2 − 2)
1
2

P3

=1 (1 − 1) (2 − 2)
1
2

P3

=1 (2 − 2)
2

!

=

Ã
4 −3
−3 9

!
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−1 =

Ã
4 −3
−3 9

!−1
=

1

4× 9− (−3) (−3)

Ã
9 3

3 4

!
=

Ã
1
3

1
9

1
9

4
27

!


 2 = 3

ÃÃ
8

6

!
−
Ã
9

5

!!0Ã
1
3

1
9

1
9

4
27

!ÃÃ
8

6

!
−
Ã
9

5

!!

= 3
³
−1 1

´Ã 1
3

1
9

1
9

4
27

!Ã
−1
1

!
=

7

9


The sampling distribution of  2 is

2 (3− 1)
3− 2 23−2 = 421

Note that at  = 5%, 21 = 1995, and 421 = 798. Since
7
9
 798, we

do not reject 0 at  = 5%.

In general, if there are  variables and  observations, the sampling dis-

tribution of  2 is
 (− 1)
− 

−

Exercise 3.17: Let X be the data matrix for a random sample of size

 = 3 from a bivariate normal population. Find the sampling distribution of

 2 and evaluate the observed  2 for μ0 when

(a) X =

⎛⎜⎝ 0 −5
9 5

18 15

⎞⎟⎠, μ0 =
Ã
9

5

!

(b) X =

⎛⎜⎝ 6 −9
14 6

10 −3

⎞⎟⎠, μ0 =
Ã

8

−1

!
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(c) X =

⎛⎜⎝ 6 −9
−1 6

−2 3

⎞⎟⎠, μ0 =
Ã

1

−1

!

(d) X =

⎛⎜⎝ −7 2

4 1

3 3

⎞⎟⎠. μ0 =
Ã

2

−2

!
.

(e) X =

⎛⎜⎝ 6 −9
−14 6

8 3

⎞⎟⎠. μ0 =
Ã

1

−1

!
.

3.9 What if X are not Normally Distributed?

Thus far we have assumed that the observations are normally distributed.

What if this assumption does not hold? Consider a random sample with

observations 1, 2,... drawn from any distribution with unknown finite

mean  and a finite unknown variance 2. We would like to test whether

 equals a particular value 0.

0 :  = 0

If the sample size is small, say if   30, then the hypothesis cannot be

easily tested since we do not know the behavior of the sample mean  and

sample variance 2 if  is not normally distributed. However, if the sample

size is large, say   30, we can apply the Central Limited Theorem that 

is normally distributed and the Law of Large Numbers that 2 will converge

to the population variance 2. Then, the test statistic

 =
 − 0

√


will be approximately normally distributed as  (0 1). In the two-sided

case(i.e., 1 :  6= 0), we reject 0 at a significance level  if ||  
2


For example 0025 = 196. In the one-sided case (i.e., 1 :   ()0), we

reject 0 at a significance level  if    (  −). A 100 (1− )%

confidence interval for  is



3.9. WHAT IF X ARE NOT NORMALLY DISTRIBUTED? 79

 ∓ 
2

√



If 0 does not fall into this interval, we reject 0 at the significance level

. Thus, if the observations  are not normal, we need a large sample to

perform the test.

Exercise 3.18: A random sample of size  = 100 from a population has

the sample mean  = 28 and sample variance 2 = 3.

(a) Construct a 95% confidence interval for the population mean 

(b) Test the hypothesis 0 :  = 30 against 1 :  6= 30 at  = 5%
(Note that we cannot apply the t-test as we do not assume the observa-

tions come from a normal distribution.)

Exercise 3.19: True/False.

(a) Rejection of the null hypothesis when it is true is called the Type I

Error.

(b) In general, if there are  variables and  observations, the sampling

distribution of  2 is
 (− 1)
− 

−

(c). The Central Limit Theorem states that the sample average has a

uniform distribution when sample size is large.
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Chapter 4

Regression

4.1 Introduction

Suppose a variable  , referred to as the dependent variable, is related to

another variable , called independent or explanatory variable. If the rela-

tionship between  and  is linear, then we have:

 = 0 + 1

where 0 and 1 are constants.

This is an exact (or deterministic) linear relationship. An exact linear

relationship is the exception rather than rule. In most situations,  and 

may not be perfectly linearly related. There may be other unknown factors

that also affect  , we use  to represent all these unknown factors, and

estimate the following regression model

 = 0 + 1 + 

Regression is a statistical technique that is used to explain the relationship

among variables. For example, if  is consumption and  is income, then

the above model is a consumption function. The value of 1 indicates that

if income increases 1 by dollar, consumption will increase by 1 dollar. 0 is

the consumption when income is zero.

81
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We would like to estimate the unknown parameter 0 and 1 based on

our sample observations { }=1. We plot the observations and draw a
line which fits these observations the best. What criteria should we use? In

general, we minimize the “distance” between the observations and the line.

We may use vertical distance, horizontal distance or a distance perpendicular

to the line. In regression analysis, we use the vertical distance, since Y is the

variable of interest. However, we are not just minimizing the sum of errors,

as it is possible that the positive errors and negative errors may cancel out

each other, ending up with a small value of net errors. We may take absolute

values, but we cannot find the optimal estimator in that case by using simple

calculus. In addition, we would like to penalize observations which are far

away from the line. Thus, we minimize the sum of squared errors. This is

called the Ordinary Least Squares (OLS) estimation method, proposed

by Adrien Legendre, a French mathematician in the 19th century. Let b0,b1 be the OLS estimators for 0 and 1 respectively. To ensure that the

estimators have the desirable properties such as unbiasedness, efficiency and

consistency, we make the following assumptions:

4.1.1 Assumptions

1: The true model (population) is a linear model, i.e.,

 = 0 + 1 + 

Linearity means linear in ’s, not necessarily linear in  and .

e.g.,  = 0 + 1
2
 +  is a linear model, while  = 0 + 21 +  is

not.

This assumption allows us to derive the OLS estimator b0and b1 via
simple calculus.

2:  () = 0 for all 
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This assumption is to ensure that the OLS estimators are unbiased, i.e.,


³b0´ = 0 and 

³b1´ = 1 if this assumption is made.

3:  cannot be all the same.

This assumption is to ensure that one will not obtain a vertical line. If

the slope is infinity, the model becomes meaningless.

4:  is given and is non-random, in the sense that one can choose the values

of .

This assumption simplifies our analysis when we discuss the unbiasedness

of the estimators, since  can be treated as a constant and taken out of the

expectation operator. For example,  () =  () = 0 by assumption

2. This also implies  ( ) = 0

5: Homoscedasticity, i.e.,   () = 2 for all 

6: Serial Independence, i.e.,  ( ) = 0 for all  6= 

Assumptions 5 and 6 simplify the calculation of  
³b0´ and   ³b1´.

They also ensure that the OLS estimators are the most efficient estimators

among all the linear and unbiased estimators. As far as the estimation of

0 is concerned, assumptions 1 to 6 ensure the OLS estimators are the best

linear unbiased estimators (BLUE).

4.2 Least Squares Estimation

 = 0 + 1 + 

 =  − 0 − 1

The problem is
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min
01

X
=1

( − 0 − 1)
2


The first-order conditions are:


P
=1

( − 0 − 1)
2

0

¯̄̄̄
¯̄̄̄
01

= −2
X
=1

³
 − b0 − b1

´
= 0 (*)


P
=1

( − 0 − 1)
2

1

¯̄̄̄
¯̄̄̄
01

= −2
X
=1

³
 − b0 − b1

´
 = 0 (**)

Solving these two normal equations gives theOrdinary Least Squares

Estimators:

b1 =
P
=1

¡
 −

¢


P
=1

¡
 −

¢2 

b0 =  − b1

Note: If  is also a random variable, then when sample size increases,b1 will converge to ( )

 ()


Example 4.1: Show that

b1 = 1 +

P
=1

¡
 −

¢


P
=1

¡
 −

¢2 
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Solution:

b1 =

P

=1

¡
 −

¢
P

=1

¡
 −

¢2 =

P

=1

¡
 −

¢
(0 + 1 + )P

=1

¡
 −

¢2
= 0

P

=1

¡
 −

¢P

=1

¡
 −

¢2 + 1

P

=1

¡
 −

¢
P

=1

¡
 −

¢2 +

P

=1

¡
 −

¢
P

=1

¡
 −

¢2
= 0

0P

=1

¡
 −

¢2 + 1 (1) +

P

=1

¡
 −

¢
P

=1

¡
 −

¢2
= 1 +

P

=1

¡
 −

¢
P

=1

¡
 −

¢2 

Exercise 4.1: Solve (*) and (**) for b0 and b1.

4.3 Properties of OLS Estimators

Under the above assumptions 1-6, the Least Squares Estimators b0 and b1
have the following properties:

(1) They are linear estimators, i.e., they are linear combinations of 

Proof.

b1 =
P
=1

¡
 −

¢


P
=1

¡
 −

¢2 =
1 −

P
=1

¡
 −

¢21+ 2 −
P
=1

¡
 −

¢22++  −
P
=1

¡
 −

¢2 = X
=1



where

 =
 −

P
=1

¡
 −

¢2 
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b0 =  − b1 =
1



X
=1

 −
Ã

X
=1



!


=

X
=1

1


 −

X
=1

 =

X
=1

µ
1


−

¶


=

X
=1



where

 =
1


− =

1


−

⎛⎜⎜⎝  −
P
=1

¡
 −

¢2
⎞⎟⎟⎠ 

(2) They are unbiased, i.e., 
³b0´ = 0 and 

³b1´ = 1

Proof. From Example 4.1,

b1 = 1 +

P

=1

¡
 −

¢
P

=1

¡
 −

¢2 

Thus


³b1´ = 

Ã
1 +

P

=1

¡
 −

¢
P

=1

¡
 −

¢2
!
= 1 +

P

=1

¡
 −

¢
 ()P

=1

¡
 −

¢2
= 1 +

P

=1

¡
 −

¢× 0P

=1

¡
 −

¢2 = 1.
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³b0´ = 

³
 −b1´ = 

µP

=1 



¶
−

³b1´
= 

µP

=1 (0 + 1 + )



¶
−1

= 

µ
0

P

=1 1


+ 1

P

=1


+

P

=1 



¶
−1

= 0 +1 +

µP

=1 



¶
−1

= 0 +

µP

=1 



¶
= 0 +

1



X
=1

 ()

= 0 since () = 0

(3) They are consistent, i.e., b0 → 0 and
b1 → 1 as the sample size

goes to infinity.

Proof. Skip.

(4) They are efficient among all the linear unbiased estimators.

(5) The estimated regression line must pass through the point ( ).

Proof. Note that the estimated regression line is

 = b0 + b1
By the definition of b0 =  −b1

 =  −b1 + b1
 −  = b1 ¡−

¢
If the line passes through the point ( ), then the equality should hold

when we put  =  and  =  . This is obvious since
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 −  = b1 ¡ −
¢

0 = 0

Theorem 4.1: Gauss−Markov Theorem: Under assumptions 1-6,
the Ordinary Least Squares() estimators are the Best Linear Unbiased

Estimators ():

Proof. Skip.

If we are just interested in the relationship between  and  , we can

simply use ( ) or ( ). A regression line can also be used to

predict the value of  at a given value of . For any given value of , you

can find a corresponding value of  . Make sure that you can distinguish the

differences between

 = 0 + 1 + 

 = b0 + b1 + b
and

b = b0 + b1

The first equation is the true model, the second is the estimated model.

The actual observed values of  do not necessary lie on the line, so there are

residuals in both equations. The last equation represents a regression line,

every b is a point in the regression line, no error term is needed. We use the
regression line b = b0 + b1 to make predictions, e.g., if b0 = 1, b1 = 1
the predicted value b at  = 10 will be 11

Although the OLS method has many nice properties, it also has short-

comings. If there are observations whose values are extremely large, those

observations will dominate other observations in the determination of the

OLS estimates. In other words, the OLS estimator is not robust to outliers.
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Exercise 4.2: True/False/Uncertain. Explain.

(a) The OLS estimators are most efficient among all estimators.

(b) The OLS estimators are the best linear unbiased estimators.

(c). The OLS estimators are inefficient linear unbiased estimators.

(d). In a linear regression model  = 0+1+,   () =   ().

(e) The 2 increases with the number of observations.

(f) If  () = 2, b0 will be biased.
(g) If  () = 2, b1 will be biased.
(h) In a linear regression model  = 0+1+, we have

P
=1

³
 − b´ b =

0

(i). In a linear regression model  = 0+1+, we have
P
=1

b = 0

4.4 Goodness of Fit

To see whether the regression line fits the data, we first define the variation

of  about its mean as the total sum of squares (TSS), where

 =

X
=1

¡
 − 

¢2


Let

b = b0 + b1

be the predicted value of  given . Consider the following identity:

 −  ≡
³b − 

´
+
³
 − b´ 

Squaring both sides gives

¡
 − 

¢2
=
³b − 

´2
+
³
 − b´2 + 2³b − 

´³
 − b´ 
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Summing up from  = 1 to , we have

X
=1

¡
 − 

¢2
=

X
=1

³b − 
´2
+

X
=1

³
 − b´2 + 2 X

=1

³b − 
´³

 − b´ 
The last item in the R.H.S. can be shown to be zero. Thus, we have:

X
=1

¡
 − 

¢2


=

X
=1

³b − 
´2



+

X
=1

³
 − b´2


where

 stands for the total sum of squares,

 stands for the regression sum of squares, and

 stands for the error sum of squares.

Thus, the difference between  and  can be decomposed into two parts:

 −  =
³
 − b´+ ³b − 

´


The first part is

³b − 
´
=
³b0 + b1

´
−
³b0 + b1´ = b1 ¡ −

¢


This part shows that the predicted value b differs from  because 

differs from . The second part
³
 − b´ is the residual that remains un-

explained by the regressor . We define

2 = 1− 




Since  and  are positive, and  ≥ , the range for 2 is

0 ≤ 2 ≤ 1
We use 2 to measure the goodness of fit of a regression line. If 2 is

close to 0,  and  do not have a linear relationship. If 2 is close to 1,

then  and  are highly linearly correlated. If  cannot explain  at all,
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then  = 0,  = , and 2 = 0, and the regression line does not

fit the data in this case. If there is nothing that remains unexplained, then

 = 0. This implies the variation of  can be totally explained by the

variation of , and 2 = 1, and all the data must lie on the regression line

in this case.

Example 4.2: Given the data ( ),  = 1 2 , suppose we know

 = 30. We run a regression of  on  and obtain the following results

b = 08 + 09 2 = 09

Now suppose we use the same data and run a regression of  on , and

obtain the following regression.

b = +  2 = 

Find the values of  ,  , and .

Solution: Given that b = 08 + 09, 
2 = 09 and  = 30

 = 08 + 09 = 08 + 09 (30) = 278.

Regression of  on  yields

2 =

¡P

=1

¡
 −

¢ ¡
 − 

¢¢2P

=1

¡
 −

¢2P

=1

¡
 − 

¢2 = 09.
Regression of  on  yields

 =

¡P

=1

¡
 − 

¢ ¡
 −

¢¢2P

=1

¡
 − 

¢2P

=1

¡
 −

¢2 .
Thus,

 = 09.

Moreover,
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2 =

¡P

=1

¡
 −

¢ ¡
 − 

¢¢2P

=1

¡
 −

¢2P

=1

¡
 − 

¢2
=

P

=1

¡
 −

¢ ¡
 − 

¢P

=1

¡
 −

¢2 ×
P

=1

¡
 −

¢ ¡
 − 

¢P

=1

¡
 − 

¢2
09 = (09) 

⇒  = 1.

Since  = +  ,

30 = + 278

⇒  = 22

Example 4.3: Consider the model:  = 1 +   = 1 2  

(a) Show that the OLS estimator for 1 is given by
b1 =

P
=1



P
=1

2


;

(b) If we have three observations of ( ),  = 1 2 3.

 0 1 2

 2 1 0

Calculate the numerical values of:

i) b1;
ii) b = b1 for  = 1 2 3;

iii)  =
3P

=1

³
 − b´2 ;

iv)  =
3P

=1

¡
 − 

¢2
;

v) 2 = 1− 




Solution:

(a) The problem is

min
1

X
=1

2 = min
1

X
=1

( −1)
2
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The first-order condition is


P

=1 ( −1)
2

1
= −2

X
=1

( −1) = 0⇒ b1 = P

=1P

=1
2


.

(b)

 1 2 3

 0 1 2

 2 1 0

(i)

b1 = (0) (2) + (1) (1) + (2) (0)

(0)
2
+ (1)

2
+ (2)

2
=
1

5


(ii)

b1 =
1

5
(0) = 0

b2 =
1

5
(1) =

1

5
,

b3 =
1

5
(2) =

2

5
.

(iii)

 =

3X
=1

³
 − b´2 = (2− 0)2 +µ1− 1

5

¶2
+

µ
0− 2

5

¶2
= 48

(iv)

 =

3X
=1

¡
 − 

¢2
= (2− 1)2 + (1− 1)2 + (0− 1)2 = 2

(v)

2 = 1− 


= 1− 48

2
= −14
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Note that 2 is negative because the regression line excludes the intercept

term and
P3

=1 b 6= 0.
Exercise 4.3: Given the data ( ),  = 1 2 , We run a regression

of  on  and obtain the following results

b = b0 + b1 2 = 

Now suppose we use the same data and run a regression of  on , and

obtain the following regression.

b = b0 + b1 2 = 

Show that

 =  = b1b1
Exercise 4.4: Suppose we run a regression of  on  with an intercept,

and get the slope estimate of 08. Using the same data, if we run a regression

of  on  with an intercept, is it possible to get a slope estimate of −08?

Exercise 4.5: Given the data ( ),  = 1 2  , and  = 10.

Suppose we run a regression of  on  with an intercept, and obtain the

following results:

b =  2 = 1

Now, suppose we use the same data and run a regression of  on  with

an intercept, and obtain the following regression:

b = +  2 = 

Find the values of  ,  , and .
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Exercise 4.6: Given the data ( ),  = 1 2  . Suppose we run a

regression of  on  with an intercept, and get the following results:

b =  2 = 05

Now suppose we use the same data and run a regression of  on  with

an intercept, and get the following regression:

b = 1 +  2 = 

Find the values of ,  ,  and .

Exercise 4.7: Consider the model:  = 0 + 1 +   =

1 2  

If we have three observations of ( ),  = 1 2 3.

 0 1 2

 2 1 0

Calculate the numerical values of:

i) b0 b1 ;
ii) b = b0 + b1 for  = 1 2 3;

iii)  =
3P

=1

³
 − b´2 ;

iv)  =
3P

=1

¡
 − 

¢2
;

v) 2 = 1− 


;

vi) 
2
= 1− (1−2)

− 1
−  − 1 

Exercise 4.8: Consider the model:  = 0+1+  = 1 2  

(a) Suppose we have four observations of ( ),  = 1 2 3 4

 0 1  1− 

 0 1 1 0

Find the followings in term of :
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i) b0 b1
ii) b = b0 + b1 for  = 1 2 3 4

iii)  =
4P

=1

³
 − b´2

iv)  =
4P

=1

¡
 − 

¢2
v) 2 = 1− 


(b) For what value(s) of  will the b1 equal 1?
(c) For what value(s) of  will the 2 be maximized? For what value(s)

of  will the 2 be minimized?

Exercise 4.9: If we have four observations of ( ),  = 1 2 3 4

 = 1  = 2  = 3  = 4

 −1 1 −1 1

 1 1 −1 −1

(a) Calculate the numerical values of:

i) b0 b1.
ii) b = b0 + b1 for  = 1 2 3 4.

iii)  =
4P

=1

³
 − b´2.

iv)  =
4P

=1

¡
 − 

¢2
.

v) 2 = 1− 


.

vi) 
2
= 1− (1−2)

− 1
− 2 .

(b) Plot the four observations and draw the estimated regression line.

(c) Suppose there are two additional observation (5 5) = (0 1) and

(6 6) = (0−1) How will this affect the regression line in (b)?
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Exercise 4.10: Let  and  be random variables,  = 1 − , and

 = 1−  ,

(a) Show that  () =  ( ) .

(b) Suppose we draw a sample of size  from the above distributions of

 and  , and run the following two regression models:

 = 0 + 1 + 

 = 0 + 1 + 

then the two estimates of 1 are identical in the two regression models.

True or False? Explain.

Exercise 4.11: Let  be four random variables with zero mean

and unit variance.

(a) Is  ()−  () =  (− −)?

(b) Suppose we draw a sample size  from the above distributions of ,

,  and , and run the following regression models:

 = 0 + 1 + 

 = 0 + 1 + 

 − = 0 + 1 ( −) + 

Is b1 = b1 − b1?
4.5 Hypothesis Testing on s

Consider the following regression

 = 0 + 1 + 

We would like to test whether 1 equals zero.
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Suppose we find that b1 = 034 from the sample. After the estimation, we
may perform hypothesis testing. We may test whether the true parameter 1

equals zero or not. That is, we test 0 : 1 = 0. We must perform this test

because if we cannot reject 0,  cannot explain  and the regression model

will be useless. When we test this hypothesis, we need a test statistic and find

its distribution. In the context of regression models, the random elements

are . Note that we have not yet specified the distribution of . Thus far,

we have only assumed that  are uncorrelated and identically distributed

with mean zero and variance 2. Therefore, we have to make the following

assumption when we carry out hypothesis testing:

Assumption 7: Normality of errors:  ∼  (0 2).

This assumption is not needed as far as estimation is concerned. It is

called for when we would like to perform hypothesis testing on ’s. Suppose

we perform a two-sided test on 1:

0 : 1 = 0

1 : 1 6= 0

A standard way to test the hypothesis is to form a test statistic

 =
b1 − 1r
 

³b1´ 
where b1 is the OLS estimator for the unknown parameter 1 and

 
³b1´ = 2

P
=1

¡
 −

¢2
from Example 4.1. Since  has a normal distribution by assumption 7,

if 2 is known, then by the property that normal plus normal is still normal,

the test statistic  will have a  (0 1) distribution. The problem again, is
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that 2 is unknown in the real world, so we will have to estimate it. Recall

that 2 is the variance of  in the true model:

 = 0 + 1 + 

Now after the  estimators b0 and b1 have been obtained, the esti-
mated residual is

b =  − b0 − b1

and we define

2 =

P
=1

b2
− 2 

We use 2 to estimate 2. The reason why we have to use (− 2) is
because 2 is an unbiased estimator of 2. This number should be equal

to the number of 0 in the regression. If we have a multiple regression

with  0, then it should be (− ) at the bottom. The test will have a

t-distribution with degrees of freedom (− 2) 

Exercise 4.12: Consider the sample period from 1/9/14-30/9/14. Let

=Daily closing price of the call warrant [25453];

=Price of [2628] China Life ;

i) Plot (, ).

ii) Run the following regression model

 = 0 + 1 + 

Find the values of b0, b1. What is the meaning of b0 in this case?
Interpret b1.
iii) Test 0 : 1 = 0 against 1 : 1 6= 0 at  = 005 Is the warrant price

affected by the price of the underlying stock?
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Exercise 4.13: Let 1, 2 be independent  (0 1) random variables.

Suppose we draw a sample size  from the above distributions of 1 and 2.

In a linear regression model 22 = 0+ 1
2
1
+, what will b1 converge to?

Exercise 4.14: Let ,  be two independent identical discrete random

variables with the probability distributions as follows:

 = −1 with probability 1
2


 = 1 with probability 1
2


 = −1 with probability 1
2


 = 1 with probability 1
2


Find the distribution of  if:

(a)  =  { } 
(b)  = 

Suppose we draw a sample size n from the above distributions of , 

and , and run the following regressions:

(i)  = 0 + 1 + 

(ii)  = 0 + 1 + 

(iii)  = 0 + 1 + 

When  goes to infinity, what are the values of b0, b1 in each of the
possible cases ?

Exercise 4.15: Find the closing (i.e., unadjusted closing) price of [572]

CHINA PACKAGING from September1-September 30, 2014. Extract your

data from Yahoo Finance. Let  be the price and  = ln − ln−1 be

the daily return of GOME on day . Assume that  ∼  ( 2). Consider

a sample of  from 2/9/14 to 30/9/14.

(a) Find  and 2.

(b) Use t-test to test the hypothesis 0 :  = 0 against 1 :  6= 0 at

 = 5%

(c) Construct a 95% confidence interval for the population mean 
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(d) Let HSI be the Hang Seng Index of the same period, estimate the

following regression model

 = 0 + 1 + 

(e) Test 0 : 1 = 0 against 1 : 1 6= 0 at  = 005 Is the price of

CHINA PACKAGING affected by Hang Seng Index?

4.6 Multiple Regression

In many situations, a single explanatory variable is not sufficient to explain

the variation of  . We may regress  on some more other explanatory

variables. A multiple regression is of the following form:

 = 0 + 11 + 22 + +  + 

The OLS estimated model is:

b = b0 + b11 + b22 + + b

It should be noted that the number of regressors cannot exceed the num-

ber of observations. Here the interpretation of b’s is a little bit different from
the case of simple regression. b0 is interpreted as the predicted value of  if

all the ’s are zero. Sometimes b0 is not interpretable as  cannot be zero

or the predicted value of  is beyond its possible range. b is interpreted
as the increase in the value of b if  is increased by 1 unit, holding all

other ’s constant. Sometimes, the sign of b may be counter-intuitive. For
example, if you regress the price of a house on its size and the number of

bedrooms, it may happen that the estimated coefficient associated with the

number of bedrooms is negative, although we expect it to be positive. The

reason is that we are holding the size of the house constant, but keep adding

bedrooms, this may reduce the price of the house.
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Example 4.4: Consider a regression model

 = 0 + 11 + 22 + 

We have the following data

  1 2

1 2 3 1

2 1 1 2

3 4 2 3

4 5 0 4

Define

 =

⎛⎜⎜⎜⎜⎝
1 11 21

1 12 22

1 13 23

1 14 24

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 3 1

1 1 2

1 2 3

1 0 4

⎞⎟⎟⎟⎟⎠ 

 =

⎛⎜⎜⎜⎜⎝
1

2

3

4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
2

1

4

5

⎞⎟⎟⎟⎟⎠   =

⎛⎜⎜⎜⎜⎝
1

2

3

4

⎞⎟⎟⎟⎟⎠  β =

⎛⎜⎝ 0

1

2

⎞⎟⎠ 

and  =  +  The least square method is to find  to minimizeP
2 = min 

0 = min ( −)
0
( −). The first-order condition is

2 (−)0 ( −) = 0

and we solve that

b = ( 0)−1 0

We need to find the inverse of  0
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 0 =

⎛⎜⎝ 1 1 1 1

3 1 2 0

1 2 3 4

⎞⎟⎠
⎛⎜⎜⎜⎜⎝
1 3 1

1 1 2

1 2 3

1 0 4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎝ 4 6 10

6 14 11

10 11 30

⎞⎟⎠

( 0)−1 =

⎛⎜⎝ 4 6 10

6 14 11

10 11 30

⎞⎟⎠
−1

=

⎛⎜⎝
299
36

−35
18
−37
18

−35
18

5
9

4
9

−37
18

4
9

5
9

⎞⎟⎠

b =
⎛⎜⎝

299
36

−35
18
−37
18

−35
18

5
9

4
9

−37
18

4
9

5
9

⎞⎟⎠
⎛⎜⎝ 1 1 1 1

3 1 2 0

1 2 3 4

⎞⎟⎠
⎛⎜⎜⎜⎜⎝
2

1

4

5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎝ −
7
2

1

2

⎞⎟⎠ 

Again, we use 2 to measure the goodness of fit of multiple regression

models. However, we cannot use 2 to measure the correlation between

 and , since we have more than one regressor here. We define 2 =

1 − 


. As we increase the number of regressors, the explanatory power

of the regression increases, the error sum of squares is reduced. Thus, 2 is

always non-decreasing with the number of ’s. In principle, as the number

of regressors goes to infinity, 2 should approach 1. However, even if we have

a lot of observations, it is not always a good idea to increase the number of

regressors. A good model is a model that is simple and has high explanatory

power. Even if we add a garbage variable to the model, the 2 may still

increase. Thus, we should not use 2 to compare models. Instead, we define

an adjusted 2 as follows:


2
= 1−  − 1

 −  − 1
¡
1−2

¢


Note that as  increases, there are two effects. The direct effect is a

reduction in 
2
. This is because including an additional regressor reduces

the degrees of freedom of the model. The indirect effect is an increase in


2
via the increase in 2 Thus, whether 

2
increases or decreases with 
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depends critically upon the importance of the additional regressor. If the

additional regressor is significantly explaining the variation of  , then 2

will increase substantially, and the indirect effect will dominate the direct

effect, ending up with an drop in 
2
. However, if the additional variable

is a garbage variable, 2 will only increase much. Hence, the direct effect

dominates the indirect effect, ending up with a decrease in 
2
. In light of

this, we normally use 
2
to compare across models. Note that when 

2
is

maximized, the absolute value of the t statistics of all the slope coefficient

estimates will be greater than one.

Exercise 4.16: True/False. Explain.

(a) The more explanatory variables we have, the higher the 
2
.

(b). The 
2
cannot be negative.

(c) When the sample size increases, the 2 must be higher.

4.7 Simple Hypothesis Testing

If we are just interested in one of the coefficients in the multiple regression

model, the t-test is performed as usual, the degrees of freedom are −− 1.
For any  = 0 1 2  , we test:

0 :  = 0

1 :  6= 0

We define

 =
bb³b´ 

b ( = 0 1  ) are obtained by solving the  + 1 normal equations.
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b³b´ =
p
2+1+1

2 =

P
=1

b2
−  − 1 b =  − b0 − b11 − b22 − − b

+1+1 is the (+ 1 + 1)

element of the matrix ( 0)−1.

 =

⎛⎜⎜⎜⎜⎝
1 11 21 · · · 1

1 12 22 2

...
. . .

...

1 1 2 · · · 

⎞⎟⎟⎟⎟⎠
We reject the null at the significance level  if || 

¯̄

2
−−1

¯̄
.

Example 4.5: Consider the following data

 = 1  = 2  = 3  = 4

1 3 1 2 0

2 1 2 3 4

 2 1 4 5

 =

⎛⎜⎜⎜⎜⎝
1 11 21

1 12 22

1 13 23

1 14 24

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 3 1

1 1 2

1 2 3

1 0 4

⎞⎟⎟⎟⎟⎠

 0 =

⎛⎜⎝ 1 1 1 1

3 1 2 0

1 2 3 4

⎞⎟⎠
⎛⎜⎜⎜⎜⎝
1 3 1

1 1 2

1 2 3

1 0 4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎝ 4 6 10

6 14 11

10 11 30

⎞⎟⎠

( 0)−1 =

⎛⎜⎝ 4 6 10

6 14 11

10 11 30

⎞⎟⎠
−1

=

⎛⎜⎝
299
36

−35
18
−37
18

−35
18

5
9

4
9

−37
18

4
9

5
9

⎞⎟⎠
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11 =
299

36
 22 =

5

9
 33 =

5

9


4.8 Joint Hypothesis Testing

Sometimes, we are interested in testing the significance of a set of coefficients.

For example,

0 : 2 = 3 = 4 = 0

i.e., we would like to test whether 2 3 and 4 do not affect  .

Be careful when you write down the alternative hypothesis 1 Most

students make mistakes here. Remember 0 ∪ 1 =  where  is the

sample space. Thus, 1 must be the complement of the statement 0 Some

of you may write down 1 : 2 = 3 = 4 6= 0 or 1 : 2 6= 3 6= 4 6= 0,
which are inappropriate, as those statements are not the complements of 0

The correct statement should be 1: At least one of the 2 3 4 is not

equal to zero.

Sometimes, we are just interested in the linear relationship among 0

rather than testing if the 0 equal some prespecified values. For instance,

we may like to test

0 : 2 = 3 = 4

1 : 2 3 and 4 are not all the same.

or

0 : 2 = 23

1 : 2 6= 23

In all the aforementioned situations, the t-test is no longer appropriate,

as the hypothesis involves more than one . We use the F-test in these cases.
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The idea behind the F-test is as follows:

We run two regressions, one is the unrestricted model:

 = 0 + 11 + 22 + +  + 

We obtain the unrestricted error sum of squares from this model, called

 . Next, we impose the restriction of 0 on the model. For example, if

0 : 2 = 3 = 4 = 0, then our restricted model is:

 = 0 + 11 + 55 + +  + 

We obtain the restricted error sum of squares from this model, and call

it  (Note that  ≥  )

If 0 is true, the estimates of 2 3 and 4 in the unrestricted model will

converge to zero, and there will be no difference between the restricted and

unrestricted models. Thus, their error sum of squares should be the same

when the sample size is very large.

If 0 is false, then at least one of the 2 3 4 is not equal to zero, and

 6=  as a result. We can therefore construct a test statistic based

on the difference between  and  . We define

 =
( −)  ( − )




where  and  are the degrees of freedom for the restricted and un-

restricted model respectively.

If 0 is true,  − will be very small. This implies  will be

small if 0 is true. But how small is small? We have to find a critical value.

Now at a given value of , find out the critical −value at  = ( −
  ) from the F-table. If the observed F-value is bigger than the critical

−value, we reject 0 at  level of significance.

Example 4.6: Consider the following demand function for chicken.

ln = 0 + 1 ln1 + 2 ln2 + 3 ln3 + 4 ln4 + 
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Suppose we run an OLS regression and obtain

dln = 21898
(01557)

+ 03425
(00833)

ln1 − 05046
(01109)

ln2 + 01485
(00997)

ln3 + 00997
(01007)

ln4

2 = 09823

 = 1 2  30

where

=per capita consumption of chicken (lbs)

1=real disposable per capita income ($)

2=real retail price of chicken per lb (cents)

3=real retail price of pork per lb (cents)

4=real retail price of beef per lb (cents)

and the figures in the parentheses are the estimated standard errors.

(a) Interpret each of the above coefficient estimates Perform the t-test

for 0 :  = 0 v.s. 1 :  6= 0,  = 0 1 2 3 4 at  = 5%.

(b) Suppose we would like to test the hypothesis that 0 : 3 = 4 = 0.

What is the purpose of testing this hypothesis? Now suppose under 0, we

obtain

dln = 20328
(01162)

+ 04515
(00247)

ln1 − 03722
(00635)

ln2

2 = 09801

Perform an F-test for 0 : 3 = 4 = 0 at  = 5%

Solution: Given

ln = 0 + 1 ln1 + 2 ln2 + 3 ln3 + 4 ln4 + .

(a)
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 =
 ln

 ln

=
 ln









 ln
=





= elasticity of  with respect to  for  = 1 2 3 4

( when  increases 1%,  will increase %)

Thus,

b1 = estimated elasticity of per capita consumption w.r.t. disposable

per capita income (income elasticity)b2 = estimated elasticity of per capita consumption w.r.t. price of chicken

(price elasticity)b3 = estimated elasticity of per capita consumption w.r.t. price of pork

(cross price elasticity)b4 = estimated elasticity of per capita consumption w.r.t. price of beef

(cross price elasticity)

exp
³b0´ = estimated autonomous amount of per capita consumption when

1, 2, 3 and 4 equal one.

To test the hypotheses 0 :  = 0 for  = 0 1 2 3 4, we find out

the critical value of the -statistic at 5% level of significance with degree of

freedom (30− 5) = 25.

 = 206.

The observed -statistics are
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When  = 0  =
b0b³b0´ =

21898

01557
= 1406. 0 is rejected.

When  = 1  =
b1b³b1´ =

03425

00833
= 411. 0 is rejected.

When  = 2  =
b2b³b2´ =

05046

01109
= 455. 0 is rejected.

When  = 3  =
b3b³b3´ =

01485

00997
= 149. 0 cannot be rejected.

When  = 4  =
b4b³b4´ =

00997

01007
= 099. 0 cannot be rejected.

(b) The purpose of testing hypothesis 0 : 3 = 4 = 0 is to test the

relevance of the variables 3 and 4. If the hypothesis cannot be rejected,

this implies that we do not need to introduce the variables 3 and 4 into

the model.

Using 2 = 1− 


, we have

 =
( −)  ( − )

  

=
[ (1−2)−  (1−2)]  ( − )

 (1−2)  

=
(2 −2)  ( − )

(1−2)  

=
(09823− 09801)
1− 09823 × 25

27− 25
= 15537

Thus,   005 (2 25) = 339. The hypothesis 0 : 3 = 4 = 0

cannot be rejected at 5% level of significance.

Exercise 4.17: A model of death tolls due to heart disease is estimated

as follows:
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\ = 13968 + 1071 + 338 + 2675 − 413

 = Sample size = 34

 = 4 = Number of explanatory variables excluding the constant term

 =

34X
=1

³
 −\

´2
= 2122


2
= 1− (−  − 1)

(− 1) = 0672

where

 =Death rate (per million population) due to coronary heart disease

in the U.S. during each of the years 1947-1980.

 =Per capita consumption of cigarettes measured in pounds of to-

bacco.

 = Per capita intake of edible fats and oil, measured in pounds.

 =Per capita consumption of distilled spirits in gallons.

 = Per capita consumption of malted liquor in gallons.

(a) Find the value of2, Total Sum of Squares ( =
34P
=1

¡
 − 

¢2
)

and the Regression Sum of Squares () in the above model.

(b) Suppose we would like to test the joint hypothesis 0 : 1 = 2 =

3 = 4 = 0, and run the restricted model as:

 = 0 + 

i) Show that the Ordinary Least Squares estimate for 0 is
b0 = ,

where  =

34P
=1



34


ii) Show that \ =  for all  = 1 2  34 What is the value of

the restricted error sum of squares  =
34P
=1

³
 −\

´2
?
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iii) Perform an F test on 0 : 1 = 2 = 3 = 4 = 0 at  = 5% using

the F-statistic defined as  =
( −)  ( − )


.

Exercise 4.18: Suppose we have 4 observations of a trivariate model.

 = 1  = 2  = 3  = 4

1 3 1 2 0

2 1 2 3 4

 2 1 4 5

(a) Find b0, b1, b2;
(b) Find b =  − b0 − b11 − b22 for  = 1 2 3 4;

(c) Find 2 =

P
=1

b2
− 2− 1;

(d) Find b³b´ for  = 0 1 2;
(e) Test

0 :  = 0

1 :  6= 0

for  = 0 1 2

Exercise 4.19: Consider the model:

 = 0 + 1 + 2 + 

 = 1 2  19.

where

 is the price of house  (thousands of dollars)

 is the living areas of house . (square feet)

 is the number of bedrooms in house 

Suppose we estimate the model and obtain
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\ = 1422
(153)

+ 0313
(673)

 + 439
(2545)



 = Sample size = 19

 = 2 = Number of explanatory variables excluding the constant term,

 =

19X
=1

³
 − \

´2
= 1332 = Error Sum of Squares,


2
= 1− (−  − 1)

(− 1) = 075

and the figures in the parentheses are t-ratios.

(a) Interpret each of the above coefficient estimates

(b) Perform the t-test for 0 :  = 0 vs. 1 :  6= 0,  = 0 1 2 at

 = 5%.

(c) Find the value of2, Total Sum of Squares ( =
19P
=1

¡
 − 

¢2
)

and the Regression Sum of Squares ( = −) in the above model.

(d) Suppose we would like to test the joint hypothesis 0 : 1 = 2 = 0,

and run the restricted model as:

 = 0 + 

i) Show that the Ordinary Least Squares estimate for 0 is
b0 =  =

19P
=1



19


ii) Show that \ =  for all  = 1 2  19What is the value

of the restricted error sum of squares  =
19P
=1

³
 − \

´2
?

iii) Perform an F test on0 : 1 = 2 = 0 at  = 5% using the F-statistic

defined as  =
( −)  ( − )


.

Exercise 4.20: If the true model has 1, but we estimate a model with

1 and2. If 2 = 0, then 1 will be over-estimated. True/False/Uncertain.

Explain.
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Exercise 4.21: Consider the following production function for gross

national product at time t.

ln = 0 + 1 ln + 2 ln + 

Suppose we run an OLS and get

dln = 118
(694)

+ 025
(313)

ln + 046
(242)

ln  = 1 2  30;

2 = 093;

where

=GDP at time t in constant dollars;

=Total employment at time t;

=Capital stock at time t in constant dollars;

and the figures in parentheses are t-ratios.

Define an F-statistic

 =
( −)  ( − )

  


where  and  are the degrees of freedom of the restricted and unre-

stricted models respectively;  and  are the error sum of squares

of the restricted and unrestricted models respectively.

(a) Use the definition 2 = 1− 


, show that the F-test can be rewrit-

ten as

 =
(2 −2)  ( − )

(1−2)  


(b) Suppose we want to test 0 : 1 = 2 = 0 at  = 5%.What is

restricted model? Show that the 2 = 0 in this restricted model.
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(c) Compute the value of F in part (b) under 0 : 1 = 2 = 0.

Exercise 4.22: Consider the sample period from 1/9/14-30/9/14. Let

=Daily closing price of the call warrant [25453];

1=Price of [2628] China Life;

2=The square of the price range of [2628] China Life in the previous

trading day, i.e, (max−1 − min−1)
2


i) Run the following regression model

 = 0 + 11 + 22 + 

Find the values of b0, b1 b2. What is the meaning of b0 in this case?
Interpret b1 and b2
ii) Test 0 : 1 = 0 against 1 : 1 6= 0 at  = 005 Is the warrant price

affected by the price of China Life?

iii) Test 0 : 2 = 0 against 1 : 2 6= 0 at  = 005 Is the warrant price
affected by the volatility of China Life?

iv) Compare your results with those from the simple regression. What

are the differences in terms of the estimated values of the coefficients, test

result for 0 : 1 = 0, 
2 and the adjusted 2.

4.9 Multivariate Multiple Regression

Multivariate regression is a technique that estimates a regression model with

more than one outcome variable. Mathematically speaking, one would like

to model the relationship between  responses 1 2   and a single set

of predictor variables 1 2  . Each response is assumed to follow its own

regression model, so that for  = 1 2  

1 = 01 + 111 + + 1 + 1

2 = 02 + 121 + + 2 + 2
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...

 = 0 + 11 + +  + 

where 1   denote the values of the predictor variables for the 


observation.

For example, one may like to examine how the three measures of health

of individual , namely, cholesterol (1), blood pressure (2), and weight

(3) are affected by his/her eating habits such as how many ounces of red

meat (1), fish (2), dairy products (3), and chocolate (4) consumed per

day.

In matrix notation,

Z
×(+1)

=

⎛⎜⎜⎜⎜⎝
1 11 · · · 1

1 21 · · · 2
...

...
. . .

...

1 1 · · · 

⎞⎟⎟⎟⎟⎠  Y
×

=

⎛⎜⎜⎜⎜⎝
11 12 · · · 1

21 22 · · · 2
...

...
. . .

...

1 2 · · · 

⎞⎟⎟⎟⎟⎠

ε
×

=

⎛⎜⎜⎜⎜⎝
11 12 · · · 1

21 22 · · · 2
...

...
. . .

...

1 2 · · · 

⎞⎟⎟⎟⎟⎠  β
(+1)×

=

⎛⎜⎜⎜⎜⎝
01 02 · · · 0

11 12 · · · 1
...

...
. . .

...

1 2 · · · 

⎞⎟⎟⎟⎟⎠

The multivariate linear regression model is

Y = Zβ + ε

The estimator is for 
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b=(Z0Z)−1Z0Y

Example 4.7: Consider the following model for  = 1 2  5

1 = 01 + 111 + 1

2 = 02 + 121 + 2

The data are given as follows:

1 0 1 2 3 4

1 1 4 3 8 9

2 −1 −1 2 3 2

Z
5×2

=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0

1 1

1 2

1 3

1 4

⎞⎟⎟⎟⎟⎟⎟⎠ Y
5×2

=

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1
4 −1
3 2

8 3

9 2

⎞⎟⎟⎟⎟⎟⎟⎠

bβ = (Z0Z)−1Z0Y

=

⎛⎜⎜⎜⎜⎜⎜⎝
Ã
1 1 1 1 1

0 1 2 3 4

!
⎛⎜⎜⎜⎜⎜⎜⎝
1 0

1 1

1 2

1 3

1 4

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

−1

Ã
1 1 1 1 1

0 1 2 3 4

!
⎛⎜⎜⎜⎜⎜⎜⎝
1 −1
4 −1
3 2

8 3

9 2

⎞⎟⎟⎟⎟⎟⎟⎠
=

Ã
5 10

10 30

!−1Ã
25 5

70 20

!

=
1

5× 30− 102
Ã

30 −10
−10 5

!Ã
25 5

70 20

!
=

Ã
1 −1
2 1

!


The fitted values are generated from
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b1 = 1 + 21
b2 = −1 + 1

bY = Zbβ =
⎛⎜⎜⎜⎜⎜⎜⎝
1 0

1 1

1 2

1 3

1 4

⎞⎟⎟⎟⎟⎟⎟⎠
Ã
1 −1
2 1

!
=

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1
3 0

5 1

7 2

9 3

⎞⎟⎟⎟⎟⎟⎟⎠ 

The residual matrix is

bε= Y−bY =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1
4 −1
3 2

8 3

9 2

⎞⎟⎟⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎜⎜⎝
1 −1
3 0

5 1

7 2

9 3

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0

1 −1
−2 1

1 1

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ 

Note that the sum of residual terms in each column is zero.

bε0 bY =

Ã
0 1 −2 1 0

0 −1 1 1 −1

!
⎛⎜⎜⎜⎜⎜⎜⎝
1 −1
3 0

5 1

7 2

9 3

⎞⎟⎟⎟⎟⎟⎟⎠ =

Ã
0 0

0 0

!


Y0Y =

Ã
1 4 3 8 9

−1 −1 2 3 2

!
⎛⎜⎜⎜⎜⎜⎜⎝
1 −1
4 −1
3 2

8 3

9 2

⎞⎟⎟⎟⎟⎟⎟⎠ =

Ã
171 43

43 19

!
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bY0 bY =

Ã
1 3 5 7 9

−1 0 1 2 3

!
⎛⎜⎜⎜⎜⎜⎜⎝
1 −1
3 0

5 1

7 2

9 3

⎞⎟⎟⎟⎟⎟⎟⎠ =

Ã
165 45

45 15

!


bε0bε = Ã 0 1 −2 1 0

0 −1 1 1 −1

!
⎛⎜⎜⎜⎜⎜⎜⎝

0 0

1 −1
−2 1

1 1

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ =

Ã
6 −2
−2 4

!


Note that

Y0Y = bY0 bY + bε0bε
Exercise 4.23: Consider the model

1 = 01 + 111 + 1

2 = 02 + 121 + 2

The data are given as follows:

1 −2 −1 0 1 2

1 5 3 4 2 1

2 −3 −1 −1 2 3

(a) Solve b01 b11 b02 b12
(b) Find bY

(c) Verify that Y0Y = bY0 bY + bε0bε
(d) Repeat (a), (b), (c) if the data are given as follows:

1 3 1 0 2

1 3 5 6 4

2 1 1 1 1
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Chapter 5

Principal Components Analysis

Principal components analysis (PCA) aims to transform a set of correlated

response variables into a smaller set of uncorrelated variables called principal

components. The objectives of a PCA are (1) to reduce the dimensionality

of the data set and (2) to identify new meaningful underlying variables. If

the data are plotted in a p-dimensional space, will the data take up all

p dimensions? If not, the original variables can be replaced by a smaller

number of underlying variables without losing any information. Note that

we cannot guarantee that the new variables, called principal components,

will be meaningful. The principal components have the following properties:

(1) They are uncorrelated;

(2) The first principal component accounts for much of the variability in

the data as possible;

(3) Each succeeding component accounts for as much of the remaining

variability as is possible.

5.1 The Two-Variable Case

Let the random vector X0 = (12) have the covariance matrix

121
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Ω =

Ã
  (1)  (12)

 (21)   (2)

!


with eigenvalues 1 ≥ 2 ≥ 0 We make two linear combinations of 
variables, called them  variables. Note that  may be correlated, but 

must be uncorrelated. If one of the  is uncorrelated with other , then

this  will become one of our  , i.e., the weight associated with other  is

zero. In the extreme case, where all  are uncorrelated, then  will just be

. Mathematically speaking, consider the linear combination

1 = 111 + 122 = a
0
1X

2 = 211 + 222 = a
0
2X

  (1) =   (a01X) = a
0
1  (X)a1 = a

0
1Ωa1

  (2) =   (a02X) = a
0
2  (X)a2 = a

0
2Ωa2

 (1 2) = a
0
1Ωa2

The first principal component=linear combination of a01X that maximizes

  (a01X)

subject to

a01a1 =
X

=1

21 = 1

The second principal component=linear combination of a02X that maxi-

mizes   (a02X) subject to a
0
2a2 =

P

=1 
2
2 = 1 and Cov(a

0
2X a

0
1X) = 0
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What values of the vector a will satisfy the above condition? Here, we re-

call the eigenvalues and eigenvectors that we have learned in previous classes.

In general, if

 = e
0
X = 11 + 22 for  = 1 2

where e = (1 2)
0
is the eigenvector of Ω associated with the  eigen-

value , then the above condition will be satisfied.

Note that since Ω is a covariance matrix, it is a positive definite matrix

and its spectral decomposition can be expressed as

Ω =

2X
=1

ee
0


where  is the 
 eigenvalue and  is the 

 eigenvector. We can rewrite

the decomposition in matrix form such that

Ω
×

=

2X
=1

ee
0
 =

³
e1 e2

´Ã 1 0

0 2

!Ã
e01
e02

!
= PΛP0

where

Λ
2×2
=

Ã
1 0

0 2

!


P is a matrix collecting the eigenvectors

P
2×2
=
³
e1 e2

´
=

Ã
11 21

12 22

!


Using the properties that e0e = 1 and e
0
e = 0 for  6= , we have
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  (1) =   (e01X) = e
0
1  (X) e1 = e

0
1Ωe1 = e

0
1PΛP

0e1

= e01
³
e1 e2

´Ã 1 0

0 2

!Ã
e01
e02

!
e1

=
³
e01e1 e01e2

´Ã 1 0

0 2

!Ã
e01e1
e02e1

!

=
³
1 0

´Ã 1 0

0 2

!Ã
1

0

!
= 1

Similarly, Var(2) = 2 and

 (1 2) = e01Ωe2 = e
0
1PΛP

0e2

= e01
³
e1 e2

´Ã 1 0

0 2

!Ã
e01
e02

!
e2

=
³
e01e1 e01e2

´Ã 1 0

0 2

!Ã
e01e2
e02e2

!

=
³
1 0

´Ã 1 0

0 2

!Ã
0

1

!
= 0

The proportion of total population variance due to first principal compo-

nent =
1

1 + 2


Example 5.1: Consider the covariance matrix

Ω =

Ã
1 4

4 100

!


(a) Determine the population components 1 and 2.

(b) Calculate the proportion of the total population variance explained

by the first principal component.
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Solution: Recall from Chapter 2 that for a 2 by 2 matrix

Ã
 

 

!
, the

eigenvalues are

1 =
1

2

µ
+ +

q
(− )

2
+ 4

¶


2 =
1

2

µ
+ −

q
(− )

2
+ 4

¶


Thus, we have

1 = 10016 e1 =

Ã
004034

099998

!


2 = 083865 e2 =

Ã
099998

−004034

!


1 = e
0
1X = 0040341 + 0999982

2 = e
0
2X = 0999981 − 0040342

Note that the first principal component attaches a very large weight to

2, since 2 has a large variance (This large variance may be due to the unit

of measurement used).

  (1) =   (0040341 + 0999982)

= (004034)
2
  (1) + (099998)

2
  (2)

+2 (004034) (099998)(12)

= (004034)
2
(1) + (099998)

2
(100) + 2 (004034) (099998) (4)

= 10016

= 1

Similarly, we can show that   (2) = 083865 = 2. Note that
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 (1 2) =  (0040341 + 0999982 0999981 − 0040342)

= 004034 (099998)  (1)−
¡
(099998)

2 − (004034)2¢ (12)

−004034 (099998)  (2)

= (004034) (099998) +
¡
(099998)

2 − (004034)2¢ (4)− (004034) (099998) (1
= 0

Therefore, the proportion of total population variance due to first princi-

pal component =
1

1 + 2
=

10016

10016 + 083865
= 099

Exercise 5.1: The two Eigen values of a 2 by 2 square matrix can be

equal to each other. True/ False

Exercise 5.2: The smallest Eigen values of a 2 by 2 square matrix can

be equal to zero. True/ False

Exercise 5.3. Determine the population components 1 and 2. and

calculate the proportion of the total population variance explained by first

principal component for the covariance matrix Ω =

Ã
2 1

1 1

!


Exercise 5.4. Determine the population components 1 and 2. and

calculate the proportion of the total population variance explained by first

principal component for the covariance matrix Ω =

Ã
2 2

2 4

!
.

Exercise 5.5: True/False. For the correlation matrix ρ=

Ã
1 0

0 1

!
,

(a). The corresponding covariance matrix can be Ω =

Ã
1 0

0 2

!
.

(b). The corresponding covariance matrix should also be Ω =

Ã
1 0

0 1

!
.
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5.2 The General Case

Let the random vector X0 = (12 ) have the covariance matrix

Ω =

⎛⎜⎜⎜⎜⎝
  (1)  (12) · · ·  (1)

 (2 1)   (2) · · ·  (2)
...

...
. . .

...

 (1)  ( 2) · · ·   ()

⎞⎟⎟⎟⎟⎠ 

with eigenvalues 1 ≥ 2 ≥  ≥  ≥ 0 We make  linear combinations
of  variables, called them  variables. Consider the linear combination

1 = a
0
1X = 111 + 122 + + 1

2 = a
0
2X = 211 + 222 + + 2

...

 = a
0
X = 11 + 22 + + 

Note that

  () = a
0
Ωa

 ( ) = a
0
Ωa

First principal component=linear combination of a01X that maximizes

  (a01X)

subject to
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a01a1 =
X

=1

21 = 1

The second principal component=linear combination of a02X that maxi-

mizes   (a02X) subject to a
0
2a2 =

P

=1 
2
2 = 1 and Cov(a

0
2X a

0
1X) = 0

The  principal component=linear combination of a0X that maximizes

  (a0X) subject to a
0
a =

P

=1 
2
 = 1 and Cov(a

0
Xa

0
X) = 0 for   

What values of the vector a will satisfy the above condition? In general,

if

 = e
0
X = 11 + 22 + +  ( = 1 2  ) 

where e = (1 2  )
0
is the eigenvector associated with the  eigen-

value , then the above condition will be satisfied. Note that Ω is a positive

definite matrix with the spectral decomposition of a  by  symmetric matrix

 can be expressed as

Ω =

X
=1

ee
0


where  is the 
 eigenvalue and  is the 

 eigenvector. We can rewrite

the decomposition in matrix form as

Ω
×

= PΛP0

where

Λ
×
=

⎛⎜⎜⎜⎜⎝
1 0 · · · 0

0 2 · · · 0
...

...
. . .

...

0 0 · · · 

⎞⎟⎟⎟⎟⎠ 

P is a matrix collecting the eigenvectors
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P
×
=
³
e1 e2 · · ·  e

´


For  = 1 2  

  ()

=   (e0X) = e
0
  (X) e = e

0
Ωe = e

0
PΛP

0e

=
³
e0e1 e0e2 · · · e0e · · ·  e0e

´
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · 0

0 2 · · · · · · · · · 0
...

...
. . .

...
...

... 
...

...
...

. . .
...

0 0 · · · · · · · · · 

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e01e
e02e
...

e0e
...

e0e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
³
0 0 · · · 1 · · ·  0

´
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · 0

0 2 · · · · · · · · · 0
...

...
. . .

...
...

... 
...

...
...

. . .
...

0 0 · · · · · · · · · 

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

1
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


= 

Note that

  (1) +   (2) + +   () = 1 + 2 + + 

=  (Ω)

=   (1) +   (2) + +   ()

and

 ( ) = e
0
Ωe = e

0
PΛP

0e = 0 for  6= 

The proportion of total population variance due to  principal compo-

nent is


1 + 2 + + 
 Note that a good  variable should have large
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variation, since we need the variation of  to reflect the variation in . Al-

though we have  principal components  , not all of them are useful. For

example, if it just happens that one of the  variables (say, ) has no vari-

ation at all, i.e., for all the  observations we have,  has the same value.

In this case,  contains no information of  and can be dropped, so the

number of variables is reduced from  to  − 1. The principal components
analysis will be extremely useful if we can reduce a very large value of p (say,

50) to just a few useful variables (say, 3).

Example 5.2: If the covariance matrix of 1, 2 and 3 is

Ω =

⎛⎜⎝ 1 −2 0

−2 5 0

0 0 2

⎞⎟⎠ 

We can show that

1 = 583 e1 =

⎛⎜⎝ 0383

−0924
0

⎞⎟⎠ 

2 = 2 e2 =

⎛⎜⎝ 0

0

1

⎞⎟⎠ 

3 = 017 e3 =

⎛⎜⎝ 0924

0383

0

⎞⎟⎠ 

1 = e
0
1X = 03831 − 09242

2 = e
0
2X = 3

3 = e
0
3X = 09241 + 03832
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  (1) =   (03831 − 09242)

= (0383)
2
  (1) + (−0924)2   (2) + 2 (0383) (−0924)(1 2)

= (0383)
2
(1) + (−0924)2 (5) + 2 (0383) (−0924) (−2)

= 583 = 1

 (1 2) =  (03831 − 092423)

= 0383 (1 3)− 0924 (2 3)

= 0383 (0)− 0924 (0)
= 0

Similarly, we can show that   (2) = 2 and   (3) = 017

Therefore, the proportion of total population variance due to first princi-

pal component =
1

1 + 2 + 3
=

583

583 + 2 + 017
= 073

The proportion of total population variance due to second principal com-

ponent =
2

1 + 2 + 3
=

2

583 + 2 + 017
= 025

Thus, the first two components account for 98% of the population vari-

ance. In this case, the component 3 can be dropped.

5.3 Principal Components Obtained FromCor-

relation Matrices

Since the covariance matrix will be affected by the unit of measurement,

sometimes it is better to standardize the variable and use the correlation

matrix. Principal components obtained from covariance and correlation ma-

trices are different.
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Example 5.3: Note from the previous example that the first principal

component attaches a very large weight to 2, since 2 has a large variance.

This large variance may be due to the unit of measurement used. The prob-

lem can be solved by using the correlation matrix. Consider the covariance

matrix of the previous example

Ω =

Ã
1 4

4 100

!


(a) Convert the covariance matrix into a correlation matrix.

(b) Determine the population components 1 and 2 from the correlation

matrix.

(c) Calculate the proportion of the total population variance explained

by the first principal component.

Solution: We first perform a standardization of 

1 =
1 − 1p
  (1)



2 =
2 − 2p
  (2)



The corresponding correlation matrix is

ρ=

Ã
  (1)  (1 2)

 (2 1)   (2)

!
=

Ã
1 04

04 1

!


1 = 14 e1 =

Ã
0707

0707

!


2 = 06 e2 =

Ã
0707

−0707

!
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1 = 07071 + 07072

= 0707
1 − 1p
  (1)

+ 0707
2 − 2p
  (2)

= 0707
1 − 1
1

+ 0707
2 − 2
10

= 0707 (1 − 1) + 00707 (2 − 2) 

Similarly

2 = 0707 (1 − 1)− 00707 (2 − 2) 

Note that

  (1) =   (07071 + 07072)

= 07072  (1) + 0707
2  (2) + 2 (0707) (0707) (1 2)

= 07072 (1) + 07072 (1) + 2 (0707) (0707) (04)

= 14 = 1

Similarly

  (2) = 06

 (1 2) =  (07071 + 07072 07071 − 07072)
= 07072[ (1 1)−  (1 2) +  (2 1)−  (2 2)]

= 07072[ (1 1)−  (2 2)]

= 07072 [  (1)−   (2)]

= 07072 [1− 1]
= 0

Therefore, the proportion of total population variance due to first prin-

cipal component =
1

1 + 2
=

14

14 + 06
= 07 Note that this proportion is
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much lower than the case of the previous example when the variables are not

standardized.

Exercise 5.6: For the covariance matrix Ω =

Ã
5 2

2 2

!


(a) Determine the population components 1 and 2.

(b) Calculate the proportion of the total population variance explained

by 1.

(c) Convert the covariance matrix to a correlation matrix. Repeat (a)

and (b).

(d) Compare the components in (a) and (c), Are they the same?

Exercise 5.7: For the covariance matrix Ω =

⎛⎜⎝ 1 −2 0

−2 5 0

0 0 2

⎞⎟⎠ 

(a) Show that the corresponding correlation matrix is

ρ=

⎛⎜⎜⎝
1 − 2√

5
0

− 2√
5

1 0

0 0 1

⎞⎟⎟⎠ 

(b) Show that the eigenvalues are 1 = 189443 2 = 1, 3 = 010557.

find the corresponding eigenvectors.

(c) Calculate the proportion of the total population variance explained

by 1.

Exercise 5.8: Find the daily return  = ln− ln−1 of the six stocks

of Hang Seng Index Property sector [1], [12], [16], [83], [101] and [688] for

October 3 to October 31, 2014.

(a) Construct the sample covariance matrix S, and find the sample prin-

cipal components.

(b) Determine the proportion of the total sample variance explained by

the first three principal components.
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5.4 Covariance Matrices with Special Struc-

tures

Ω =

Ã
5 0

0 2

!


Setting

1 = 5 2 = 2

e1 =

Ã
0

1

!
 e2 =

Ã
1

0

!


1 = e
0
1X = 1

2 = e
0
2X = 2

Thus, the set of principal components is just the original set of uncorre-

lated variables, and nothing is gained by extracting the principal components.

In general, if we have a set of p uncorrelated variable with covariance

matrix

Ω =

⎛⎜⎜⎜⎜⎝
11 0 · · · 0

0 22 · · · 0
...

...
. . .

...

0 0 · · · 

⎞⎟⎟⎟⎟⎠ 

with 11 ≥ 22 ≥  ≥ . Setting

e1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
 e2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
  e =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0
...

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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1 = 11 2 = 22   = 

We will have  =  for all .

Exercise 5.9: For the covariance matrix

Ω =

⎛⎜⎝ 2 0 0

0 4 0

0 0 4

⎞⎟⎠ 

(a) Determine the population principal components 1, 2 and 3.

(b) Calculate the proportion of the total population variance explained

by the first principal component.

5.5 Equicorrelation Matrix

Consider the 3 by 3 covariance matrix

Ω = 2

⎛⎜⎝ 1  

 1 

  1

⎞⎟⎠ 

For 0   ≤ 1
The corresponding correlation matrix is

ρ =

⎛⎜⎝ 1  

 1 

  1

⎞⎟⎠ 

It can be shown that the greatest eigenvalue of this matrix is

1 = 1 + (3− 1)  = 1 + 2
and its normalized eigenvector is

e01 =

µ
1√
3

1√
3

1√
3

¶
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The remaining two eigenvalues are all equal, i.e., 2 = 3. Since 1+2+

3 is the dimension of the correlation matrix (=3), we have

2 = 3 =
3− 1

2
=
3− (1 + 2)

2
= 1− 

We can also show that

e2 =

⎛⎜⎜⎝
1√
1×2
−1√
1×2
0

⎞⎟⎟⎠  e3 =

⎛⎜⎜⎝
1√
2×3
1√
2×3
−2√
2×3

⎞⎟⎟⎠ 

The first principal component is

1 = e
0
1X =

1√
3
1 +

1√
3
2 +

1√
3
3

which accounts for
1

1 + 2 + 3
=

1 + 2

1 + 2+ 1− + 1− 
= (1 + 2) 3

of the total variance. Note that the higher the value of , the higher the

importance of the first principal component. It is proportional to the sum

of the three original variables, which might be regarded as an "index" with

equal weights.

Example 5.4: Let

Ω = 3

⎛⎜⎝ 1 06 06

06 1 06

06 06 1

⎞⎟⎠ 

(a) Determine the population components 1 to 3.

(b) Calculate the proportion of the total population variance explained

by 1.

Solution: It can be shown that the greatest eigenvalue of this matrix is

1 = 3 [1 + 2 (06)]

and its normalized eigenvector is
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e01 =

µ
1√
3

1√
3

1√
3

¶


2 = 3 = 3 (1− 06) = 12

e2 =

⎛⎜⎜⎝
1√
1×2
−1√
1×2
0

⎞⎟⎟⎠  e3 =

⎛⎜⎜⎝
1√
2×3
1√
2×3
−2√
2×3

⎞⎟⎟⎠ 

The first principal component is

1 =
1√
3
1 +

1√
3
2 +

1√
3
3

2 =
1√
2
1 − 1√

2
2

3 =
1√
6
1 +

1√
6
2 − 2√

6
3

which accounts for [1 + 2 (06)] 3 = 07333 (or 73.33 percent) of the total

variance.

In general, consider the  by  covariance matrix

Ω = 2

⎛⎜⎜⎜⎜⎝
1  · · · 

 1 · · · 
...
...
. . .

...

  · · · 1

⎞⎟⎟⎟⎟⎠ 

For 0   ≤ 1

Note: Please do not mix up  and .

The greatest eigenvalue of this matrix is

1 = 2 [1 + (− 1) ]
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and its normalized eigenvector is

e01 =

µ
1√

 

1√


¶


The first principal component is

1 = e
0
1X =

1√

1 +

1√

2 + +

1√



which accounts for

[1 + (− 1) ] 
of the total variance. The remaining − 1 eigenvalues are all equal to

2 = 3 =  =  = 2 [1− ] 

The remaining − 1 eigenvectors are

e2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
1×2
−1√
1×2
0
...
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 e3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2×3
1√
2×3
−2√
2×3
0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
  e =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
(−1)
...
1√
(−1)

−(−1)√
(−1)
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
  e =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
(−1)
...
...
...
1√
(−1)
−(−1)√
(−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


Exercise 5.10: Find the eigenvalues of the correlation matrix

Ω =

Ã
1 

 1

!


Exercise 5.11: Let

Ω = 3

⎛⎜⎜⎜⎜⎝
1 06 · · · 06

06 1 · · · 06
...

...
. . .

...

06 06 · · · 1

⎞⎟⎟⎟⎟⎠ 
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(a) Determine the population components 1 to .

(b) Calculate the proportion of the total population variance explained

by 1.

5.6 Sample Principal Components

Let the sample covariance matrix of the random vector X0 = (1 2 )

be

S =

⎛⎜⎜⎜⎜⎝
11 12 · · · 1

21 22 · · · 2
...

...
. . .

...

1 2 · · · 

⎞⎟⎟⎟⎟⎠ 

The  sample principal component is given by

b = be0X = b11 + b22 + + b

Sample variance of 

 
³b´ = b,  = 1 2  

Sample covariance


³b b´ = 0 for  6= 

Total sample variance of  = 11 + 22 + +  = b1+ b2 + + b
5.7 Standardizing the Sample Principal Com-

ponents

Let the standardized observations be
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Z
×

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 − 1√
11

12 − 2√
22

· · · 1 − √


21 − 1√
11

22 − 2√
22

· · · 2 − √


...
...

. . .
...

1 − 1√
11

2 − 2√
22

· · ·  − √


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


The sample mean vector is

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

P

=1

1 − 1√
11P

=1

2 − 2√
22

...P

=1

 − √


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

The  sample principal component is given by

b = b11 + b22 + + b = be0Z
Sample variance of 

 
³b´ = b  = 1 2  

Sample covariance


³b b´ = 0 for  6= 

Total sample variance of  = b1+ b2 + + b = .

Example 5.5: Let 1  5 denote observed weekly rates of return for

Allied Chemical, du pont, Union Carbide, Exxon, and Texaco, respectively.

Suppose we have
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X =

⎛⎜⎜⎜⎜⎜⎜⎝
00054

00048

00057

00063

00037

⎞⎟⎟⎟⎟⎟⎟⎠ 

and the sample correlation matrix is

R =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0577 0509 0387 0462

0577 1 0599 0389 0322

0509 0599 1 0436 0426

0387 0389 0436 1 0523

0462 0322 0426 0523 1

⎞⎟⎟⎟⎟⎟⎟⎠ 

The eigenvalues and the corresponding normalized eigenvectors of  areb1 = 2857 b2 = 0809 b3 = 0540 b4 = 0452 b5 = 0343 and

e1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0464

0457

0470

0421

0421

⎞⎟⎟⎟⎟⎟⎟⎠  e2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0240

0509

0269

−0526
−0582

⎞⎟⎟⎟⎟⎟⎟⎠  e3 =

⎛⎜⎜⎜⎜⎜⎜⎝
−0612
0178

0335

0541

−0435

⎞⎟⎟⎟⎟⎟⎟⎠ 

e4 =

⎛⎜⎜⎜⎜⎜⎜⎝
0387

0206

−0662
0472

−0382

⎞⎟⎟⎟⎟⎟⎟⎠  e5 =

⎛⎜⎜⎜⎜⎜⎜⎝
−0451
0676

−400
−0176
0385

⎞⎟⎟⎟⎟⎟⎟⎠ 

b1 = be01Z = 04641 + 04572 + 04703 + 04214 + 04215

b2 = be02Z = 02401 + 05092 + 02693 − 05264 − 05825
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The first two components account for
2857 + 0809

5
= 73% of the total

standardized sample variance. Note that b1 ≈ 045 (1 + 2 + 3 + 4 + 5) =

045
¡
5
¢
= 225. Therefore, the first component is a roughly proportion to

the sample average, which can be perceived as a general stock-market com-

ponent. The second component represents a contrast between the chemical

stocks (Allied Chemical, du Pont, and Union Carbide) and oil stocks (Exxon

and Texaco). It might be called an industry component. Thus, most of the

variation in these stock returns is due to market activity and uncorrelated

industry activity. The remaining components are hard to interpret. They

may be variation specific to each stock.

5.8 Determining the Number of Principal Com-

ponents

Note that some of the  variables have little variation, so we may drop them

without much loss of information. But what is the rule for dropping  ?

There are two methods to determine the number of principal components.

Both are based on the eigenvalues of covariance matrix Ω. One is to drop

those  with eigenvalue less than one. Another useful rule to determining

an appropriate number of principal components is a scree plot, with the

eigenvalues ordered from the largest to smallest. For example, if  = 6, and

the eigenvalues are 2 09 07 024 022 019, then the first three  should

be used. In the previous example, with b1 = 2857 b2 = 0809 b3 = 0540b4 = 0452 b5 = 034, if we use the first rule, then number of principal

components should be one. If we use a scree plot, we may retain the first

two principal components.

Exercise 5.12: Find the unadjusted daily closing price from Yahoo Fi-

nance for the following Hong Kong stocks from 30/9/2014 to 31/10/2014:

[1], [5], [11], [12], [16].
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(a) Calculate the daily returns  = ln − ln−1 for these stocks from

3/10/2014 to 31/10/2014 using the log difference of price.

(b) Standardized the returns and calculate the sample correlation matrix

R for the standardized daily returns of these 5 stocks.

(c) Based on the sample correlation matrix R, find the sample principal

components.

(d) Determine the proportion of the total sample variance explained by

the first two principal components.



Chapter 6

Factor Analysis

Suppose variables can be grouped by their correlations. i.e., all variables

within a particular group are highly correlated among themselves, but they

have relatively small correlations with variables in a different group. Then

it is conceivable that each group of variables represents a single underlying

construct, or factor, that is unobservable but is responsible for the observed

correlations. Factor analysis can be considered as an extension of principal

components analysis. Principal components analysis is concerned with ex-

plaining the variance in the variables while factor analysis is concerned with

explaining the covariances.

Factor analysis is an interdependence technique in which all variables are

simultaneously considered, each related to all others. The factor model can

be written as

1 − 1 = 111 + 122 + + 1 + 1

2 − 2 = 211 + 222 + + 2 + 2

...

 −  = 11 + 22 + +  + 

where

145
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12 are observed variables;

1 2  , are unobserved common factors, with  ≤ ;

1 2 are the error terms, or can be considered as specific factor.

In matrix notation, we have

X− μ
(×1)

= L
(×)

F
(×1)

+ ε
(×1)



The coefficient  is called the loading of the 
 variable on the  factor

L is the matrix of factor loadings.

L =

⎛⎜⎜⎜⎜⎝
11 12 · · · 1

21 22 · · · 2
...

...
. . .

...

1 2 · · · 

⎞⎟⎟⎟⎟⎠ 

Note that F is unobservable, so factor model is different from regression

model. We assume that

 (F) = 0

 (F) =  (FF0) = I

 (ε) = 0

 (ε) =  (εε0) = Ψ =

⎛⎜⎜⎜⎜⎝
1 0 · · · 0

0 2 · · · 0
...

...
. . .

...

0 0 · · · 

⎞⎟⎟⎟⎟⎠ 

 (εF) =  (εF0) = 0

These assumptions constitute the orthogonal factor model. The orthog-

onal factor model implies a covariance structure for X.
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Ω =  (X) =  (X−μ) (X−μ)0

=  (LF+ ε) (LF+ ε)
0

= L (FF0)L0 + L (Fε0) + (εF0)L0 + (εε0)

= LIL0 + L0+ 0L0+Ψ

= LL0+Ψ

In factor analysis, the covariance matrix is partitioned into two parts:

that due to the common factors and that due to the unique factors. Any

covariance (correlation) not explained by the common factors are associated

with the mutual uncorrelated unique (residual) factors. In principal compo-

nent analysis, there is no residual variance, all variance is explained by the

components.

 (XF) =  ((X− μ)F0)
=  ((LF+ ε)F0)

= L (FF0) + (εF0)

= LI+ 0

= L

Thus, we have

 ( ) = 

The portion of variance of the  variable contributed by the  common

factors is called the  communality, denoted by

2 = 21 + 22 + + 2

The portion of  () due to the specific factor is called the uniqueness,

or specific variance .

 () =  = 2 + 
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 = 1 2  

Note that what we can observe are the  variables and their covariance

structure. We would like to derive the loading matrix.

Example 6.1: Consider the covariance matrix

Ω =

Ã
1 05

05 1

!


Suppose there is one factor, i.e.,  = 1, we can decompose the matrix as

Ã
1 05

05 1

!
=

Ã
11

21

!³
11 21

´
+

Ã
1 0

0 2

!

=

Ã
211 1121

1121 221

!
+

Ã
1 0

0 2

!

=

Ã
211 + 1 1121

1121 221 + 2

!
= LL0+Ψ

We have

211 + 1 = 1

1121 =
1

2


221 + 2 = 1

Note that there is no unique solution in this case. One solution is 11 =

21 =
q

1
2
, and 1 = 2 =

1
2
 The portion of variance of the first variable

contributed by the single common factor, i.e., the communality of 1 is

21 = 211 =
1

2


and the variance of 1 can be decomposed as
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 (1) = 11 = 21 + 1 =
1

2
communality

+
1

2
specific variance



Example 6.2: Consider the covariance matrix

Ω =

⎛⎜⎜⎜⎜⎝
19 30 2 12

30 57 5 23

2 5 38 47

12 23 47 68

⎞⎟⎟⎟⎟⎠ 

We can decompose the matrix as

⎛⎜⎜⎜⎜⎝
19 30 2 12

30 57 5 23

2 5 38 47

12 23 47 68

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
4 1

7 2

−1 6

1 8

⎞⎟⎟⎟⎟⎠
Ã
4 7 −1 1

1 2 6 8

!
+

⎛⎜⎜⎜⎜⎝
2 0 0 0

0 4 0 0

0 0 1 0

0 0 0 3

⎞⎟⎟⎟⎟⎠
= LL0+Ψ

The portion of variance of the first variable contributed by the 2 common

factors, i.e., the communality of 1 is

21 = 211 + 212

= 42 + 12

= 17

and the variance of 1 can be decomposed as

 (1) = 11 = 19 = 17
communality

+ 2
specific variance



A similar breakdown occurs for other variables.

When  1, there is always some inherent ambiguity associated with the

factor model. Let Γ be an× orthogonal matrix such that ΓΓ0 = Γ0Γ = I.
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X− μ = LF+ ε = LΓΓ0F+ ε = L∗F∗+ε

The factors F and F
∗
have the same statistical properties, with


¡
F
∗¢
=  (Γ0F) = Γ0 (F) = 0


¡
F
∗¢
=  (Γ0FF0Γ) = Γ0 (FF0)Γ = Γ0Γ = I

The loadings L
∗
are also different from the loadings L

Ω = LL0+Ψ = L (ΓΓ0)L0+Ψ =
¡
L
∗¢ ¡
L
∗¢0
+Ψ

Note that principal component analysis is merely a transformation of the

data. No assumptions are made about the form of covariance matrix from

which data comes. On the other hand, factor analysis assumes that the

data comes from a well-defined model, where underlying factors satisfy the

above assumptions. Also, in principal component analysis the emphasis is on

a transformation from the observed variables to the principal components,

whereas in factor analysis the emphasis is on a transformation from the

underlying factors to the observed variables.

Exercise 6.1: Show that the covariance matrix

ρ =

⎛⎜⎝ 1 063 045

063 1 035

045 035 1

⎞⎟⎠
for standardized random variables 1, 2 and 3 can be generated by the

following factor model:

1 = 091 + 1

3 = 071 + 2
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3 = 051 + 3

where   (1) = 1,  (ε 1) = 0, and

Ψ =  (ε) =

⎛⎜⎝ 019 0 0

0 051 0

0 0 075

⎞⎟⎠ 

Exercise 6.2: Suppose the test score of a student depends on its intelli-

gence (an unobservable common factor),

 = 111 + 1

 = 211 + 2

 = 311 + 3

and suppose the correlation of the test score is

  

 1 04 09

 04 1 07

 09 07 1

Show that there is a unique choice of L and Ψ with Ω = LL0+Ψ, but

that 3  0, so the choice is not admissible.

6.1 Methods of Estimation

6.1.1 The Principal Component Method

Let Ω have eigenvalue-eigenvector pairs ( e) with 1 > 2 >  >  > 0
and  = . Then
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Ω
×

=

X
=1

ee
0
=

³ √
1e1

√
2e2 · · · 

p
e

´
⎛⎜⎜⎜⎜⎝
√
1e

0
1√

2e
0
2

...p
e

0


⎞⎟⎟⎟⎟⎠ = L
(×)

L
(×)

0

In this case, if all the  factors are used, we have

Ψ = 0

Note that since not all factors are used, if we just use  factors (  ),

then

Ω ≈
X
=1

ee
0


=
³ √

1e1
√
2e2 · · · 

√
e

´
⎛⎜⎜⎜⎜⎝
√
1e

0
1√

2e
0
2

...√
e

0


⎞⎟⎟⎟⎟⎠
= L

(×)
L

(×)
0

Allowing for specific factors, the approximation becomes

Ω ≈ LL0 +Ψ

=
³ √

1e1
√
2e2 · · · 

√
e

´
⎛⎜⎜⎜⎜⎝
√
1e

0
1√

2e
0
2

...√
e

0


⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝

1 0 · · · 0

0 2 · · · 0
...

...
. . .

...

0 0 · · · 

⎞⎟⎟⎟⎟⎠ 

where

 =  −
X
=1

2



6.2. FACTOR ROTATION 153

6.1.2 Maximum Likelihood Method

If we assume  and  to be jointly normal, the observations  are then

normal. For each observation x = (1 2  )
0
. The joint density of x

will be

 (1 2  ) =
1

(2)
2 |Ω|12

exp

µ
−1
2
(x −μ)0Ω−1 (x −μ)

¶


This is the joint density for one point of observation of  variables. If

we have  points of observations in our sample, and if each observation is

obtained independently, the overall joint density will be

Π
=1

1

(2)
2 |Ω|12

exp

µ
−1
2
(x −μ)0Ω−1 (x −μ)

¶
=

1

(2)
2 |Ω|2

Π
=1 exp

µ
−1
2
(x −μ)0Ω−1 (x − μ)

¶
=

1

(2)
2 |Ω|2

exp

Ã
−1
2

X
=1

(x −μ)0Ω−1 (x −μ)
!

=
1

(2)
2 |LL0+Ψ|2

exp

Ã
−1
2

X
=1

(x −μ)0 (LL0+Ψ)−1 (x −μ)
!


This joint density function is a function of X. Given our data X, we

can also consider it as a function of L and Ψ, we call this the likelihood

function. The maximum likelihood method is to choose the values in L and

Ψ to maximize the above function. We can solve for the initial loadings and

Ψ after proper constraints are imposed.

6.2 Factor Rotation

When a set of factors are derived, they are not always easy to interpret.

Do not try to interpret underlying factors until you have performed a factor

rotation. Most rotation procedures try to make as many factor loadings

as possible near zero and to maximize as many of the others as possible.



154 CHAPTER 6. FACTOR ANALYSIS

Since factors are independent, it would be nice if response variables were not

loaded heavily on more than one factor. Consider the rotation in the two

factor cases. Let bL be the original unrotated loadings, the rotated loading is
given by

bL
(×2)

∗
= bL

(×2)
Γ

(2×2)


where

Γ =

Ã
cos sin

− sin cos

!
clockwise rotation;

Γ =

Ã
cos − sin
sin cos

!
counterclockwise rotation.

Example 6.3: Consider a simple case where  = 2 and

bL = Ã 056 082

078 −052

!


what is the new coordinate if the axes are rotated clockwise / counter-

clockwise by 45?

Solution: For clockwise rotation

bL
(2×2)

∗
= bL

(2×2)
Γ

(2×2)
=

Ã
056 082

078 −052

!Ã
cos 45 sin 45

− sin 45 cos 45

!

=

Ã
056 082

078 −052

!Ã
1√
2

1√
2

− 1√
2

1√
2

!
=

Ã
−01838 09758

09192 01838

!


For counterclockwise rotation
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bL
(2×2)

∗
= bL

(2×2)
Γ

(2×2)

=

Ã
056 082

078 −052

!Ã
cos 45 − sin 45
sin 45 cos 45

!

=

Ã
056 082

078 −052

!Ã
1√
2
− 1√

2
1√
2

1√
2

!

=

Ã
09758 01838

01838 −09192

!


Example 6.2: Consider the following correlation matrix on test scores

on 100 students

      

 1 439 410 288 329 248

 439 1 351 354 320 329

 410 351 1 164 190 181

 288 354 164 1 595 470

  329 320 190 595 1 464

 248 329 181 470 464 1

The maximum likelihood solution is

    ( ' 20)

1 2  ∗1  ∗2

b∗2 = ∗21 + ∗22
= 21 + 22 =

b2


 b = 1− b2
1 553 429 369 594 490 510

2 568 288 433 467 406 594

3 392 450 211 558 356 644

4 740 −273 789 001 623 377

5  724 −211 752 054 568 432

6 595 −132 752 083 372 628
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Note that half of the original loadings are positive and another half of

them are negative for the second factor. A factor with this pattern of loading

is called a bipolar factor. We rotate the original factor by about 20 degrees.

This angle is chosen so that one of the new axes passes through the fourth

point (0.740, -.273). Note that all values are positive now after the notation,

and the two distinct clusters of variables are more clearly revealed. The first

factor might be called a mathematical-ability factor, while the second factor

might be labeled a verbal-ability factor.

6.3 Varimax Rotation Method

Sometimes, it may not be possible to rotate the factors just by visual inspec-

tion, especially when we are dealing with a higher dimensional space. Letb∗1b∗2 b∗ be the estimated rotated loadings with the estimated commu-

nality b∗2 = b∗21 + b∗22 + + b∗2. Let
e∗2 = b∗2b∗2 

The varimax procedure selects the orthogonal transformation Γ that max-

imizes

 =
1



X
=1

⎡⎣ X
=1

e∗4 − 1
Ã

X
=1

e∗2
!2⎤⎦ 

It can be rewritten as

 =

X
=1

"
1



X
=1

³e∗2 − e∗2 ´2
#


where

e∗2 =
1



X
=1

e∗2 
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 can be considered as the sum of variance of squares of scaled loadings

for the  factor for all . Since the squared loadings are all between 0 and

1, trying to maximize the variance of the squared loadings within a column

is somewhat equivalent to trying to spread out the squared loadings within

a column, i.e., forcing as many of the loadings as possible towards 0 and

forcing the others towards 1. After solving e∗, we can solve b∗ = b∗e∗
Example 6.3: Consider the rotated loadings in Example 6.2. Calculate

the value of  .

Solution:

Note that  = 2 and  = 6 in this case, we have

e∗2 = b∗2b∗21 + b∗22 
e∗211 = b∗211b∗211 + b∗212 = 3692

3692 + 5942
= 027845

e∗221 = b∗221b∗221 + b∗222 = 4332

4332 + 4672
= 046228

e∗231 = b∗231b∗231 + b∗232 = 2112

2112 + 5582
= 012510

e∗241 = b∗241b∗241 + b∗242 = 7892

7892 + 0012
= 100000

e∗251 = b∗251b∗251 + b∗252 = 7522

7522 + 0542
= 099487

e∗261 = b∗261b∗261 + b∗262 = 7522

7522 + 0832
= 098796

e∗21 = 027845 + 046228 + 012510 + 100000 + 099487 + 098796

6
= 064144
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e∗212 = b∗212b∗211 + b∗212 = 5942

3692 + 5942
= 072155

e∗222 = b∗222b∗221 + b∗222 = 4672

4332 + 4672
= 053772

e∗232 = b∗232b∗231 + b∗232 = 5582

2112 + 5582
= 087490

e∗242 = b∗242b∗241 + b∗242 = 0012

7892 + 0012
= 000000

e∗252 = b∗252b∗251 + b∗252 = 0542

7522 + 0542
= 000513

e∗262 = b∗262b∗261 + b∗262 = 0832

7522 + 0832
= 001204

e∗21 = 0721 55 + 053772 + 087490 + 000000 + 000513 + 001204

6
= 035856

 =

2X
=1

"
1

6

6X
=1

³e∗2 − e∗2 ´2
#

=
1

6

"
(027845− 064144)2 + (046228− 064144)2 + (012510− 064144)2
+(100000− 064144)2 + (099487− 064144)2 + (098796− 064144)2

#
1

6

"
(072155− 035856)2 + (053772− 035856)2 + (087490− 035856)2
+(000000− 035856)2 + (000513− 035856)2 + (001204− 035856)2

#
=

1

6
(0804) +

1

6
(0804)

= 0268

Exercise 6.3: Repeat the calculation of Example 6.3 using the unrotated

loadings in Example 6.2. Compare the value of  in both cases.
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Exercise 6.4:

(a) Show that

1



X
=1

⎡⎣ X
=1

e∗4 − 1
Ã

X
=1

e∗2
!2⎤⎦ = X

=1

"
1



X
=1

³e∗2 − e∗2 ´2
#


(b) When  = 2, show that

X
=1

³e∗21 − e∗21 ´2 = X
=1

³e∗22 − e∗22 ´2 
Exercise 6.5: Find the daily closing price of the following Hong Kong

stocks from 3/10/2014 to 31/10/2014: [1], [2], [3], [16], [823].

(a) Calculate the daily returns  = ln − ln−1 for these stocks from

3/10/2014 to 31/10/2014 .

(b) Standardized the returns and calculate the sample correlation matrix

R for the standardized daily returns of these 5 stocks.

(c) Based on the sample correlation matrix, perform a factor analysis

assuming there are 2 factors. Solve the factor model using the principal

component method. Find the communalities and the proportion of variance

explained by each factor.

(d) Find the residual matrix R− bLbL0 − bΨ

(e) Perform a Varimax rotation.

Exercise 6.6: True/False.

(a) The portion of variance contributed by the  factor is called the 

communality.

(b) Six factors can be obtain from five variables.
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(c) Consider the estimated loadings in the two factor case, with bL =Ã
4 3

3 4

!
. The new loading matrix is bL∗ = Ã 3 4

4 3

!
if the axes are rotated

clockwise by 90.

(d) Most rotation procedures try to make the factor loadings as close to

each other as possible.

Exercise 6.7: Consider the estimated loadings in the two factor case,

with

bL = Ã 1 0

0 1

!


(a) What is the new coordinate if the axes are rotated clockwise by 45?

(b) What is the new coordinate if the axes are rotated counterclockwise

by 45?

(c) Repeat (a) and (b) if

bL = Ã 05 08

07 −05

!




Chapter 7

Discrimination and

Classification

7.1 Introduction

Discrimination and classification are multivariate techniques concerned with

separating distinct sets of or observations and with allocating new observa-

tions to previously defined groups. A good classification procedure should

avoid misclassification. In other words, the probability of misclassification

should be small. Consider a very simple example, suppose we have two

groups of population 1 and 2. For population 1, we have

( = 0) = 025 ( = 1) = 05 ( = 2) = 025

For population 2, we have

( = 1) = 025 ( = 2) = 05 ( = 3) = 025

If we have an observation with value 0 = 1, should we classify this

observation as population 1 or population 2? Suppose each population has

the same size, and there is no misclassification cost, we should classify this

observation as population 1, since it has a probability of 0.5, which is higher

than the probability that this observation is coming from population 2.

161
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However, if we know that the size of population 2 is much larger than

population 1, for example, let 1 be the prior probability of 1 and 2 be

the prior probability of 2, where 1 + 2 = 1. If 1 = 001, and 2 =

099, it may be more reasonable to classify an observation as population 2.

Therefore, an optimal classification rule should take these "prior probability

of occurrence" into account. An empirical example is that there tend to be

more financially sound firms than bankrupt firms. If we really believe that

the (prior) probability of a financially distressed and ultimately bankrupted

firm is very small, then one should classify a randomly selected firm as non-

bankrupt unless the data overwhelmingly favors bankruptcy.

Another consideration in classifying observations is the cost of misclas-

sification. In general, the cost of the two type of misclassification are not

equal. Sometimes, classifying a 1 observation as belonging to 2 represents

a more serious error than classifying a 2 observation as belonging to 1.

In the previous example, suppose the sizes of the two population are the

same, but the costs of misclassification are different. For example, if the

cost of misclassifying 2 observation as belonging to 1 is 1000 HK dollars,

but the cost of misclassifying 1 observation as belonging to 2 is only 1

HK dollar. Then you may have a second thought when you would like to

classify the observation as 1 in the previous example. In reality, for example,

failing to diagnose a potentially fatal illness is substantially more "costly"

than concluding that disease is present when it is not. Therefore, an optimal

classification procedure should also account for the costs associated with

misclassification.

7.2 Expected cost of misclassification (ECM)

Let 1 (x) and 2 (x) be the probability density function associated with the

 × 1 vector random variable X for the population 1 and 2 respectively.
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An observation with associated measurement x must be assigned to either

1 or 2. Let 1 be the set of x values for which we classify objects as 1

and 2 be the remaining values for which we classify objects as 2.

The conditional probability of classifying an observation from 1 as 2 is

 (2|1) =  (X ∈2|1) 

The conditional probability of classifying an observation from 2 as 1 is

 (1|2) =  (X ∈1|2) 

Let 1 be the prior probability of 1 and 2 be the prior probability of

2, where 1 + 2 = 1. We have

 (observation is correctly classified as 1)

=  (observation comes from 1 and is correctly classified as 1)

=  (X ∈1|1) (1) =  (1|1) 1

 (observation is misclassified as 1)

=  (observation comes from 2 and is misclassified as 1)

=  (X ∈1|2) (2) =  (1|2) 2

 (observation is correctly classified as 2)

=  (observation comes from 2 and is correctly classified as 2)

=  (X ∈2|2) (2) =  (2|2) 2

=  (observation is misclassified as 2)

=  (observation comes from 1 and is misclassified as 2)

=  (X ∈2|1) (1) =  (2|1) 1

The costs of misclassification can be defined by a cost matrix
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Classify as

1 2

True 1 0  (2|1)
population 2 (1|2) 0

We define the expected cost of misclassification (ECM) as

 =  (2|1) (observation is misclassified as 2)
+(1|2) (observation is misclassified as 1)

=  (2|1) (2|1) 1 + (1|2) (1|2) 2

It can be proved (difficult) that the regions 1 and 2 that minimize the

ECM are defined by the values of x for which the following inequalities hold

1 :
1 (x)

2 (x)
≥ (1|2)

 (2|1)
2

1


2 :
1 (x)

2 (x)


(1|2)
 (2|1)

2

1


In other words, we compare the values of

 (2|1) 1 (x) 1
and

 (1|2) 2 (x) 2

We allocate x0 to 1 if

 (1|2) 2 (x0) 2   (2|1) 1 (x0) 1

7.3 Special cases

1. If 1 = 2
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1 :
1 (x)

2 (x)
≥ (1|2)

 (2|1) 

2 :
1 (x)

2 (x)


(1|2)
 (2|1) 

2. If  (2|1) =  (1|2)

1 :
1 (x)

2 (x)
≥ 2

1


2 :
1 (x)

2 (x)


2

1


3. If
(1|2)
 (2|1)

2

1
= 1

1 :
1 (x)

2 (x)
≥ 1

2 :
1 (x)

2 (x)
 1

Example 7.1: Consider the case of one  variable. Suppose the first

group of  is normally distributed with  (0 1), and the second group of

 is normally distributed with  (2 1). Consider a point 0 = 05, which

group does this point belong to if
(1|2)
 (2|1)

2

1
= 1?

Solution:

1 ()

2 ()
=

1√
2
exp

Ã
−(05− 0)

2

2

!
1√
2
exp

Ã
−(05− 2)

2

2

!

= exp

Ã
(05− 2)2

2
− (05− 0)

2

2

!
= exp (1) ' 271828 ≥ 1
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So 0 = 05 ∈ 1 and we should classify 0 = 05 to group 1.

7.4 Classification of normal population when

Ω1 = Ω2

Suppose that the joint density of X = (1,2  )
0
for population 1 and

2 are given by

1 (x) =
1

(2)
2 |Ω|12

exp

µ
−1
2
(x−μ1)0Ω−1 (x−μ1)

¶


2 (x) =
1

(2)
2 |Ω|12

exp

µ
−1
2
(x−μ2)0Ω−1 (x−μ2)

¶


Here, we assume Ω1 = Ω2 = Ω. Using the fact that the product of the

matrices a0Bc = c0Ba if a0Bc is a 1 by 1 scalar, we have

1 (x)

2 (x)
=

1

(2)
2 |Ω|12

exp
¡−1

2
(x−μ1)0Ω−1 (x−μ1)

¢
1

(2)
2 |Ω|12

exp
¡−1

2
(x−μ2)0Ω−1 (x−μ2)

¢
= exp

µ
1

2
(x− μ2)0Ω−1 (x−μ2)−

1

2
(x−μ1)0Ω−1 (x−μ1)

¶
= exp

Ã
1
2
x0Ω−1x− μ02Ω−1x+ 1

2
μ02Ω

−1μ2
−1
2
x0Ω−1x+ μ01Ω

−1x− 1
2
μ01Ω

−1μ1

!

= exp

µ
(μ1 − μ2)0Ω−1x−

1

2

¡
μ01Ω

−1μ1 − μ02Ω−1μ2
¢¶

= exp

µ
(μ1 − μ2)0Ω−1x−

1

2
(μ1 − μ2)0Ω−1 (μ1 + μ2)

¶


The regions 1 and 2 that minimize the expected cost of misclassifica-

tion (ECM) are defined by the values of x for which the following inequalities

hold
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1 : exp

µ
(μ1 −μ2)0Ω−1x−

1

2
(μ1 −μ2)0Ω−1 (μ1 + μ2)

¶
≥ (1|2)

 (2|1)
2

1


2 : exp

µ
(μ1 − μ2)0Ω−1x−

1

2
(μ1 −μ2)0Ω−1 (μ1 + μ2)

¶


(1|2)
 (2|1)

2

1


Thus, we allocate a point x0 to population 1 if

µ
(μ1 − μ2)0Ω−1x0 −

1

2
(μ1 −μ2)0Ω−1 (μ1 + μ2)

¶
≥ ln

µ
(1|2)
 (2|1)

2

1

¶


The above is based on the assumption that μ1, μ2, Ω are known. In

an empirical sample, we have to replace μ1, μ2 by x1 and x2 respectively.

How about the sample variance? The two sample variance S1 and S2 will

generally be different. Under the assumption that Ω1 = Ω2, we pool the two

sample variances together and let

S =
1 − 1

(1 − 1) + (2 − 1)S1 +
2 − 1

(1 − 1) + (2 − 1)S2

Therefore, in an observed sample, we allocate a point x0 to population 1

if

µ
(x1 − x2)0 S−1x0 −

1

2
(x1 − x2)0 S−1 (x1 + x2)

¶
≥ ln

µ
(1|2)
 (2|1)

2

1

¶


If
(1|2)
 (2|1)

2

1
= 1, we allocate a point x0 to 1 if

µ
(x1 − x2)0 S−1x0 −

1

2
(x1 − x2)0 S−1 (x1 + x2)

¶
≥ ln (1) = 0

or equivalently
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(x1 − x2)0 S−1x0 ≥ (x1 − x2)0 S−1
µ
x1 + x2

2

¶


Therefore, if
(1|2)
 (2|1)

2

1
= 1, we can define the linear discriminant function

as

b = (x1 − x2)0 S−1x = ba0x
Evaluate b at x0 and compare b0 to

b =
1 + 2
2



where

1 = ba0x1 = (x1 − x2)0 S−1x1
2 = ba0x2 = (x1 − x2)0 S−1x2

Intuitively speaking, if there is only one  variable, and assume 1 −
2  0, we allocate a point 0 to population 1 if 0 ≥ 1 + 2

2
, i.e., if the

observation 0 is above the mid-point of the two sample mean, or equivalently

if 0 is closer to the bigger mean 1, we allocate it to population 1. If there

are more than one  variables, we transform the set of  variables into a

scalar value b and compare b0 with 1 + 2
2

.

Example 7.2: Consider the following mean vectors

x1 =

Ã
−00065
−00390

!


x2 =

Ã
−02483
00262

!
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S−1 =

Ã
131158 −90423
−90423 108147

!


Should the point x0 =

Ã
−0210
−0044

!
be classified as population 1 or 2 if

(1|2)
 (2|1)

2

1
= 1?

Solution: The linear discriminant function is

b = ba0x
= (x1 − x2)0 S−1x

=

ÃÃ
−00065
−00390

!
−
Ã
−02483
−00262

!!0Ã
131158 −90423
−90423 108147

!Ã
1

2

!

=
³
02418 −00652

´Ã 131158 −90423
−90423 108147

!Ã
1

2

!
= 37611 − 28922

1 = ba0x1 = ³ 3761 −2892 ´
Ã
−00065
−00390

!
= 088

2 = ba0x2 = ³ 3761 −2892 ´
Ã
−02483
00262

!
= −1010

b =
1

2
(1 + 2) =

1

2
(088− 1010) = −461

b0 = 3761 (−0210)− 2892 (−0044)
= −662
 −461
= b
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Therefore, we classify x0 =

Ã
−0210
−0044

!
as 2.

Exercise 7.1: Consider the following data sets

X1 =

⎛⎜⎝ 3 7

2 4

4 7

⎞⎟⎠  X2 =

⎛⎜⎝ 6 9

5 7

4 8

⎞⎟⎠

x1 =

Ã
3

6

!
 x2 =

Ã
5

8

!
 S =

Ã
1 1

1 2

!


(a) Calculate the linear discriminant function b = ba0x.
(b) Should the point x0 =

Ã
2

7

!
be classified as population 1 or 2 if

(1|2)
 (2|1)

2

1
= 1?

Example 7.3: The following table shows the survey results for the eval-

uation of a new model of mobile phone. Evaluation are made on a 10-point

scale (1=very poor to 10=excellent).
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Group based on purchase intention 1(Durability) 2(Performance) 3(Style)

Group 1: Would purchase

Subject 1 8 9 6

Subject 2 6 7 5

Subject 3 10 6 3

Subject 4 9 4 4

Subject 5 4 8 2

Group mean 74 68 40

Group 2: Would not purchase

Subject 6 5 4 7

Subject 7 3 7 2

Subject 8 4 5 5

Subject 9 2 4 3

Subject 10 2 2 2

Group mean 32 44 38

Difference between group mean 42 24 02

Group\Discriminant function b = 1 b = 1 + 2 b = −453 + 04761 + 03592
Group 1: Would purchase

Subject 1 8 17 251

Subject 2 6 13 084

Subject 3 10 16 238

Subject 4 9 13 119

Subject 5 4 12 025

Group 2: Would not purchase

Subject 6 5 9 −071
Subject 7 3 10 −059
Subject 8 4 9 −083
Subject 9 2 6 −214
Subject 10 2 4 −286

Cutting score 53 109 −032
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Classification accuracy for b = 1, using the cutting score of 5.3:

Predicted group

Actual group 1 2

1: Would purchase 4 1

2: Would not purchase 0 5

Classification accuracy for b = 1 + 2, using the cutting score of 10.9:

Predicted group

Actual group 1 2

1: Would purchase 5 0

2: Would not purchase 0 5

Classification accuracy for b = −453 + 04761 + 03592, using the
cutting score of -0.32:

Predicted group

Actual group 1 2

1: Would purchase 5 0

2: Would not purchase 0 5

Exercise 7.2: Suppose we would like to classify stocks into Hang Seng

Index Constituent Stocks and non-Constituent Stocks. As of 31/10/2014,

we obtain the following financial information from the efinet website at

http://www.finet.hk/mainsite/index.htm.
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Stock code Company name

Total market

capitalization

(billions)

PE Ratio
HSI Constituent

Stock

[1] Cheung Kong 31870 9041  

[16]
Sun Hung Kai

Properties
31545 9285  

[66]
MTR

Corporation
18391 14044  

[11] Hang Seng Bank 25122 9419  

[388]
HK Exchanges

and Clearing
20078 43519  

[8] PCCW 3674 18976 

[10]
Hang Lung

Group
5284 11538 

[20] Wheelock 7589 4478 

[54]
Hopewell

Holdings
2396 17628 

[823] The Link 104457 6065 

We can summarize the data as the following matrices:

X1 =

⎛⎜⎜⎜⎜⎜⎜⎝
31870 9041

31545 9285

18391 14044

25122 9419

20078 43519

⎞⎟⎟⎟⎟⎟⎟⎠  X2 =

⎛⎜⎜⎜⎜⎜⎜⎝
3674 18976

5284 11538

7589 4478

2396 17628

104457 6065

⎞⎟⎟⎟⎟⎟⎟⎠ 

(a) Find the mean vectors x1 and x2.

(b) Assume the variance covariance matrices are the same for the two

populations, find the sample pooled variance matrix

S =
1 − 1

(1 − 1) + (2 − 1)S1 +
2 − 1

(1 − 1) + (2 − 1)S2
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(c) Assume joint normality of the two populations and suppose
(1|2)
 (2|1)

2

1
=

1, find the linear discriminant function

b = (x1 − x2)0 S−1x = ba0x
(d) Define the cutting score to be

b = ba0µx1 + x2
2

¶


Fill in the following Table

Group\Discriminant function b = 1 b = 2 b = ba0x
Group 1: HSI Constituent Stock

Cheung Kong 31870 9041 ?

Sun Hung Kai Properties 31545 9285 ?

MTR Corporation 18391 14044 ?

Hang Seng Bank 25122 9419 ?

Hong Kong Exchanges and Clearing 20078 43519 ?

Group 2: non-HSI Constituent Stock

PCCW 3674 18976 ?

Hang Lung Group 5284 11538 ?

Wheelock and Company 7589 4478 ?

Hopewell Holdings 2396 17628 ?

The Link 104457 6065 ?

Cutting score 1 =? 2 =? ?

Classification accuracy for b = 1 :

Predicted group

Actual group 1 2

1: Constituent Stock ? ?

2: Non-Constituent Stock ? ?

Classification accuracy for b = 2 :
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Predicted group

Actual group 1 2

1: Constituent Stock ? ?

2: Non-Constituent Stock ? ?

Classification accuracy for b = ba0x :
Predicted group

Actual group 1 2

1: Constituent Stock ? ?

2: Non-Constituent Stock ? ?

7.5 Scaling

The coefficient vectors ba = (x1 − x2)S−1 is unique only up to a multiplica-
tive constant. Thus, for  6= 0, any vector ba will also serve as discriminant
coefficients. The vector ba is frequently scaled or normalized to ease the in-
terpretation of its elements. A commonly employed normalizations is

ba∗ = ba√ba0ba 
so that ba∗ has unit length and its elements all lie in [−1 1]. Another

normalization is to scale the first element to 1, i.e.,

ea = bab1 
Normalization is recommended only if the  variables have been stan-

dardized.

Example 7.4: In Example 7.2, ba = Ã 3761

−2892

!
, we have
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ba∗ =
ba√ba0ba = 1vuut³ 3761 −2892 ´Ã 3761

−2892

!
Ã

3761

−2892

!

=
1√
2251

Ã
3761

−2892

!
=

Ã
07927

−06096

!


ea = bab1 = 1

3761

Ã
3761

−2892

!
=

Ã
1

−07689

!


7.6 Classification with three populations

Let  be the prior probability of population  for  = 1 2 3with 1+2+3 =

1. We have

 (observation is misclassified as 1)

=  (observation comes from 2 and is misclassified as 1)

+ (observation comes from 3 and is misclassified as 1)

=  (1|2) 2 +  (1|3) 3

 (observation is misclassified as 2)

=  (observation comes from 1 and is misclassified as 2)

+ (observation comes from 3 and is misclassified as 2)

=  (2|1) 1 +  (2|3) 3

 (observation is misclassified as 3)

=  (observation comes from 1 and is misclassified as 3)

+ (observation comes from 2 and is misclassified as 3)

=  (3|1) 1 +  (3|2) 2

The costs of misclassification can be defined by a cost matrix
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1 2 3

 1 0  (2|1)  (3|1)
 2 (1|2) 0  (3|2)

3  (1|3)  (2|3) 0

The expected cost of misclassification (ECM)

 =  (1|2) (1|2) 2 +  (1|3) (1|3) 3
+ (2|1) (2|1) 1 +  (2|3) (2|3) 3
+ (3|1) (3|1) 1 +  (3|2) (3|2) 2

Recall that in the two-group case, we allocate x0 to 1 if

 (1|2) 2 (x0) 2   (2|1) 1 (x0) 1
In the three-group case, we compare

 (1|2) 2 (x0) 2 +  (1|3) 3 (x0) 3

 (2|1) 1 (x0) 1 +  (2|3) 3 (x0) 3
nd

 (3|1) 1 (x0) 1 +  (3|2) 2 (x0) 2

We allocate x0 to 1 if

 (1|2) 2 (x0) 2 +  (1|3) 3 (x0) 3
is the smallest among the three;

We allocate x0 to 2 if
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 (2|1) 1 (x0) 1 +  (2|3) 3 (x0) 3
is the smallest among the three;

We allocate x0 to 3 if

 (3|1) 1 (x0) 1 +  (3|2) 2 (x0) 2
is the smallest among the three.

If all the misclassification costs are equal, it can be shown that we should

allocate x0 to  if

 (x0) 

is the biggest among the three,  = 1 2 3.

Example 7.5: Consider the following case,

Classify as

1 2 3

True 1 (1|1) = 0  (2|1) = 10  (3|1) = 50
population 2 (1|2) = 500 (2|2) = 0  (3|2) = 200

3  (1|3) = 100  (2|3) = 50 (3|3) = 0
Prior probability 1 = 005 2 = 060 3 = 035

Densities at x0 1 (x0) = 001 2 (x0) = 085 3 (x0) = 2

(a) Should the point x0 be classified as 1, 2 or 3 using the minimum

ECM procedure?

(b) If all misclassification costs are the same, should the point x0 be

classified as 1, 2 or 3?
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Solution:

(a)

 (1|2) 2 (x0) 2 +  (1|3) 3 (x0) 3
= 500 (085) (060) + 100 (2) (035)

= 325

 (2|1) 1 (x0) 1 +  (2|3) 3 (x0) 3
= 10 (001) (005) + 50 (2) (035)

= 35

 (3|1) 1 (x0) 1 +  (3|2) 2 (x0) 2
= 50 (001) (005) + 200 (085) (060)

= 102

Thus, we allocate x0 to 2 since  (2|1) 1 (x0) 1 +  (2|3) 3 (x0) 3 is the
smallest among the three;

(b) If all misclassification are the same, we have

1 (x0) 1 = (001) (005) = 0000 5

2 (x0) 2 = (085) (060) = 051

3 (x0) 3 = (2) (035) = 07

We should allocate x0 to 3 since 3 (x0) 3 is the biggest among the

three.
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7.7 Classification with normal population

An important special case occurs when the density is multivariate normal

with p-dimensions, with

 (x) =
1

(2)
2 |Ω|12

exp

µ
−1
2
(x− μ)

0
Ω−1 (x−μ)

¶
  = 1 2 3

To simplify the analysis, assume all the costs of misclassification are the

same and equal 1, and the covariance matrices are equal. We compare

ln ( (x) ) = ln  + ln  (x)

= ln  + ln

"
1

(2)
2 |Ω|12

exp

µ
−1
2
(x−μ)

0
Ω−1 (x− μ)

¶#
= ln  − 

2
ln (2)− 1

2
ln |Ω|− 1

2
(x−μ)

0
Ω−1 (x−μ)

In practice, the mean and variance matrices are unknown, we replace them

by their sample estimates. Further, since the term 

2
ln (2) and 1

2
ln |Ω| are

the same for all , we can skip them and define

2
 (x) = (x− x)0 S−1 (x− x) 

We should allocate x0 to  if

ln  − 1
2
2

 (x0)

is the biggest among the three. If all the prior probability p are the

same, then we allocate x0 to  if

1

2
2

 (x0)

is the smallest among the three.
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Example 7.6: Consider three groups of populations, and two bivariate

normal  variables. Assume 1 = 2 = 025, and 3 = 05. Suppose we draw

a sample of three observations from each group and obtain

X1 =

⎛⎜⎝ −2 5

0 3

−1 1

⎞⎟⎠  X2 =

⎛⎜⎝ 0 6

2 4

1 2

⎞⎟⎠ X3 =

⎛⎜⎝ 1 −2
0 0

−1 4

⎞⎟⎠
x1 =

Ã
−1
3

!
 x2 =

Ã
1

4

!
x3 =

Ã
0

−2

!


S1 =

Ã
1 −1
−1 4

!
 S2 =

Ã
1 −1
−1 4

!
S3 =

Ã
1 1

1 4

!


Which group does the point x0 =

Ã
−2
−1

!
belong to?

Solution:

S =
1 − 1

(1 − 1) + (2 − 1) + (3 − 1)S1

+
2 − 1

(1 − 1) + (2 − 1) + (3 − 1)S2

+
3 − 1

(1 − 1) + (2 − 1) + (3 − 1)S3

=
3− 1

(3− 1) + (3− 1) + (3− 1)

Ã
1 −1
−1 4

!

+
3− 1

(3− 1) + (3− 1) + (3− 1)

Ã
1 −1
−1 4

!

+
3− 1

(3− 1) + (3− 1) + (3− 1)

Ã
1 1

1 4

!

=
2

6

Ã
3 −1
−1 12

!

=

Ã
1 −1

3

−1
3

4

!
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|S| = 35

9


S−1 =

Ã
1 −1

3

−1
3

4

!−1
=

Ã
36
35

3
35

3
35

9
35

!


2
 (x) = (x− x)0 S−1 (x− x) 

ln 1 − 1
2
2
1 (x0) = ln 1 − 1

2
(x0 − x1)0 S−1 (x0 − x1)

= ln 025− 1
2

ÃÃ
−2
−1

!
−
Ã
−1
3

!!0Ã
36
35

3
35

3
35

9
35

!ÃÃ
−2
−1

!
−
Ã
−1
3

!!

= ln 025− 1
2

³
−1 −4

´Ã 36
35

3
35

3
35

9
35

!Ã
−1
−4

!
= −430

ln 2 − 1
2
2
2 (x0) = ln 2 − 1

2
(x0 − x2)0 S−1 (x0 − x2)

= ln 025− 1
2

ÃÃ
−2
−1

!
−
Ã
1

4

!!0Ã
36
35

3
35

3
35

9
35

!ÃÃ
−2
−1

!
−
Ã
1

4

!!

= ln 025− 1
2

³
−3 −5

´Ã 36
35

3
35

3
35

9
35

!Ã
−3
−5

!
= −1051

ln 3 − 1
2
2
3 (x0) = ln 3 − 1

2
(x0 − x3)0 S−1 (x0 − x3)

= ln 05− 1
2

ÃÃ
−2
−1

!
−
Ã

0

−2

!!0Ã
36
35

3
35

3
35

9
35

!ÃÃ
−2
−1

!
−
Ã

0

−2

!!

= ln 05− 1
2

³
−2 1

´Ã 36
35

3
35

3
35

9
35

!Ã
−2
1

!
= −2707



7.7. CLASSIFICATION WITH NORMAL POPULATION 183

Thus, we allocate x0 to 3 since ln 3 − 1
2
2
3 (x0) is the biggest among

the three.

Exercise 7.3: Consider three groups of students applying for the MBA

program of CUHK. Let 1 =  score, 2 =  score of the appli-

cants. Group 1 students are admitted to the program, group 2 students are

not admitted, and group 3 is marginal. Assume the proportion of each pop-

ulation is the same, i.e., 1 = 2 = 3 =
1

3
. Suppose we have a sample of

31 admitted students, 28 not admitted, and 26 students are marginal, i.e.,

1 = 31 2 = 28 3 = 26. The mean score of each group are

x1 =

Ã
340

56123

!
 x2 =

Ã
248

44707

!
x3 =

Ã
299

44623

!


S =

Ã
00361 −20188
−20188 36559011

!


Suppose you would like to apply for the MBA program of CUHK. Your

GPA and GMAT score are x0 =

Ã
321

497

!
. Will you be admitted?

Exercise 7.4: Consider the case of one  variable. Suppose the first

group of  is normally distributed with  (0 1), and the second group of 

is normally distributed with  (1 1). Consider a point 0 = 0, which group

does this point belong to if
(1|2)
 (2|1)

2

1
= 1?

Exercise 7.5: Consider the following data sets

X1 =

⎛⎜⎝ 5 2

7 3

6 1

⎞⎟⎠  X2 =

⎛⎜⎝ 0 4

1 5

2 6

⎞⎟⎠  x1 =

Ã
6

2

!
 x2 =

Ã
1

5

!



184 CHAPTER 7. DISCRIMINATION AND CLASSIFICATION

(a) Find S and S
−1


(b) Calculate the linear discriminant function b = ba0x.
(c) Should the point x0 =

Ã
3

3

!
be classified as population 1 or 2 if

(1|2)
 (2|1)

2

1
= 1?

Exercise 7.6: True/False. Let  be the prior probability of population

,  = 1 2 3.

(a) If all the misclassification costs are equal, then we should allocate x0

to population  if  is the smallest of the three.

(b)  (observation is misclassified as population 1)= 1− (observation is

classified as population 1).

(c) If all the misclassification costs are equal, the we should allocate x0

to population  if  (x0)  is the smallest among the three.

Exercise 7.7: Consider the following data sets

X1 =

⎛⎜⎝ 0 4

1 5

2 6

⎞⎟⎠  X2 =

⎛⎜⎝ 10 8

11 5

12 8

⎞⎟⎠

x1 =

Ã
1

5

!
 x2 =

Ã
11

7

!


(a) Find S and S
−1


(b) Calculate the linear discriminant function b = ba0x.
(c) Should the point x0 =

Ã
6

6

!
be classified as population 1 or 2 if

(1|2)
 (2|1)

2

1
= 1?

Exercise 7.8: Consider the following data sets
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X1 =

⎛⎜⎝ 3 6

2 4

4 5

⎞⎟⎠  X2 =

⎛⎜⎝ 6 9

5 7

4 8

⎞⎟⎠
x1 =

Ã
3

5

!
 x2 =

Ã
5

8

!


(a) Calculate S−1.

(b) Calculate the linear discriminant function b = ba0x.
(c) Should the point x0 =

Ã
7

2

!
be classified as population 1 or 2 if

(1|2)
 (2|1)

2

1
= 1?

Exercise 7.9: Suppose there are two groups of individuals. Each in-

dividual can be characterized by a single value , which follows an extreme

value distribution, with

 () = exp (−) exp (− exp (−)) for−∞   ∞
Suppose  () is the same for both groups. For  = 1 2 and  = 1 2, let

 be the prior probability of group , and (|) be the cost if an individual
from group  is misclassified into group . Suppose we would like to minimize

the expected cost of missclassification. Consider a point 0 = 3, which group

does this point belong to if

(a)
(1|2)
 (2|1) 

1

2
?

(b)
(1|2)
 (2|1) =

1

2
?
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Chapter 8

Cluster Analysis

Cluster analysis involves techniques that produce classifications from data

that are initially unclassified, and must not be confused with discriminant

analysis, in which one initially knows how many distinct groups exist and

also has data that are known to come from each of these distinct groups. To

perform a cluster analysis, one must first be able to measure the similarity

or dissimilarity between two clusters of observations.

8.1 Similarity Measures

Let  be the score (1 or 0) of the 
 binary variable on the  item and  be

the score (1 or 0) of the  binary variable on the  item,  = 1 2  .

( − )
2
= 0 if  =  = 1 or  =  = 0

= 1 if  6= 

The square Euclidean distance

X
=1

( − )
2

provides a count of the number of mismatches. A large distance corre-

sponds to many mismatches. Let us arrange the frequencies of matches and

mismatches for items i and k in the form of a contingency table:

187
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Item 

1 0 Totals

Item  1   + 

0   + 

Totals +  +   = + + + 

where  represents the frequency of 1-1 matches and so on.

However, the measure suffers from weighting the 1-1 and 0-0 matches

equally. In some cases, a 1-1 match is a stronger indication of similarity than

a 0-0 match. For instance, in grouping people, the evidence that two persons

both are the president of the United States is stronger evidence of similarity

than the absence of this position. Thus, it might be reasonable to discount

the 0-0 matches. We define some similarity coefficients for clustering items

as follows:

Coefficient Rationale

1
+ 

+ + + 
Equal weights for 1-1 matches and 0-0 matches.

2
2 (+ )

2 (+ ) + + 
Double weights for 1-1 matches and 0-0 matches.

3
+ 

+ + 2 (+ )
Double weights for unmatched pairs.

4


+ + + 
No 0-0 matches in numerator.

5


+ + 

No 0-0 matches in numerator or denominator.

(The 0-0 matches are treated as irrelevant.)

6
2

2+ + 

No 0-0 matches in numerator or denominator, d=0.

(Double weights for 1-1 matches)

7
+ 

+ 2 (+ )

No 0-0 matches in numerator or denominator, d=0.

(Double weights for unmatched pairs.)

8


+ 
Ratio of matches to mismatches with 0-0 matches excluded.

Example 8.1: Suppose five individuals possess the following character-

istics:
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Height (inch) Weight (lb) Eye Color Hair Color Handedness Gender

Individual 1 68 140 Green Blond Right Female

Individual 2 72 185 Brown Brown Right Male

Individual 3 67 165 Blue Blond Right Male

Individual 4 64 120 Brown Brown Right Female

Individual 5 76 210 Brown Brown Left Male

Define six binary variables 1 2 3456 as

1 = 1 if height > 72 in.
= 0 if height  72 in.

2 = 1 if weight > 150 lb.
= 0 if weight  150 lb.

3 = 1 if brown eyes.

= 0 otherwise.

4 = 1 if blond hair.

= 0 if not blond hair.

5 = 1 if right handed.

= 0 if left handed.

6 = 1 if female.

= 0 if male.
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The scores for individuals 1 and 2 on these 6 variables are

1 2 3 4 5 6

Individual 1 0 0 0 1 1 1

Individual 2 1 1 1 0 1 0

and the number of matches and mismatches are indicated in the two-way

array

Individual 2

1 0 Totals

Individual 1 1 1 2 3

0 3 0 3

Totals 4 2 6

Employing the first similarity coefficient, which gives equal weight to

matches, we have

+ 

+ + + 
=

1 + 0

1 + 2 + 3 + 0
=
1

6


we have

Individual

1 2 3 4 5

1 1

2 1
6
1

Individual 3 4
6

3
6

1

4 4
6

3
6

2
6

1

5 0 5
6

2
6

2
6
1

Based on the magnitude of the similarity coefficient, we should conclude

that individuals 2 and 5 are most similar and individuals 1 and 5 are least

similar. Other pairs fall between these extremes. If we were to divide in-

dividuals into two relatively homogeneous subgroups, we might form the

subgroups (1, 3, 4) and (2, 5).
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Example 8.2: The following table gives the first 10 numbers in eleven

languages. Use the first letters of the numbers to split the languages into

different groups.

Eng Nor Dan Dutch Ger Fren Span Italian Polish Hung Finnish

          

          

          

          

          

          

          

          

          

          

From the following table, we see that English and Norwegian have the

same first letter for 8 of the 10 word pairs. The remaining frequencies are

calculated in the same manner.

Eng Nor Dan Dutch Ger Fren Span Ital Polish Hung Fin

English 10

Norwegian 8 10

Danish 8 9 10

Dutch 3 5 4 10

German 4 6 5 5 10

French 4 4 4 1 3 10

Spanish 4 4 5 1 3 8 10

Italian 4 4 5 1 3 9 9 10

Polish 3 3 4 0 2 5 7 6 10

Hungarian 1 2 2 2 1 0 0 0 0 10

Finnish 1 1 1 1 1 1 1 1 1 2 10
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From the table, English, Norwegian, Danish, Dutch and German seem to

form a group. French, Spanish, Italian and Polish might be grouped together,

whereas Hungarian and Finnish appear to stand alone.

Exercise 8.1: Consider the following ten Hong Kong stocks as of 31/10/2014.:

Company

name

Total

market

capitaliz-

ation

(billions)

PE Ratio

HSI

Constit-

uent

Stock

Sector

Cheung Kong 31870 9041   Property Development

Sun Hung

Kai

Properties

31545 9285   Property Development

MTR Corporation 18391 14044   Traffic

Hang Seng Bank 25122 9419   Bank

HKExchanges

and

Clearing

20078 43519   Exchanges

PCCW 3674 18976  Telecommunications

Hang Lung

Group
5284 11538  Property Development

Wheelock 7589 4478  Property Development

Hopewell

Holdings
2396 17628  Consolidated Enterprises

The Link 104457 6065  REIT

Define four binary variables 1 2 3 4 as

1 = 1 if total market capitalization 200 billions

= 0 otherwise
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2 = 1 if PE 10

= 0 otherwise

3 = 1 if HSI Constituent stock

= 0 otherwise

4 = 1 if from Property Development Sector

= 0 otherwise

(a) Calculate the coefficient
+ 

+ + + 
for pairs of stocks.

(b) How would you classify the stocks into two clusters? How would you

classify the stocks into three clusters?

Exercise 8.2 Consider the following table for the US presidents.

President Birthplace

Elected

First

Term

Party Congressman Vice President

R. Reagan      

JCarter      

G Ford       

R Nixon        

L Johnson       

J Kennedy       

Define five binary variables 123 4 5 as

1 = 1 if birthplace is South.

= 0 if birthplace is non-South.
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2 = 1 if elected first term.

= 0 otherwise.

3 = 1 if Republican.

= 0 otherwise.

4 = 1 if Congressman.

= 0 otherwise.

5 = 1 if served as vice president.

= 0 otherwise.

(a) Calculate the coefficient
+ 

+ + + 
for pairs of presidents.

(b) How would you put the presidents into clusters?

8.2 Agglomerative hierarchical clustering method

When the first cluster is formed, we need to measure the distance between

this cluster and other clusters/objects. Two commonly used methods are the

single linkage method and the complete linkage method.

8.2.1 Single linkage (nearest-neighbor) method

Consider the hypothetical distances between pairs of five objects as follows:
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D = {} =

1 2 3 4 5

1 0

2 9 0

3 3 7 0

4 6 5 9 0

5 11 10 2 8 0

First, we merge the two closet items. Since 35 = 2 is the smallest,

objects 3 and 5 are merged to form the cluster (35). Next, we calculate

the distance between this new cluster (35) and the remaining objects. The

nearest neighbor distances are

(35)1 = min {31 51} = min {3 11} = 3

(35)2 = min {32 52} = min {7 10} = 7

(35)4 = min {34 54} = min {9 8} = 8

The new distance matrix becomes

(35) 1 2 4

(35) 0

1 3 0

2 7 9 0

4 8 6 5 0

Since (35)1 is the smallest, object 1 and cluster (35) and are merged to

form the cluster (135). The nearest neighbor distances between the new

cluster (135) and the remaining objects are

(135)2 = min
©
(35)2 12

ª
= min {7 9} = 7

(135)4 = min
©
(35)4 14

ª
= min {8 6} = 6
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The new distance matrix becomes

(135) 2 4

(135) 0

2 7 0

4 6 5 0

Since (42) = 5 is the smallest, objects 2 and 4 are merged to form the

cluster (24) . At this point we have 2 clusters, their nearest neighbor distance

is

(135)(24) = min
©
(135)2 (135)4

ª
= min {7 6} = 6

The final distance matrix becomes

(135) (24)

(135) 0

(24) 6 0

How to cluster the objects depends on how many cluster we would like

to have. If we would like to have two cluster, then the two clusters are (135)

and (24). If we need three cluster, then we have (135), 2 and 4.

Example 8.3: Consider the clustering of 11 languages in the previous

example, the matrix of distances is as follows:
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1 2 3 4 5 6 7 8 9 10 11

Eng Nor Dan Dutch Ger Fren Span Ital Polish Hung Fin

English 0

Nor 2 0

Danish 2 1 0

Dutch 7 5 6 0

German 6 4 5 5 0

French 6 6 6 9 7 0

Spanish 6 6 5 9 7 2 0

Italian 6 6 5 9 7 1 1 0

Polish 7 7 6 10 8 5 3 4 0

Hung 9 8 8 8 9 10 10 10 10 0

Finnish 9 9 9 9 9 9 9 9 9 8 0

We first search for the minimum distance between pairs of languages

(clusters). The minimum distance is 1, which occurs between Danish and

Norwegian, Italian and French, and Italian and Spanish. Numbering the

languages in the order in which they appear across the top of the array, we

have

23 = 1

68 = 1

78 = 1

Note that 6, 7, 8 cannot be merged at this stage since 67 = 2  1. We

first merge 6 and 8. Next, we calculate the distance between the two clusters

(23), (68), and the remaining objects. The nearest neighbor distances are

(23)1 = min {21 31} = min {2 2} = 2
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(23)4 = min {24 34} = min {5 6} = 5

(23)5 = min {25 35} = min {4 5} = 4

(23)7 = min {27 37} = min {6 5} = 5

(23)9 = min {29 39} = min {7 6} = 6

(23)10 = min {210 310} = min {8 8} = 8

(23)11 = min {211 311} = min {9 9} = 9

(68)1 = min {61 81} = min {6 6} = 6

(68)4 = min {64 84} = min {9 9} = 9

(68)5 = min {65 85} = min {7 7} = 7

(68)7 = min {67 87} = min {2 1} = 1

(68)9 = min {69 89} = min {5 4} = 4

(68)10 = min {610 810} = min {10 10} = 10

(68)11 = min {611 811} = min {9 9} = 9

(68)(23) = min {62 63 82 83} = min {6 6 6 5} = 5
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Now, the new distance matrix becomes

(2 3) (6 8) 1 4 5 7 9 10 11

Nor

Dan

French

Ital
Eng Dutch Ger Span Polish Hung Fin

Norwegian

Danish
0

French

Italian
5 0

English 2 6 0

Dutch 5 9 7 0

German 4 7 6 5 0

Spanish 5 1 6 9 7 0

Polish 6 4 7 10 8 3 0

Hungarian 8 10 9 8 9 10 10 0

Finnish 9 9 9 9 9 9 9 8 0

The nearest neighbor distances between (678) and the remaining objects

are

(678)1 = min
©
(68)1 71

ª
= min {6 6} = 6

(678)4 = min
©
(68)4 74

ª
= min {9 9} = 9

(678)5 = min
©
(68)5 75

ª
= min {7 7} = 7

(678)9 = min
©
(68)9 79

ª
= min {4 3} = 3

(678)10 = min
©
(68)10 710

ª
= min {10 10} = 10

(678)11 = min
©
(68)11 711

ª
= min {9 9} = 9
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(678)(23) = min
©
(68)(23) (23)7

ª
= min {5 5} = 5

(2 3) (6 7 8) 1 4 5 9 10 11

Nor

Dan

French

Span

Ital

Eng Dutch Ger Polish Hung Fin

Norwegian

Danish
0

French

Spanish

Italian

5 0

English 2 6 0

Dutch 5 9 7 0

German 4 7 6 5 0

Polish 6 3 7 10 8 0

Hungarian 8 10 9 8 9 10 0

Finnish 9 9 9 9 9 9 8 0

Since (23)1 is the smallest, object 1 and cluster (23) and are merged to

form the cluster (123). The nearest neighbor distances between (123) and

the remaining objects are

(123)4 = min
©
14 (23)4

ª
= min {7 5} = 5

(123)5 = min
©
15 (23)5

ª
= min {6 4} = 4

(123)9 = min
©
19 (23)9

ª
= min {7 6} = 6

(123)10 = min
©
110 (23)10

ª
= min {9 8} = 8

(123)11 = min
©
111 (23)11

ª
= min {9 9} = 9
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(123)(678) = min
©
(678)1 (678)(23)

ª
= min {6 5} = 5

(1 2 3) (6 7 8) 4 5 9 10 11

Eng

Nor

Dan

French

Span

Ital

Dutch Ger Polish Hung Fin

English

Norwegian

Danish

0

French

Spanish

Italian

5 0

Dutch 5 9 0

German 4 7 5 0

Polish 6 3 10 8 0

Hungarian 8 10 8 9 10 0

Finnish 9 9 9 9 9 8 0

Since (678)9 = 3 is the smallest, object 9 and cluster (678) and are merged

to form the cluster (6789). The nearest neighbor distances between (6789)

and the remaining objects are

(6789)4 = min
©
(678)4 94

ª
= min {9 10} = 9

(6789)5 = min
©
(678)5 95

ª
= min {7 8} = 7

(6789)10 = min
©
(678)10 910

ª
= min {10 10} = 10

(6789)11 = min
©
(678)11 911

ª
= min {9 9} = 9

(123)(6789) = min
©
(123)(678) (123)9

ª
= min {5 6} = 5
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(1 2 3) (6 7 8 9) 4 5 10 11

EngNor

Dan

FrenchSpan

ItalPolish
Dutch Ger Hung Fin

English

Norwegian

Danish

0

FrenchSpanish

ItalianPolish
5 0

Dutch 5 9 0

German 4 7 5 0

Hungarian 8 10 8 9 0

Finnish 9 9 9 9 8 0

Since (123)5 is the smallest, object 5 and cluster (123) and are merged to

form the cluster (1235). The nearest neighbor distances between (1235) and

the remaining objects are

(1235)4 = min
©
(123)4 54

ª
= min {5 5} = 5

(1235)10 = min
©
(123)10 510

ª
= min {8 9} = 8

(1235)(6789) = min
©
(123)(6789) 5(6789)

ª
= min {5 7} = 5
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(1 2 3 5) (6 7 8 9) 4 10 11

EngNor

DanGer

FrenchSpan

ItalianPolish
Dutch Hung Fin

EnglishNorwegian

DanishGerman
0

FrenchSpanish

ItalianPolish
5 0

Dutch 5 9 0

Hungarian 8 10 8 0

Finnish 9 9 9 8 0

Note that (1235)(6789) = (1235)4 = 5, we can group them to form the

cluster (123456789). The nearest neighbor distances between (123456789)

and the remaining objects are

(123456789)10 = min
©
(1235)10 (6789)10 410

ª
= min {8 10 8} = 8

(123456789)11 = min
©
(1235)11 (6789)11 411

ª
= min {9 9 9} = 9

(1 2 3 4 5 6 7 8 9) 10 11

EngNorDanDutch

GerFrenchSpan

ItalianPolish

Hung Fin

EnglishNorwegianDanish

DutchGerman

FrenchSpanish

ItalianPolish

0

Hungarian 8 0

Finnish 9 8 0
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Note that (123456789)10 = 1011 = 8, are the smallest, but (123456789)11 =

9  8, we cannot group (123456789) and 10, but we can group 10 and 11 to

form the cluster (10,11). The minimum distances between (123456789) and

(10 11) is

(123456789)(1011) = min
©
(123456789)10 (123456789)11

ª
= min {8 9} = 8

(1 2 3 4 5 6 7 8 9) (10 11)

EngNorDan

DutchGerFrench

Span ItalianPolish

HungFin

EnglishNorwegianDanish

DutchGermanFrench

Spanish ItalianPolish

0

HungarianFinnish 8 0

8.2.2 Complete linkage (Farthest-neighbor) method

The single linkage has a shortcoming that, as long as a new object is close

to one of the objects in the cluster, it will be assigned to this cluster even if

it is very different from other objects in the cluster. For example, consider

a cluster that contains 1000 African people and one Chinese, then a Chinese

not in this cluster will be assigned to it since there is a single linkage (Chinese-

Chinese). Because of this shortcoming, we need another clustering method.

One method that can avoid the aforementioned shortcoming is called the

complete linkage method. Complete linkage clustering is different from single

linkage clustering in that at each stage, the distance between clusters is the

maximum distance between two elements from each cluster. In the above

example, a Chinese who is not in this cluster will not be assigned to the

cluster.



8.2. AGGLOMERATIVE HIERARCHICAL CLUSTERING METHOD205

Example 8.4: Consider again the hypothetical distances between pairs

of five objects as follows:

D = {} =

1 2 3 4 5

1 0

2 9 0

3 3 7 0

4 6 5 9 0

5 11 10 2 8 0

At the first stage, we merge the two closet items. Since 35 = 2 is the

smallest, objects 3 and 5 are merged to form the cluster (35).

At stage 2, we calculate the maximum distance between this new cluster

(35) and the remaining objects. The maximum distances are

(35)1 = max {31 51} = max {3 11} = 11

(35)2 = max {32 52} = max {7 10} = 10

(35)4 = max {34 54} = max {9 8} = 9

Now, the new distance matrix becomes

(35) 1 2 4

(35) 0

1 11 0

2 10 9 0

4 9 6 5 0

The next merger occurs between the most similar groups, 2 and 4, to

form cluster (24).

At stage 3, we have

(24)(35) = max
©
(35)2 (35)4

ª
= max {10 9} = 10
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(24)1 = max {21 41} = max {9 6} = 9

Now, the new distance matrix becomes

(35) (24) 1

(35) 0

(24) 10 0

1 11 9 0

Repeat the merging procedure again. Since (24)1 = 9 is the smallest,

cluster (24) and 1 are merged to form the cluster (124) .

At the final stage, the groups (35) and (124) are merged as the single

cluster (12345), with

(124)(35) = max
©
(35)1 (35)(24)

ª
= max {11 10} = 11

The final distance matrix becomes

(124) (35)

(124) 0

(35) 11 0

Note that object one is grouped with 2 and 4 under the complete linkage,

while it is grouped with 3 and 5 in the single linkage case.

Example 8.5: Consider the clustering of 11 language in the previous ex-

ample, The first two clusters are (23), (68). We find the maximum distances

between (23), (68), and the remaining objects. The maximum distances are

(23)1 = max {21 31} = max {2 2} = 2

(23)4 = max {24 34} = max {5 6} = 6

(23)5 = max {25 35} = max {4 5} = 5
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(23)7 = max {27 37} = max {6 5} = 6

(23)9 = max {29 39} = max {7 6} = 7

(23)10 = max {210 310} = max {8 8} = 8

(23)11 = max {211 311} = max {9 9} = 9

(68)1 = max {61 81} = max {6 6} = 6

(68)4 = max {64 84} = max {9 9} = 9

(68)5 = max {65 85} = max {7 7} = 7

(68)7 = max {67 87} = max {2 1} = 2

(68)9 = max {69 89} = max {5 4} = 5

(68)10 = max {610 810} = max {10 10} = 10

(68)11 = max {611 811} = max {9 9} = 9

(68)(23) = max {62 63 82 83} = max {6 6 6 5} = 6

Now, the new distance matrix becomes
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(2 3) (6 8) 1 4 5 7 9 10 11

Nor

Dan

Fren

Ital
Eng Dutch Ger Span Polish Hung Fin

Nor

Danish
0

French

Italian
6 0

English 2 6 0

Dutch 6 9 7 0

German 5 7 6 5 0

Spanish 6 2 6 9 7 0

Polish 7 5 7 10 8 3 0

Hung 8 10 9 8 9 10 10 0

Finnish 9 9 9 9 9 9 9 8 0

Since (23)1 (68)7 are the smallest, object 1 and cluster (23) and are

merged to form the cluster (123). Object 7 and cluster (68) and are merged

to form the cluster (678). The maximum distances between (123), (678) and

the remaining objects are

(123)4 = max
©
14 (23)4

ª
= max {7 6} = 7

(123)5 = max
©
15 (23)5

ª
= max {6 5} = 6

(123)9 = max
©
19 (23)9

ª
= max {7 6} = 7

(123)10 = max
©
110 (23)10

ª
= max {9 8} = 9

(123)11 = max
©
111 (23)11

ª
= max {9 9} = 9

(678)1 = max
©
(68)1 71

ª
= max {6 6} = 6
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(678)4 = max
©
(68)4 74

ª
= max {9 9} = 9

(678)5 = max
©
(68)5 75

ª
= max {7 7} = 7

(678)9 = max
©
(68)9 79

ª
= max {5 3} = 5

(678)10 = max
©
(68)10 710

ª
= max {10 10} = 10

(678)11 = max
©
(68)11 711

ª
= max {9 9} = 9

(123)(678) = max
©
1(68) (23)(68) 17 (23)7

ª
= max {6 6 6 6} = 6

(1 2 3) (6 7 8) 4 5 9 10 11

Eng

Nor

Dan

French

Span

Ital

Dutch Ger Polish Hung Fin

EnglishNorwegian

Danish
0

FrenchSpanish

Italian
6 0

Dutch 7 9 0

German 6 7 5 0

Polish 7 5 10 8 0

Hungarian 9 10 8 9 10 0

Finnish 9 9 9 9 9 8 0

Since 45 and (678)9 is the smallest, objects 4 and 5 and are merged to

form the cluster (45). Object 9 and cluster (678) and are merged to form

(6789). The maximum distances between (45)  (6789) and the remaining

objects are
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(45)10 = max {410 510} = max {8 9} = 9

(45)11 = max {411 511} = max {9 9} = 9

(45)(123) = max
©
(123)4 (123)5

ª
= max {7 6} = 7

(6789)(123) = max
©
(678)(123) 9(123)

ª
= max {6 7} = 7

(6789)10 = max
©
(678)10 910

ª
= max {10 10} = 10

(6789)11 = max
©
(678)11 911

ª
= max {9 9} = 9

(45)(6789) = max
©
(6789)4 (6789)5

ª
= max {9 9} = 9

(1 2 3) (6 7 8 9) 4 5 10 11

EngNor

Dan

FrenchSpan

ItalianPolish

Dutch

German
Hung Fin

English

Norwegian

Danish

0

FrenchSpanish

ItalianPolish
7 0

DutchGerman 7 9 0

Hungarian 9 10 9 0

Finnish 9 9 9 8 0

Note that (123)(6789) = (123)(45) = 7, but (6789)(45) = 9  7, we cannot

group (6789) and (45) at this stage, but we can group (123) and (6789) to

form the cluster (1236789). The maximum distances between (1236789) and

the remaining objects are
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(1236789)10 = max
©
(123)10 (6789)10

ª
= max {9 10} = 10

(1236789)11 = max
©
(123)11 (6789)11

ª
= max {9 9} = 9

(1236789)(45) = max
©
(123)(45) (6789)(45)

ª
= max {7 9} = 9

(1 2 3 6 7 8 9) (4 5) 10 11

EngNorDan

FrenchSpan

ItalianPolish

Dutch

German
Hung Fin

EnglishNorwegian

Danish

FrenchSpanish

ItalianPolish

0

DutchGerman 9 0

Hungarian 10 9 0

Finnish 9 9 8 0

Since 1011 is the smallest, objects 10 and 11 and are merged to form the

cluster (10,11). The maximum distances between (10 11) and the remaining

objects are

(1236789)(1011) = max
©
(1236789)10 (1236789)11

ª
= max {10 9} = 10

(1011)(45) = max
©
(45)10 (45)11

ª
= max {9 9} = 9
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(1 2 3 6 7 8 9) (4 5) (10 11)

EngNorDan

FrenchSpan

ItalianPolish

Dutch

German

Hung

Finnish

EnglishNorwegianDanish

FrenchSpanish

ItalianPolish

0

DutchGerman 9 0

HungarianFinnish 10 9 0

Exercise 8.3: For the following dissimilarity matrix

D = {} =

1 2 3 4

1 0

2 9 0

3 7 6 0

4 7 10 7 0

Cluster the five items using each of the following procedures.

(a) Single linkage hierarchical procedure.

(b) Complete linkage hierarchical procedure.

(c) Draw the dendrograms and compare the results in (a) and (b).

(d) Repeat (a) to (c) if

D = {} =

1 2 3 4 5

1 0

2 2 0

3 4 8 0

4 7 9 3 0

5 9 8 7 5 0
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8.3 Non-hierarchical clustering method

8.3.1 K-means method

Non-hierarchical methods start from an initial partition of items into groups,

then assign an item to the cluster whose centroid (mean) is nearest.

Example 8.6: Suppose we measure two variables 1 and 2 for each of

the four items A, B, C and D. The data are given in the following table:

Item\Observations 1 2

A 5 3

B −1 1

C 1 −2
D −3 −2

The objective is to divide these items into K=2 clusters such that the

items within a cluster are closer to one other than they are to the items in

different clusters. First, we arbitrarily partition the items into two clusters,

such as (AB) and (CD), and compute the coordinates of the cluster centroid

(mean), (1 2). We have

Cluster\Centroid 1 2

(AB)
5+(−1)
2

= 2 3+1
2
= 2

(CD)
1+(−3)
2
− 1 −2+(−2)

2
= −2

Next, we compute the Euclidean distance of each item from the group

centroids and reassign each item to the nearest group. Note that the clus-

ter centroids must be updated before proceeding. We compute the squared

distances

2 ( ()) = (5− 2)2 + (3− 2)2 = 10

2 ( ()) = (5 + 1)
2
+ (3 + 2)

2
= 61
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Since A is closer to cluster () than to cluster (), it is not reassigned.

Next, we check

2 ( ()) = (−1− 2)2 + (1− 2)2 = 10

2 ( ()) = (−1 + 1)2 + (1 + 2)2 = 9
Now, we need to reassign B to cluster (), giving cluster (). We

need to update the coordinates of the centroid to

Cluster\Centroid 1 2

A 5 3

(BCD)
−1+1+(−3)

3
= −1 1+(−2)+(−2)

3
= −1

Each item is checked for reassignment. Computing the squared distances

gives the following table:

squared distances to group centroid

Cluster\Item A B C D

A 0 40 41 89

(BCD) 52 4 5 5

Since the items B, C and D is closer to the centroid of the cluster (BCD)

than to A, the final K=2 clusters are A and (BCD).

Exercise 8.4: Suppose we measure two variables 1 and 2 for each of

the four items A, B, C and D. The data are given as follows:

Item\Observations 1 2

A 5 4

B 1 −2
C −1 1

D 3 1

Use the K-means clustering technique to divide the items into K=2 clus-

ters. Start with the initial groups (AB) and (CD).
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Exercise 8.5: Suppose we measure two variables 1 and 2 for each of

the four items A, B, C and D. The data are given as follows:

Item\Observations 1 2

A −2 0

B 2 0

C 0 4

D 0 −4

Use the K-means clustering technique to divide the items into K=2 clus-

ters.

(i) Start with the initial groups (AB) and (CD).

(ii) Start with the initial groups (AD) and (BC).

Exercise 8.6: True/ False.

(a). The complete linkage clustering is a hierarchical clustering method.

(b). The solutions of the single linkage and complete linkage procedures

can be the same.

(c). The solution of the single linkage hierarchical procedure is unique.

(d). The single linkage clustering is a hierarchical clustering method.

(e). In the complete linkage clustering, the distance between clusters is

the maximum distance between two elements from each cluster.

Exercise 8.7: Suppose we measure two variables 1 and 2 for each of

the four items A, B, C and D. The data are given as follows:
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Item\Observations 1 2

A −2 2

B 2 10

C 0 15

D 0 1

Use the K-means clustering technique to divide the items into K=2 clus-

ters.

(i) Start with the initial groups (AB) and (CD).

(ii) Start with the initial groups (AD) and (BC).

Exercise 8.8: For the following dissimilarity matrixD = {} =

1 2 3 4

1 0

2 8 0

3 5 1 0

4 6 10 7 0

Cluster the four items using each of the following procedures.

(a) Single linkage hierarchical procedure.

(b) Complete linkage hierarchical procedure.

(c) Draw the dendrograms and compare the results in (a) and (b).

Exercise 8.9: For the following dissimilarity matrix

D = {} =

1 2 3 4 5

1 0

2 2 0

3 4 8 0

4 6 9 3 0

5 10 1 7 5 0

Cluster the five items using each of the following procedures.

(a) Single linkage hierarchical procedure.

(b) Complete linkage hierarchical procedure.
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(c) Draw the dendrograms and compare the results in (a) and (b).

Exercise 8.10: Suppose we measure two variables 1 and 2 for each

of the four items A, B, C and D. The data are given as follows:

Item\Observations 1 2

A 1 1

B 2 −2
C −3 1

D 5 4

E 0 −1
F −2 0

Use the K-means clustering technique to divide the items into K=2 clus-

ters. Start with the initial groups (ABC) and (DEF).
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Chapter 9

Binary and Multinomial

Dependent Variable Models

In empirical studies, we often encounter variables which are qualitative rather

than quantitative. For example, we may be interested in whether people

participate in the labor force or not; whether people get married or not;

whether people buy a car or not, etc., all these yes-no decisions are not

quantifiable. In the case where the variable of interest belongs to one of the

two categories, we normally give it a value of 1 if it falls into one category,

and assign a value of 0 to it if it falls into another category.

9.1 Linear Probability Model

Consider a simple binary regression model

 = 0 + 1 + 

Note very carefully that we cannot simply assume  to be  (0 
2), as

 cannot be treated as a predicted value in a regression line plus an arbitrary

residual. This is because  only takes either 0 or 1, so the residuals also take

only two possible values for a given value of . First, note that

 () = 1× Pr ( = 1) + 0× Pr ( = 0) = Pr ( = 1) 

219
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Further, if  = 1, then  = 1−0−1, and if  = 0,  = −0−1

 () = (1− 0 − 1) Pr ( = 1) + (−0 − 1) Pr ( = 0)

= (1− 0 − 1) Pr ( = 1) + (−0 − 1) (1− Pr ( = 1))
= Pr ( = 1)− 0 − 1

We can still assume  () = 0 in order to obtain an unbiased estimator.

This will imply

Pr ( = 1)− 0 − 1 = 0

or

Pr ( = 1) = 0 + 1

We call this a linear probability model, where 1 can be interpreted as

the marginal effect of  on the probability of getting  = 1 To give a

concrete example, suppose we have data on two groups of people, one group

purchases sport car while the other purchases family car.

We define  = 1 if a family car is purchased and  = 0 if a sport car

is purchased. Suppose  is the family size. Then 1 can be interpreted as:

if there is one more member in the family, by how much will the chance of

buying a family car increase?

The advantage of using the linear probability model is that it is very

simple, and the parameters are easily interpretable. We just need to run a

regression and obtain the parameters of interest. However, there are a lot of

problems associated with the linear probability model.

Heteroskedasticity

The first problem is that we cannot assume   () to be a constant in

this framework. To see why, note that
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  () = 
¡
2
¢−2 () = 

¡
2
¢

= (1− 0 − 1)
2
Pr ( = 1) + (−0 − 1)

2
Pr ( = 0)

= (1− 0 − 1)
2
Pr ( = 1) + (0 + 1)

2
Pr ( = 0)

= (1− Pr ( = 1))2 Pr ( = 1) + Pr ( = 1)2 Pr ( = 0)
= Pr ( = 0)

2
Pr ( = 1) + Pr ( = 1)

2
Pr ( = 0)

= Pr ( = 0)Pr ( = 1) [Pr ( = 0) + Pr ( = 1)]

= Pr ( = 0)Pr ( = 1)

= (1− 0 − 1) (0 + 1) 

which is not a constant and will vary with . Further, it may even be

negative. Thus, we have the problem of heteroskedasticity, and the estimators

will be inefficient.

Non-normality of the disturbances

Another problem is that the error distribution is not normal. This is

because given the value of , the disturbance  only takes 2 values, namely,

 = 1 − 0 − 1 or  = −0 − 1. We cannot apply the classical

statistical tests to the estimates when the sample is small, since the tests

depend on the normality of the errors. However, as sample size increases,

it can be shown that the OLS estimators tend to be normally distributed.

Therefore, in large samples, statistical inference of the LPM can be carried

out as usual.

Low value of 2

The conventional 2 tends to be low in the binary regression model.

Since all the  values will either lie along the  axis or along the line

corresponding to 1, no linear regression line will fit the data well. As a

result, the conventional 2 is likely to be much lower than 1 for such models.

In most cases, the 2 ranges from 02 to 06.

Nonfulfillment of 0  \Pr ( = 1) 1
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The other problem is on prediction. Since

b = b0 + b1 = \Pr ( = 1)

is the predicted probability of  being equal to 1 given , which must

be bounded between 0 and 1 theoretically. However, the predicted value here

is unbounded as we do not impose any restrictions on the values of . An

obvious solution for this problem is to set extreme predictions equal to 1 or

0, thereby constraining predicted probabilities within the zero-one interval.

This solution is not very satisfying either, as it suggests that we might

have a predicted probability of 1 when it is entirely possible that an event

may not occur, or we might have a predicted probability 0 when an event

may actually occur. While the estimation procedure might yield unbiased

estimates, the predictions obtained from the estimation process are clearly

biased.

Example 9.1: Consider the following linear probability model:

 = 0 + 1 + 2 + 

where

 = 1 if individual  purchased a car in the year of the survey and  = 0

if not.

 =monthly income of individual  (in dollars).

 = 1 if individual  is married and  = 0 if not.

a) Show that  () = Pr ( = 1).

b) Show that  () = 0 implies

Pr ( = 1) = 0 + 1 + 2

c) Show that Var() = Pr ( = 1)Pr ( = 0).

d) Suppose we estimate the model by OLS and obtain:
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b = −1 + 00001 + 03

Interpret each of the above coefficient estimates

e) Referring to the estimated model in part d), what is the chance of

purchasing a car for:

i) an individual who is married and has a monthly income of 5000 dollars.

ii) an individual who is married and has a monthly income of 10000

dollars.

iii) an individual who is not married and has a monthly income of 1000

dollars.

f) State the advantages and shortcomings of the linear probability model.

Solution:

(a)

 () = 0× Pr ( = 0) + 1× Pr ( = 1) = Pr ( = 1) .

(b)

 () = 0⇒  () = 0 + 1 + 2.

By using the result of part (a), i.e.,  () = Pr ( = 1)  we have

Pr ( = 1) = 0 + 1 + 2

(c) When  = 1,

 = 1− 0 − 1 − 2

= 1− Pr ( = 1)
= Pr ( = 0) .
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When  = 0,

 = 0− 0 − 1 − 2

= −Pr ( = 1) .

Now,

  () = 
¡
2
¢
since  () = 0

= Pr ( = 0)
2 × Pr ( = 1) + (−Pr ( = 1))2 × Pr ( = 0)

= Pr ( = 1)Pr ( = 0) [Pr ( = 0) + Pr ( = 1)]

= Pr ( = 1)Pr ( = 0) .

(d)

1 = Marginal Effect of change in monthly income on the probability

of  = 1

2 = Marginal Effect of change in marriage on the probability of  = 1

0 = Effect on the probability of  = 1 when the other variables are zero.

(e)

(i) b = −01 + (00001) (5000) + (03) (1) = 07.
(ii) b = −01 + (00001) (10000) + (03) (1) = 12.
(iii)

b = −01 + (00001) (1000) + (03) (0) = 0.
(f) Advantage : It is convenient to carry out. Disadvantage : 0  b  1

may not be satisfied.
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9.2 Logistic Regression

Since a linear probability model may yield a predicted value that is outside

the [0,1] range, it is not a good model as far as prediction is concerned. To

improve the linear probability model, one can modify the dependent variable

a little bit. Suppose for each distinct value of , we have many observations

of  , some are equal to 1, and some are equal to zero. For example, for a

given value of , we have  observations of , and  (0    ) of

these  are 1, and − are 0. We let  =


be the observed probability

of observing  = 1 given the value of . We take a transformation of and

let  = ln


1− 

, then  can take any real value. We can run the following

regression:

 = 0 + 1 + 

Note that

exp () = exp

µ
ln



1− 

¶
=



1− 



Thus, we have

exp (−) =
1



− 1

and

 =
1

1 + exp (−)
=

1

1 + exp (− (0 + 1))


Given the estimate b0 b1from the  regression , the predicted values of

the probability that event will occur is

b =
1

1 + exp
³
−
³b0 + b1

´´ 
which lies between 0 and 1. We call this method the Logistic regression,

since
1

1 + exp (−)
is the distribution function of a Logistic distribution.
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9.3 Nonlinear Regression Approach

The linear probability model and the logistic regression model are linear

regressions, in that all the 0 in the model are linearly related. To en-

sure a realistic predicted value, an alternative approach is to re-estimate the

parameters subject to the constraint that the predicted value is bounded be-

tween zero and one. Since predicted value is the value in a regression curve,

we can find a nonlinear function b =  ( ) such that 0 ≤  ( ) ≤ 1
for all  and  Clearly  ( ) cannot be linear in either  or , i.e.,

 ( ) = 0 + 1 will not work.

If we can find a function which is bounded between zero and one, then

we can solve the problem of unrealistic prediction. What kind of functions

will be bounded between zero and one? For example, the cumulative normal

distribution has an increasing, S-shaped CDF bounded between zero and

one. Another example is the logistic distribution, i.e.,

 ( ) =
1

1 + exp [− (0 + 1)]


Note that as 1 →−∞,  ( )→ 0, and as 1 →∞,  ( )→
1. Since  ( ) is not linear in , we cannot use the linear least squares

method. Instead, we should run a nonlinear regression

 =
1

1 + exp [− (0 + 1)]
+ .

i.e., we find 0 and 1 to minimize
P

=1

µ
 − 1

1 + exp [− (0 + 1)]

¶2
.

Or we can assume  =  − 1

1 + exp [− (0 + 1)]
to have a certain dis-

tribution and apply the Maximum Likelihood method to estimate 0 and

1.

Exercise 9.1: For the Logistic distribution function  () =
1

1 + exp (−) ,
find the density function  (). Is  () a symmetric density?
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9.4 Random Utility Model

Suppose you have to make a decision on two alternatives, say, whether to

buy a sport car or family car. Given the characteristics  of individual  ,

for example, his/her family size, income, etc. Let

1 = 0 + 1 + 1

2 = 0 + 1 + 2

where 1 is the utility derived from a family car, and 2 is the utility

derived from a sport car. The individual will buy a family car if 1  2, or

1 − 2  0 Subtracting the second equation from the first equation gives

1 − 2 = 0 − 0 + (1 − 1) + 1 − 2

Suppose we define  ∗ = 1−2, 0 = 0−0, 1 = 1−1,  = 1−2
We can rewrite the model as

 ∗ = 0 + 1 + 

However, we cannot observe the exact value of  ∗ , what we observe is

whether the individual buy a family car or not. That is, we only observe

whether  ∗  0 or  ∗  0. If  ∗  0, the individual will buy a family car,

we assign a value  = 1 for this observation, and assign  = 0 otherwise.

Denote the density function and distribution function of  by  (·) and
 (·) respectively, and suppose it is symmetric about zero, i.e.,  () =
 (−), and  () = 1−  (−). We then have:
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Pr ( = 1) = Pr ( ∗  0)

= Pr (0 + 1 +   0)

= Pr (−  0 + 1)

= Pr (  0 + 1) since  is symmetrically distributed about zero,

=  (0 + 1) 

and

Pr ( = 0) = 1− Pr ( = 1) = 1−  (0 + 1) 

Note that the marginal effects of an increase in  in the probability is

nonlinear in 0, in particular,

 Pr ( = 0)



= − (0 + 1) 1

 Pr ( = 1)



=  (0 + 1) 1

Consider the case where 1  0, since  (·)  0, we have

 Pr ( = 0)



 0

 Pr ( = 1)



 0

9.5 Maximum Likelihood Estimation

The principle of maximum likelihood provides a mean of choosing an as-

ymptotically efficient estimator for a set of parameters. Let {}=1 be i.i.d.
random variable with joint density  (1 2 ; ), where  = (1 2 )

0
.

Since the sample values have been observed and therefore fixed number, we

regard  (; ) as a function of . Let  = (1 2 )
0
, we defined the

likelihood function as
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 (; ) =  (1 2  ; ) =


Π
=1

 (; ) 

and the log-likelihood function is defined as ln (; ) 

The maximum likelihood estimator b is the estimator that maximizes

the likelihood function. Since logarithmic function is a strictly monotonic

function, b also maximizes the log-likelihood function.

b = argmax (; ) = argmax (ln (; )) 

If the distribution is correctly specified, then the Maximum Likelihood

estimator is unbiased and is asymptotically more efficient than any estima-

tors. If the variable is discrete, the density function can be replaced by the

probability that each discrete value will take.

Example 9.2: : Consider a random sample of 10 observations from a

Normal distribution 1 2  10. The density of  is


¡
; 

2
¢
=

1√
22

exp

Ã
−( − )

22

2
!


where  and 2 are unknown mean and variance of the population re-

spectively.

(a) Find the log-likelihood function.

(b) Find the ML estimators for  and 2

Solution:
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¡
; 2

¢
= 

¡
1 2  10; 

2
¢

=
10

Π
=1


¡
; 

2
¢


=
10

Π
=1

1√
22

exp

Ã
−( − )

22

2
!

=

µ
1√
22

¶10
exp

Ã
−
P10

=1 ( − )

22

2
!

=
¡
22

¢−5
exp

Ã
−
P10

=1 ( − )

22

2
!


ln
¡
; 2

¢
= ln

"¡
22

¢−5
exp

Ã
−
P10

=1 ( − )

22

2
!#

= −5 ln (2)− 5 ln ¡2¢−P10

=1 ( − )

22

2



b = argmax
¡
ln

¡
; 2

¢¢


First-order condition,




ln

¡
; 2

¢
=

P10

=1 ( − )

2
= 0



2
ln

¡
; 2

¢
= − 5

2
+

P10

=1 ( − )

24

2

= 0

b =

P10

=1 

10
= 

Plug b =  into the second equation, we have

− 5
2
+

P10

=1 ( − )

24

2

= 0

−1 +
P10

=1 ( − )

102

2

= 0
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b2 =

P10

=1 ( − )
2

10


Example 9.3: Consider a random sample of 10 observations from a

Poisson distribution 1 2  10 The probability of each observation is

 (; ) =
 exp (−)

!


with

 () = 

  () = 

 (; ) =  (1 2  10; )

=
10

Π
=1

 (; ) 

=
10

Π
=1

 exp (−)
!

=
1+2+10 exp (−10)

10

Π
=1

!



ln (; ) = ln
1+2+10 exp (−10)

10

Π
=1

!

=

Ã
10X
=1



!
ln  − 10 − ln

µ
10

Π
=1

!

¶

b = argmax (ln (; ))

First-order condition,




ln (; ) =

P10

=1 


− 10 = 0
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b =

P10

=1 

10


Exercise 9.2: Consider a random sample of 10 observations from a Nor-

mal distribution 1 2  10. The density of  is

 (; 1 2) =

r
2

2
exp

Ã
−2
2

µ
 − 1

1

¶2!


where 1 2 are unknown parameters.

(a) Find the log-likelihood function.

(b) Now let the observations be

1 2 3 4 5 6 7 8 9 10

−5 −4 −3 −2 −1 1 2 3 4 5

Find the values of ML estimates for 1 and 2

Exercise 9.3: Consider the following density function of a random vari-

able .

 (; ) = 1 for      + 1;

= 0 elsewhere.

i) Sketch the graph of  (; 1)   (; 2) and  (; 3) 

Let 1 and 2 constitute a random sample of size 2 from the above

population.

ii) Find the joint density of 1 and 2.

iii) Find the likelihood function  (; ) and the log-likelihood function

ln (; ) 

Exercise 9.4: Suppose the random variable  ∼  (exp ()  1),  =

1 2  100,  and  are independent for all  6= . Thus,
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 (; ) =
1√
2

−
(−)

2

2 

a) Derive the log-likelihood function ln (; ).

b) Derive the ML estimator b.
Exercise 9.5: Given the data  = (1 2  )

0
  is an i.i.d. random

variable with density function

 (; ) =
1


−


  0   ∞

a) Find the likelihood function  (; ) and the log-likelihood function

ln (; ) 

b) Find the ML estimator of .

Exercise 9.6: Suppose the span of human life follows a uniform distri-

bution  (0 ), with   ∞. Suppose we have a sample of  observations
1 2   on people’s life span.

a) Find the likelihood function  (; ) and the log-likelihood function

ln (; ) 

b) Find the ML estimator of  by solving the first-order condition. Does

your estimator depend on the data?

c) Suggest another ML estimator that uses the information of the data

and is based on the maximum of the log-likelihood function.



234CHAPTER 9. BINARYANDMULTINOMIALDEPENDENTVARIABLEMODELS

9.6 Maximum Likelihood Estimation of the

Probit and Logit Models

Let  (1 2  ;) be the joint probability density of the sample obser-

vations when the true parameter is . This is a function of 1 2   and

. As a function of the sample observation it is called a joint probability

density function of 1 2  . As a function of the parameter  it is called

the likelihood function for . The MLE method is to choose a value of 

which maximizes  (1 2  ;).

Intuitively speaking, if we have several values of , each of which might

be the true value, we would like to find a value of  which gives the sample we

actually observe the highest probability. Suppose we have  observations of

 and , where  takes the value zero or one. The probability of observing

such data is

 = Pr (1 = 1 2 = 2   = )

= Pr (1 = 1) Pr (2 = 2) Pr ( = )

by the independence of 

Since  only takes either zero or one, we can assign them to two groups.

The likelihood function is

 =
Y
=1

Pr ( = 1)
Y
=0

Pr ( = 0)

=
Y
=1

 (0 + 1)
Y
=0

[1−  (0 + 1)]

=

Y
=1

[ (0 + 1)]
 [1−  (0 + 1)]

1− 
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ln = ln

(
Y
=1

[ (0 + 1)]
 [1−  (0 + 1)]

1−
)

=

X
=1

ln
n
[ (0 + 1)]

 [1−  (0 + 1)]
1−

o
=

X
=1

 ln (0 + 1) +

X
=1

(1− ) ln [1−  (0 + 1)] 

We would like to maximize , or equivalently, maximize ln since ln (·)
is a monotonic increasing function. The first-order conditions are

 ln

0
=

X
=1


 (0 + 1)

 (0 + 1)
−

X
=1

(1− )
 (0 + 1)

1−  (0 + 1)
= 0

 ln

1
=

X
=1



 (0 + 1)

 (0 + 1)
−

X
=1

(1− )

 (0 + 1)

1−  (0 + 1)
= 0

These two equations can be solved to obtain estimators for 0. However,

as ln is a highly nonlinear function of 0, we cannot easily obtain the

estimator of 0 by simple substitutions. We may use the grid-search method

and a computer algorithm to solve the problem.

The MLE procedure has a number of desirable properties. When the

sample size is large, all estimators are consistent and efficient if there is no

misspecification on the probability distribution. In addition, all parameters

are normally distributed when sample size is large.

If we assume  to be normally distributed  (0 2), i.e.,

 (0 + 1) =
1√
2

exp

Ã
−(0 + 1)

2

22

!
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 (0 + 1) =

Z 0+1

−∞

1√
2

exp

µ
− 2

22

¶


then we have the Probit Model.

The first-order condition can be simplified to

 ln

0
=
X
=1

exp

Ã
−(0 + 1)

2

22

!
R 0+1

−∞ exp

µ
− 2

22

¶


−
X
=0

exp

Ã
−(0 + 1)

2

22

!
R∞
0+1

exp

µ
− 2

22

¶


= 0

 ln

1
=
X
=1

 exp

Ã
−(0 + 1)

2

22

!
R 0+1

−∞ exp

µ
− 2

22

¶


−
X
=0

 exp

Ã
−(0 + 1)

2

22

!
R∞
0+1

exp

µ
− 2

22

¶


= 0

Although the normal distribution is a commonly used distribution, its

distribution function is not a closed form function of . As the two first-order

conditions above involve the integration operator, the computational cost will

be tremendous. For mathematical convenience, the logistic distribution is

proposed:

 (0 + 1) =
exp (0 + 1)

(1 + exp (0 + 1))
2


 (0 + 1) =
exp (0 + 1)

1 + exp (0 + 1)


If we assume  to have a logistic distribution, then we have the Logit

Model. The first-order condition can be simplified to

 ln

0
=
X
=1

1

1 + exp (0 + 1)
−
X
=0

1

1 + exp (−0 − 1)
= 0
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 ln

1
=
X
=1



1 + exp (0 + 1)
−
X
=0



1 + exp (−0 − 1)
= 0

Exercise 9.7: True/False.

(a) A Probit model assumes that the error term has a uniform distribu-

tion.

(b)A Probit model assumes that the error term has an F distribution.

Exercise 9.8: Consider the Probit model

 ∗ = 0 + 1 + 

Suppose we can only observe the sign of  ∗ . If 
∗
  0, we assign a value

 = 1 for this observation, and assign  = 0 otherwise. Denote the density

function and distribution function of  by  (·) and  (·) respectively, where

 () =
1√
2

exp

µ
− 2
22

¶


 () =

Z 

−∞

1√
2

exp

µ
− 2

22

¶


(a) Show that

Pr ( = 1) =  (0 + 1) 

and

Pr ( = 0) = 1−  (0 + 1) 

(b) Suppose we have  observations of  and , where  takes the

value zero or one. Assume  to be independent, show that the log-likelihood

function can be simplified to
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ln =

X
=1

 ln

Z 0+1

−∞

1√
2

exp

µ
− 2

22

¶


+

X
=1

(1− ) ln

∙Z ∞

0+1

1√
2

exp

µ
− 2

22

¶


¸


(c) Let  =



, show that

ln =

X
=1

 ln

Z 0

+
1



−∞

1√
2
exp

µ
−

2

2

¶


+

X
=1

(1− ) ln

"Z ∞

0

+
1



1√
2
exp

µ
−

2

2

¶


#


(d) Given the data { }=1, suppose
³b0 b1 b´ = (1 2 3) maximizes

the log-likelihood function, will
³b0 b1 b´ = (2 4 6) also maximize the log-

likelihood function? Discuss the identifiability of 0 and 1.

Exercise 9.9: Consider the following linear probability model:

  = 0 + 1 + 2  + 3

+4 + 

where

  = 1 if couple  got divorce in the year of the survey, and

  = 0 if not.

 = family’s monthly income of couple  (in dollars).

  = years of marriage of couple .

 = 1 if the husband or the wife (or both) has an extramarital

affair, and  = 0 if not.

 = number of children of couple .

a) Show that  ( ) = Pr (  = 1).
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b) Interpret each of the above coefficients 0  4

c) Show that  () = 0 implies

Pr (  = 1) = 0 + 1 + 2  + 3

+4

d) Show that Var() = Pr (  = 1)Pr (  = 0).

e) Suppose the we estimate the model by OLS and obtain:

\  = 5− 0002 − 015  + 9

−03

What is the chance of getting divorce for:

i) a couple with 6 years of marriage, 2 children, family’s monthly income

of 1000 dollars, and no extramarital affair.

ii) a couple with 1 year of marriage, no children, family’s monthly income

of 2000 dollars, and the husband has an extramarital affair.

iii) a couple with 30 years of marriage, 3 children, family’s monthly income

of 4000 dollars, and the wife has an extramarital affair.

f) State an advantage and a shortcoming of the linear probability model.

Exercise 9.10: Consider the following linear probability model:

 = 0 + 1 + 2 + 3 

+4 + 5 + 6 + 

where

 = 1 if individual  has an extramarital affair, and = 0 if not,
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 = monthly income of individual  (in dollars),

 = monthly income of the spouse of individual ,

  =years of marriage of individual ,

 = number of children of individual ,

 =number of hours per week that individual  spends

with his/her spouse.

 = 1 if individual  is a male, and = 0 otherwise.

(a) Interpret each of the above coefficients 1  6, what are their ex-

pected signs? Explain.

(b) Show that  () = 0 implies

Pr ( = 1) = 0 + 1 + 2

+3  + 4

+5 + 6

(c) Show that Var() = Pr ( = 1)Pr ( = 0).

(d) Suggest a method to fix the problem of heteroskedasticity in part (c).

What is the advantage and shortcoming of your method?

(e) Suppose the we estimate the model by OLS and obtain:

\ = 5 + 008 − 009

−015  − 03

−004 + 007

What is the chance of having an extramarital affair for:

i) a man with 6 years of marriage, 2 children, monthly income of 1000

dollars, wife’s income is 800 and he spends 100 hours per week with his wife.
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ii) a woman with 1 years of marriage, 1 child, monthly income of 1000

dollars, husband’s income is 900 and she spends 56 hours per week with his

husband.

iii) a man with 30 years of marriage, 3 children, monthly income of 700

dollars, wife’s income is 500 and he spends 120 hours per week with his wife.

9.7 The Multinomial Logit Model

Suppose there are  individuals and  categories, e.g., Occupational

choice. Define  = 1 if individual  chooses category , and  = 0 other-

wise. Thus,
P

=1  = 1 for all .

For example, let  = 3. Suppose that an individual  whose utilities

associated with three alternatives are given by

 =  0
 +   = 1 2 3

where  and  are vectors.

Assume that  are independent and identically distributed, each with

the extreme value distribution

 () = exp (− exp (−)) 

 () = exp (−) exp (− exp (−)) 

The density is shown in the following diagram:
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-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

x

f(x)

The density function of an extreme value distribution

Now, if there are 3 categories, category 1, 2 and 3. The probability that

individual  will choose category 2 is

Pr (2 = 1)

= Pr (2  1 and 2  3)

= Pr ( 0
2 + 2   0

1 + 1 and  0
2 + 2   0

3 + 3)

= Pr (1  2 + 0
 (2 − 1) and 3  2 + 0

 (2 − 3))

=

Z ∞

−∞
 (2) Pr (1  2 + 0

 (2 − 1) and 3  2 + 0
 (2 − 3) |2) 2

=

Z ∞

−∞
 (2) Pr (1  2 + 0

 (2 − 1) |2) Pr (3  2 + 0
 (2 − 3) |2) 2

=

Z ∞

−∞

"Z 2+
0
(2−1)

−∞
 (1) 1

#"Z 2+
0
(2−3)

−∞
 (3) 3

#
 (2)
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=

Z ∞

−∞
exp [− exp (−2) exp ( 0

 (1 − 2))] exp [− exp (−2) exp ( 0
 (3 − 2))]  (2)

=

Z ∞

−∞
 (2)

exp(0
(1−2))  (2)

exp(0
(3−2))  (2)

=

Z ∞

−∞
 (2)

exp(0
(1−2))+exp(0

(3−2))  (2)

=

"
 (2)

1+exp(0
(1−2))+exp(0

(3−2))

1 + exp ( 0
 (1 − 2)) + exp (

0
 (3 − 2))

#∞
−∞

=
1

1 + exp ( 0
 (1 − 2)) + exp (

0
 (3 − 2))

=
exp ( 0

2)

exp ( 0
1) + exp (

0
2) + exp (

0
3)



Therefore, if there are  categories, the probability that individual i will

choose the j category will be

Pr ( = 1) =
exp

¡
 0


¢P

=1 exp (
0
)



One problem arises here, the  here cannot be identified as if we change all

the  to  + , where  is a vector of any constant, Pr ( = 1) will still be

the same since

exp
¡
 0



¡
 + 

¢¢P

=1 exp (
0
 ( + ))

=
exp ( 0

) exp
¡
 0



¡
 + 

¢¢
exp ( 0

)
P

=1 exp (
0
 ( + ))

=
exp

¡
 0


¢P

=1 exp (
0
)



Therefore, for the parameter to be identified, we must impose some re-

strictions on . We can simply let 1 = 0, so that

Pr (1 = 1) =
1

1 +
P

=2 exp (
0
)
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Pr ( = 1) =
exp

¡
 0


¢

1 +
P

=2 exp (
0
)

 = 2 3  

The likelihood function is

 =

Y
=1

Y
=1

Pr ( = 1)
 =

Y
=1

Y
=1

"
exp

¡
 0


¢

1 +
P

=2 exp (
0
)

#
By using the conditions that 1 = 0 and

P

=1  = 1, we have

ln =

X
=1

X
=1

 ln

Ã
exp

¡
 0


¢

1 +
P

=2 exp (
0
)

!

=

X
=1

X
=1



Ã
 0

 − ln
"
1 +

X
=2

exp ( 0
)

#!

=

X
=1

Ã
X
=1


0
 −

Ã
X
=1



!
ln

"
1 +

X
=2

exp ( 0
)

#!

=

X
=1

Ã
X
=2


0
 − ln

"
1 +

X
=2

exp ( 0
)

#!


 ln


=

X
=1

Ã


0
 −

exp
¡
 0


¢

1 +
P

=2 exp (
0
)

 0


!
=

X
=1

Ã
 −

exp
¡
 0


¢

1 +
P

=2 exp (
0
)

!
 0



Exercise 9.11: Find  () and   () of the random variable  with

 () = exp (− exp (−)) 

 () = exp (−) exp (− exp (−)) 

9.8 Ordered Data

Some multinomial-choice variables are inherently ordered, e.g., Bond ratings,

opinion surveys, employment (unemployed, part time, or full time). Consider

the model
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 ∗ = 0 + 1 + 

where  ∗ is unobserved. What we observe is

 = 1 if 0   ∗ ≤ 1

= 2 if 1   ∗ ≤ 2

= 3 if 2   ∗ ≤ 3

...

=  if −1   ∗ ≤  

where 0 = −∞ and  = ∞ Other 0 are unknown parameters to be

estimated with 0

Pr ( = ) = Pr
¡
−1   ∗ ≤ 

¢
= Pr

¡
−1  0 + 1 +  ≤ 

¢
= Pr

¡
 ≤  − 0 − 1

¢− Pr ¡ ≤ −1 − 0 − 1

¢
= 

¡
 − 0 − 1

¢− 
¡
−1 − 0 − 1

¢


We can either assume that  is normally distributed, or has a logistic

distribution.

Suppose we have  observations of  and , where  takes the value

1 2   . The probability of getting such observations is

 = Pr (1 = 1 2 = 2   = ) = Pr (1 = 1) Pr (2 = 2) Pr ( = )

by the independence of 

The likelihood function is

 =
Y
=1

Pr ( = 1)
Y
=2

Pr ( = 2) 
Y
=

Pr ( = ) 

=

Y
=1

Y
=1

£

¡
 − 0 − 1

¢− 
¡
−1 − 0 − 1

¢¤
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where  = 1 if  =  and  = 0 otherwise.

ln =

X
=1

X
=1

 ln
©£

¡
 − 0 − 1

¢− 
¡
−1 − 0 − 1

¢¤ª


Example 9.3: Suppose there are only 3 ordered categories, then

Pr ( = 1) =  (1 − 0 − 1) 

Pr ( = 2) =  (2 − 0 − 1)−  (1 − 0 − 1) 

Pr ( = 3) = 1−  (2 − 0 − 1) 

Consider the case where 1  0. For the three probabilities, the marginal

effects of changes in the regressors are

 Pr ( = 1)



= − (1 − 0 − 1)1  0

 Pr ( = 2)



= [ (2 − 0 − 1)−  (1 − 0 − 1)]1 =?

 Pr ( = 3)



=  (2 − 0 − 1) 1  0

Thus, in the general case, given the signs of the coefficients, only the

signs of the changes in Pr ( = 1) and Pr ( = ) are unambiguous. What

happens to the middle cell is unknown.

9.9 Truncation of data

Sometimes we cannot perfectly observe the actual value of the dependent

variable. If we only observe a subpopulation such as individuals with income
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above a certain level, then the data is said to be lower-truncated, in the sense

that we cannot observe people with income below that level in the sample.

Let  be a random variable which takes values between −∞ and ∞,
with  ( ) ≥ 0 and

Z ∞

−∞
 ( )  = 1. Suppose  is being lower-truncated

at  = , and we can only observe those  that are bigger than . Now

since we only observe   , Pr (  ) =
R∞


 ( )  1, so we have to

change the unconditional density function  ( ) into a conditional density

function  ( |  ) such that
R∞


 ( |  )  = 1 Recall the definition

of conditional probability that Pr (|) =  ( ∩)
 ()

. Let  be the event

that   , and  be the event that   

Pr (  |  ) =
Pr (   ∩   )

 (  )
=

R 

 ( ) R∞


 ( ) 



 ( = |  ) =
Pr (  |  )


=

 ()R∞


 ( ) 


Example 9.4: Suppose  is uniformly distributed in the [0 1] interval.

Since  ( ) = 1 and  ( ) =  , it is easy to find the unconditional prob-

ability Pr (  34) = 14. Suppose now we know that  must be greater

than 12, how will this affect our prediction for Pr (  34)?

Solution: Using the above rule

Pr

µ
 

3

4

¯̄̄̄
 

1

2

¶
=
Pr
¡
  3

4
∩   1

2

¢
Pr
¡
  1

2

¢ =
Pr
¡
  3

4

¢
Pr
¡
  1

2

¢ = 1
4
1
2

=
1

2


9.9.1 Moments of Truncated Distributions

Note that  ( ) is a weighted average of  ( |  ) and  ( |  ) since
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 ( ) =

Z ∞

−∞
  ( ) 

=

Z 

−∞
  ( )  +

Z ∞



  ( ) 

=

Z 

−∞


 ( )

Pr (  )
 Pr (  ) +

Z ∞




 ( )

Pr (  )
 Pr (  )

=

Z 

−∞
  ( |  )  Pr (  ) +

Z ∞



  ( |  )  Pr (  )

=  ( |  ) Pr (  ) + ( |  ) Pr (  ) 

This implies

min { ( |  ) ,  ( |  )}   ( )  max { ( |  ) ,  ( |  )} 

Since  ( |  )   ( |  ), we have

 ( | ≥ ) =

Z ∞



  ( | ≥ )  ≥  ( ) 

 ( |  ) =

Z 

−∞
  ( |  )  ≤  ( ) 

If the truncation is from below, the mean of the truncated variable is

greater than the mean of the original one. If the truncation is from above,

the mean of the truncated variable is smaller than the mean of the original

one.

Example 9.5: Find  (|  1) and   (|  1) if  () = exp (−),
  0, and compare them to their unconditional mean and variance.

Solution:
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 ( |   1) =

Z ∞

1

 ( |   1) 

=
1

1−  (1)

Z ∞

1

 () 

=
1

−1

Z ∞

1

 exp (−) 

=
1

−1

½
[− exp (−)]∞1 +

Z ∞

1

exp (−) 
¾

=
−1

−1
+
1−  (1)

1−  (1)

= 2   () = 1

  ( |   1) = 
¡
2 |   1

¢− [ ( |   1)]
2

=

Z ∞

1

2 ( |   1) − 4

=
1

1−  (1)

Z ∞

1

2 () − 4

= 

Z ∞

1

2 () − 4

= 

Z ∞

1

2 exp (−) − 4

= 

∙£−2 exp (−)¤∞
1
+ 2

Z ∞

1

 exp (−) 
¸
− 4

= 
£
−1 + 2× 2−1¤− 4

= 1 =   () .

9.9.2 Maximum Likelihood Estimation of the Trun-

cated Model

Consider the simple model

 = 0 + 1 +   
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Pr (  ) = Pr (0 + 1 +   ) = Pr (  − 0 − 1) = 1− (− 0 − 1) 

The Likelihood function is

 =  (1 = 1 2 = 2   = |1   2      )

=  (1 − 0 − 11|1  )  (2 − 0 − 12|2  )  ( − 0 − 1|  )

The Log-likelihood function is

ln = ln [ (1 − 0 − 11|1  )  (2 − 0 − 12|2  )  ( − 0 − 1|  

=

X
=1

ln  ( − 0 − 1|  ) =

X
=1

ln
 ( − 0 − 1)

Pr (  )

=

X
=1

ln  ( − 0 − 1)−
X
=1

ln [1−  (− 0 − 1)] 

First order conditions:

 ln

0
= −

X
=1

 0 ( − 0 − 1)

 ( − 0 − 1)
−

X
=1

 (− 0 − 1)

1−  (− 0 − 1)
= 0

 ln

1
= −

X
=1



 0 ( − 0 − 1)

 ( − 0 − 1)
−

X
=1



 (− 0 − 1)

1−  (− 0 − 1)
= 0

Exercise 9.12: Consider the truncated model

 = 0 + 1 +   

where  are i.i.d. with density function and distribution function

 () = exp (−)
and
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 () = 1− exp (−)
respectively.

(a) Show that Pr (  ) = exp (0 + 1 − ) 

(b) Suppose we have  observations of  and , find the log-likelihood

function.

(c) Find
 ln

0
and

 ln

1
. Discuss the identifiability of 0 and 1.

Exercise 9.13: Find  (|  1) and   (|  1) if  ∼  (0 1), and

compare them to their unconditional mean and variance.

9.10 Maximum Likelihood Estimation of the

Tobit Model

Sometimes data are censored rather than truncated. When the dependent

variable is censored, values in a certain range are all reported as a single value.

Suppose we are interested in the accommodation demand for a certain hotel.

If the demand is higher than the hotel’s capacity, we will never know the

value of actual demand, and the over-demand values are reported as the

maximum capacity of this hotel. We may also observe people either work for

a certain hour or not work at all. If people do not work at all, their optimal

working hour may be negative. However, we will never observe a negative

working hour, we observe zero working hour instead. Suppose the data is

lower-censored at zero.

 ∗ = 0 + 1 + 

 = 0 if  ∗ ≤ 0
 =  ∗ if  ∗

  0

 ∗ is not observable, we can only observe  and . To fully utilize
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the information, if the observation is not censored, we calculate the density

value at that point of observation  ( − 0 − 1). If the observation is

censored, we use the probability of observing a censored value Pr ( = 0).

Note that:

Pr ( = 0) = Pr (0 + 1 +  ≤ 0)
= Pr ( ≤ −0 − 1)

= 1−  (0 + 1) 

The likelihood function is

 =
Y
0

 ( − 0 − 1)
Y
=0

Pr ( = 0) 

The log-likelihood function is

ln = ln

"Y
0

 ( − 0 − 1)
Y
=0

Pr ( = 0)

#
=

X
0

ln  ( − 0 − 1) +
X
=0

ln [1−  (0 + 1)] 

First-order condition:

 ln

0
= −

X
0

 0 ( − 0 − 1)

 ( − 0 − 1)
−
X
=0

 (0 + 1)

1−  (0 + 1)
= 0

 ln

1
= −

X
0



 0 ( − 0 − 1)

 ( − 0 − 1)
−
X
=0



 (0 + 1)

1−  (0 + 1)
= 0

If  ∼  (0 2), and let  (·) andΦ (·) denote the density and distribution
functions of an  (0 1) respectively.

 ( − 0 − 1) =
1√
2

exp

Ã
−( − 0 − 1)

2

22

!
=
1




µ
 − 0 − 1



¶




9.10. MAXIMUMLIKELIHOODESTIMATIONOFTHETOBITMODEL253

 0 ( − 0 − 1) =
1

2
0
µ
 − 0 − 1



¶


 (0 + 1) =
1




µ
0 + 1



¶


 (0 + 1) = Φ

µ
0 + 1



¶


Then the log-likelihood can be rewritten as

ln =
X
0

ln
1




µ
 − 0 − 1



¶
+
X
=0

ln

∙
1− Φ

µ
0 + 1



¶¸


Example 9.6: Consider the model  = 0+1+. If the dependent

variable is upper-truncated at 1 and lower-censored at 2, for any 2 constants

2  1 ∞. Derive the log-likelihood function of such a model.

Solution: The likelihood function is given by

 =
Y
2

 ( − 0 − 1 |   1)
Y
=2

Pr ( = 2 |   1)

=
Y
2

 ( − 0 − 1)

Pr (  1)

Y
=2

Pr ( = 2)

Pr (  1)
.

where

Pr ( = 2) = Pr (0 + 1 +   2)

= Pr (  2 − 0 − 1)

=  (2 − 0 − 1)

and Pr (  1) = Pr (0 + 1 +   1)

=  (1 − 0 − 1) 
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The log-likelihood function is given by

ln =
X
2

ln
 ( − 0 − 1)

Pr (  1)
+
X
=2

ln
Pr ( = 2)

Pr (  1)

=
X
2

ln
 ( − 0 − 1)

 (1 − 0 − 1)
+
X
=2

ln
 (2 − 0 − 1)

 (1 − 0 − 1)


Exercise 9.14: True/False. Let  be a random variable, and  be a

constant, then

(a)   () ≥   (| = ).

(b)  (|  )   ().

Exercise 9.15: True/False/Uncertain.

(a) If we only observe a subpopulation such as individuals with income

above a certain level, then the data is said to be lower-truncated.

(b) If we only observe a subpopulation, such as individuals with income

above a certain level, then the data are said to be lower-censored.

(c) When the dependent variable is censored, values in a certain range

are all reported as single value.

(d) When the dependent variable is truncated, values in a certain range

are all reported as a single value.

(e) If  is a random variable which has an extreme value distribution

with density  () = exp (−) exp (− exp (−)) for −∞    ∞. Let

 = exp (−), then  ( ) = 1

(f). An extreme value distribution has the distribution function  () =

1− exp (− exp (−)) for −∞   ∞.
(g). For a random variable , we can have  (| ≤ 0)  0.


