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Chapter 1

Probability and Distribution
Theory

1.1 Revision of the Summation Operator

The summation operator ) has the following properties:

1. If k is a constant, then > k = nk;
i=1

2. If k is a constant, then > kxz; = k> x;

=1 =1
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Exercise 1.1:
(a) Compute

(1) 320 (i +4).



8 CHAPTER 1. PROBABILITY AND DISTRIBUTION THEORY

(i) 3o, 3.
(i) S0, D5 i
(iv) Y (x; —2)T

=1

(b) True/False.
). Y (x;—7) = 1.

5 n

1 =1

<.
—_

(ii). |

M=

-
I

(c) The daily return of a stock is defined as r, = In P, — In P,_, where
P, is the closing price of a stock on day ¢t. Extract the daily closing price of
HUIYUAN JUICE [01886] from yahoo finance for the period 31/8/2013 to

31/8/2014. Let 2/9/2014 be day 1. Find the sample mean 7 = = >, and
t=1

sample standard deviation s = \/ L5 (ry — 7)?, where n is the sample size.
=1

Definition 1.1: A random experiment is an experiment satisfying
the following three conditions:

(i) All possible distinct outcomes are known a priori.

(ii) In any particular trial the outcome is not known a priori

(iii) It can be repeated under identical conditions.

For example, tossing a coin and throwing a dice are random experiments.

Definition 1.2: The sample space S is defined to be the set of all
possible outcomes of the random experiment. The elements of S are called
elementary events.

For example, when tossing a coin, S = {H,T'}, elementary events are
H=head and T=tail.

When throwing a dice, S = {1,2,3,4,5,6}, the elementary events are 1,
2,3, 4, 5 and 6.

Definition 1.3: An event is a subset of the sample space. Every subset
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is an event. It may be empty, a proper subset of the sample space, or the
sample space itself. An elementary event is an event while an event may not
be an elementary event.

For example, when tossing a coin, the subsets of S are ¢, {H},{7T} and
{H, T}, where ¢ is an empty set. The event “H and T appear at the same

time” belongs to ¢.
Consider the sum of points in throwing two dices, the sample space is

S =1{2,3,4,5,6,7,8,9,10,11,12}

The event that the sum is an even number will be

E ={2,4,6,8,10,12} .

The event that the sum is bigger than 13 will be ¢, or a null event.

The event that the sum is smaller than 13 will be {2, 3,4,5,6,7,8,9,10,11, 12},

or equal the sample space.

Axiom 1.1: Kolmogorov Axioms of Probability

Let A be an event, then

(i)0<Pr(A4) <1,

(ii) Pr(S) =1,

(iii) Pr (AU B) = Pr (A) 4+ Pr(B) if AN B = ¢, where “U” is the union

of sets, meaning “or”. “N7” stands for intersection of sets, meaning “and”.
Example 1.1: For what values of k£ can

Pr(X =i)=(1-k)k

serve as the values of the probability distribution of a random variable with

the countably infinite range : = 0,1,2,...7

Solution: Since
(1) 0 < Pr(X =1i) < 1. Thus, 0 < (1 — k) k' < 1, which implies 0< k < 1.
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(ii) Pr(X=0orlor2or3or..)=1;
(iii) Since the event “X =i and X = 57 = ¢ for all i # j, we have

Pr(X=0orlor2or3or..)=Pr(X=0)+Pr(X=1)+..

Further, by using property (ii), we have
D Pr(X =i)=1,
i=0

oo

d(A-kE = 1,

1=0
(1—k)§:ki =1
=0

Thus, we rule out the cases where k = 0 and k£ = 1, since otherwise the
equality will not hold. Since £ is strictly bigger than zero and strictly smaller

than one, we have

1
1—k)—=1
-k
1=1.
Thus, any value of k& with 0 < k < 1 is a solution. [ |

Definition 1.4: The conditional probability of B occurring, given

that A has occu}r)re(dBis 4)
r N

Pr(B|A) = ———
r(Bl4) = —; @)

0. The result implies that

Pr(BNA)=Pr(B|A)Pr(A).

if P(A) #0. If Pr(A) = 0, we define Pr (B|A) =

For example, consider a card game, let A be the event that a “Heart”

appears, B be the event that an “Ace” appears.
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Pr(AceNHeart) 1/52 1
r (Ace|Heart) Pr (Heart) 13/52 13

Definition 1.5: Two events A and B are independent if and only if
Pr(ANB)="Pr(A)Pr(B),ie., Pr(B|A) =Pr(B).

The statement “if and only if” is different from “if’. When we say “A
if and only if B”, we mean “if A then B” and “if B then A” are both
true. Thus, “if and only if” is a formal definition. Therefore, if two events
are independent, we must have Pr (AN B) = Pr(A)Pr(B). If we known
Pr(ANB)=Pr(A)Pr(B), then A and B must be independent.

Exercise 1.2: Give two independent events and two dependent events.

Exercise 1.3: The Mark Six lottery is a lottery game conducted by
HKJC Lotteries Limited using the facilities of The Hong Kong Jockey Club.
Since its inception in 1975, the Mark Six has contributed over HK$24 billion
to the Hong Kong SAR Government Treasury and the Lotteries Fund, being
a fund that supports charitable causes in Hong Kong. To win the first prize
of the Mark Six, one needs to get 6 numbers correct out of a pool of 49
numbers indexed from 1 to 49. Suppose each number has the same chance

of being drawn,

(a) Find the probability of winning the first prize of the Mark Six.

(b) Suppose you have to bet 5 dollars for the first prize of 50,000,000
dollars. If there is only one first prize winner, find the expected gain (or loss)
of your game.

(c) Suppose Chinese people have preference over the "lucky" numbers 8,
18, 28, 38, and a large proportion of people like to put these numbers on
their Mark-Six tickets. Suppose the amount of money for the first the prize
is fixed, and has to be shared among winners. Should we avoid these "lucky"

numbers when buying Mark Six? Explain.
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Definition 1.6: A random variable X is a real-valued function of
the elements of a sample space. It is discrete if its range forms a dis-
crete(countable) set of real number. It is continuous if its range forms a con-
tinuous(uncountable) set of real numbers and the probability of X equalling
any single value in its range is zero.

Thus, the value of a random variable corresponds to the outcome of a
random experiment.

For example, tossing a coin is a random experiment, the outcomes are
represented by Heads and Tails. However, Heads and Tails are not real-value
numbers, thus Heads and Tails are not random variables. If we define X =1
if the outcome is Head and X = 2 if the outcome is Tail, then X is a random

variable.

1.2 Probability Distribution Function and Den-
sity Function

Let X, Y be two continuous random variables.

Definition 1.7: The probability distribution function of X is de-
fined as F, (u) = Pr(—oo < X <u), with F} (c0) = 1.

dF (z)

Definition 1.8: The density function is f (z) = y
T

0, and f (—o0) = f(o0) = 0.

, with f (2) >

Example 1.2: Let X be a random variable evenly distributed in zero-one

interval, then
Pr(X<0)=0 u<O0;
Pro<X<wu=u 0<u<l;
Pr(X>u)=0 u>1L1
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= u, 0<u<l

= 1, u>1

fw =0, u<0
— 1, 0<u<i1

= 0, u > 1.

Definition 1.9: The joint distribution function of X and Y is defined
as F'(z,y) = Pr(X <z and Y < y). Their joint density function is f (z,y).
The relationship between F'(z,y), f (z,y), f (z) and f (y) is:

F(z,y) = /y /If(s,t)dsdt,
faw) = goF ().
@) = /oof<:c,y>dy,

fly) = /°°f<x,y>das.

Further, F'(—o0, —00) = Pr(X < —oc and Y < —o0) = 0, F (00, 00) =
Pr(X <ooand Y <oo)=1, and f(z,y) > 0. X and Y are independent if
and only if f (z,y) = f () f (3).

Exercise 1.4: Suppose a continuous random variable X has density
function

f(x;0) =0x+0.5 for =1 <z < 1.

f (z;0) = 0 otherwise

(i) Find values of # such that f (z;6) is a density function.
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(ii) Find the mean and median of X.

(iii) For what value of @ is the variance of X maximized.

Exercise 1.5: Suppose the joint density of X and Y is given by:
f(z,y) =2 forx>0,y>0,z+y<1

f(x,y)=0 otherwise

Find

(i) Pr(X <fandY <
(i) Pr (X +Y > 3).
(iii) Pr(X > 2Y).

).

D=

Exercise 1.6: Let X be a discrete random variable with the probability

distribution as follows:

1
X = —1 with probability 3

1
X =1 with probability 3

Suppose we draw two observations, X; and X, independently from this

distribution. For the following Z variables, what are the possible values that

7 will take and what is the associate probability of each value?

(a) Z = X2.
X4

(b) Z = %

(c)Z=X

(d) Z = min{X;, X5}.

Exercise 1.7: Let X be a discrete random variable with the probability

distribution as follows:
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1

X = —2 with probability g;
1
X = 0 with probability 3’

1
X = 2 with probability 3

Suppose we draw two observations, X; and X, independently from this

distribution.

For the following Z variables,

X1+ X,
z=21T72
(a’) 2 )
(b) Z = X2+ X2;

What are the possible values that Z? What is the probability for each
possible value? (e.g., write it in the form Pr(Z = 0) = 0.5 and so on).

Exercise 1.8: Let X, Y be two independent identical discrete random
variable with the probability distribution as follows:

X = —1 with probability %

X =1 with probability %

Y = —1 with probability %

Y =1 with probability %

Find the distribution of Z if:

a) Z=X-Y.
X

b) Z ==

) Y

c) Z=max{X,Y}.

Exercise 1.9: If X and Y are two continuous random variables, then

X +Y must be continuous too. True or false? Explain.
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Exercise 1.10: Let X be a random variable with a symmetrical distrib-
ution about zero and a finite variance. Give a random variable Y such that

X and Y are uncorrelated but not independent.

1.3 Mathematical Expectation

Definition 1.10: The first moment, mean or expected value of a

random variable X, is defined as:

E(X)= inP (x;)  if X is discrete

E(X)= / xf (r)dx  if X is continuous

It has the following properties: For any random variables X, Y and any
constants a, b.

(i) E(a) = a;

(ii) E (B (X)) = E(X):

(1ii) E (aX) =aFE (X);

() E(aX +bY)=aE (X)+bE(Y).

Other measures of central tendency are the median, which is the value
that is exceeded by the random variable with probability one-half, and the

mode, which is the value of = at which f () takes its maximum.

Exercise 1.11: True/False/Uncertain. Explain.
1 1
——E(=).
w575 (x)
X
(b) Let X and Y be two independent random variables, if £ (?> > 1,

S
s
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Definition 1.11: The second moment around the mean or vari-

ance of a random variable is
Var(X)=E(X —E(X))?=E(X?)-E2(X) =Y (z; — E(X))* P (x;)

%

if X is discrete. .

Var (X) = / (z — E(X))? f (x) dz if X is continuous.

It has the foﬁgowing properties: for any random variables X, Y and any
constant a,

(i) Var (a) = 0;

(i) Var (aX) = a®*Var (X);

(i73) Var (X £Y) = Var (X)+ Var (Y)£2Cov (X,Y) if X and Y are
not independent;

(vi) Var (X £Y)=Var(X)+ Var(Y) if X and Y are independent.
Note: Var (X —=Y) # Var (X) —Var(Y)!

Definition 1.12: The covariance of two random variables X and Y, is
definedas Cov (X, Y)=E(X -EX))(Y -E(Y))=E(XY)-E(X)E(Y),
where

E(XY)=> 2y Pr(x;,y;) if X and Y are discrete.

E(XY)= / / xyf (z,y)dxdy  if X and Y are continuous.
E(XY)=FE(X)E(Y)if X and Y are independent, i.e., if X and Y are

independent, C'ov(X,Y’) will be equal to zero. However, the reverse is not

necessarily true.

Example 1.3: Let X, Y, and Z be three random variables, if Cov (X, Z) #
0 and Cov (Y, Z) # 0, then Cov (X,Y) # 0. True/False/Uncertain. Explain.

Solution: The statement is false. Consider the following counter exam-
ple:

Define Z7 = X + Y where X and Y are defined to be independent and
Var(X) and Var(Y) # 0.
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Cov(Z,X) = Cov(X+Y,X)
= Cov(X, X) + Cov(Y, X)
= Var(X) #
Cov(Z,Y) = Var(Y) # 0 similarly.
Cov(X,Y) = 0 (given)

(Note that independence of X and Y implies Cov(X,Y) =0.) |
Definition 1.13: The correlation coefficient between X and Y is

defined as:

- Cov(X,Y)
Y \/Var (X)Var (Y)

Example 1.4: Prove that for any two random variables X and Y, —1 <
Pay < 1.

Solution: For any random variables X and Y, and any real-valued con-

stant ¢, we have

Var(tX +Y)
Var (tX)+2Cov(tX,Y)+Var(Y) > 0
Var (X)t* +2Cov(X,Y)t +Var(Y) > 0.

Y
o

since the variance for any random variable is positive.

Consider the solution of a quadratic equation in ¢,

at> + bt +c¢=0.
The solution is

—b+ Vb? — 4dac.

t* =
2a
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There will be two solutions if b*> — 4ac > 0, 1 solutions if b* — 4ac = 0,
and no solution if b?> — 4ac < 0.

In our case, a = Var (X) >0, b=2Cov(X,Y), c=Var(Y).

Since for any value of ¢ the function at? + bt + ¢ > 0, it means at? + bt + ¢
never cross the X-axis, so there is at most 1 solution of t such that at?>+bt+c =
0. When at? + bt + ¢ > 0, there is no solution.

Hence, we have b?> — 4ac = 0 or b — 4ac < 0.

It implies that b* — 4ac < 0, or

(2Cov(X,Y))? —4Var (X)Var (Y) <0

— (Cov(X,Y))> < Var (X)Var(Y)

(Cov(X,Y))? <1
Var(X)Var(Y) —
1 Cov(X,Y)
~ Var (X)Var(Y) ~

—

Exercise 1.12: The daily return of a stock is defined as r;, = In P, —
In P,_1, where P, is the closing price of a stock on day t. Extract the daily
closing price of [5] Hong Kong Bank and [11] Hang Seng Bank from yahoo
finance for the period 31/8/2013 to 31/8/2014. Let 2/9/2013 be day 1. Let
ruspc: Tuspe be the daily return of Hong Kong Bank and Hang Seng Bank
from 2/9/2013-31/8/2014 respectively.

(a) Plot (rgspet, russt) on the X-Y plane.

(b) Calculate the sample variance of rgspc: and rysp.t,

(c) Calculate the sample covariance of ryspc: and ryspy
n

(= %Z (russet —Tusee) (russ: — Tase) and the sample correlation co-
=1
efficient.

Exercise 1.13: Let X, Y, W, and Z be random variables, and a, b, ¢, d

be constants. Show that:
(a) Var (aX +¢) = Var (—aX — d).
(b) Cov (aX,bY) = abCov (X,Y).
(c) Cov (X, X)=Var(X).
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(d) Cov (aX +0Y,cW +dZ) = acCov (X, W)+adCov (X, Z)+bcCov (Y, W)+
bdCov (Y, 7).

Suppose W =3+ 5X, and Z =4 — &Y.

(e) Is p,, = 17 Prove or disprove.

(f) Is p,,. = p.,? Prove or disprove.

Exercise 1.14: True/False/Uncertain. Explain. Let X be a random
variable, then
(a). Cov (Var(X),X)=0.

(b). E(Var(X)) =Var(X).
(c). E(Var(X))=Var (E(X)).
(d). Var( 1( ))201

(¢). Var (Y) Var(X)

Exercise 1.15: True/False/Uncertain. Explain. Let X and Y be two
random variables.
(a) If Cov (X?,Y?) =0, then Cov (X,Y) = 0.
(b) If X and Y are independent, then Cov (X?,Y?) > Cov (X,Y). True/False/Uncertain.
Explain.
(c¢). If X is symmetrical about zero, W = X, and Z = %, then
Cov (W, Z) = 1.
(d). If X and Y are dependent, let W = XY, then Cov (W, X) =
E(Y)Var(X)

Exercise 1.16: A Poisson random variable X has the following distrib-

ution

-2\ J
Pr(X =)= =
where jl=j(j—1)(j —2)...1.
(a) Graph the distribution of X for j = 0,1,2,3,4.
(b) Find the mean of X.

(c) Find the variance of X.

i=0,,1,2, ...
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1.4 Special Probability Distributions

1.4.1 Uniform Distribution

X ~ U (0,1) means X is evenly distributed in the interval [0, 1], its density

function is defined as:

f@) =1 forzel0,1];
fx)y =0 elsewhere.

F(x) =0 for x < 0;
F(r) = 2 forze(0,1);
F(zx) =1 for z > 1.

2 1 1
Var (X) = E(XQ)—EQ(X):E(XQ)—(%) :/0 fo(x)dx—i:/o xde—i
71 111
- |5 -i5-11

Exercise 1.17: If X ~ U (0, 1), find (i) Pr (X < 0);(ii)Pr (X < 1);(iii)Pr (X > 0);(iv)
Pr(X <0.5);(v) Pr(X > 0.7);(vi) Pr(0.4 < X <0.8);(vii) Pr(X =0.8).

Note that the area under the density function has to sum up to 1, so if
we have a random variable which is uniformly distributed between 1 and 3,
ie., if X ~ U (1,3), then its density function is

flx) = % for x € [1,3];
0

elsewhere.
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The distribution function will be

F(x) =0 for v < 1,

F(x) = ! for z € (1,3);

F(zr) =1 for x > 3.

Exercise 1.18:

(a) If X ~ U (1,2), find (i) f (z); (ii) F (z); (iii)) £(X); (iv) Var (X).

(b) If X ~ U (a,b), where a < b, find (i) f(z); (ii) F (x); (ili) £ (X);
(iv) Var (X).

1.4.2 Normal Distribution

The normal distribution is the most commonly used distribution, many vari-
ables in the real world follow approximately this distribution.

A random variable which follows a normal distribution with mean ;. and
variance o2 can be expressed as X ~ N (i, 0?). Its density function is defined

as:

Exercise 1.19:
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(a) If X ~ N (1,4), find (i) Pr (X < 0);(ii)Pr (X < 1);(iii)Pr (X > 0);(iv)
Pr(X < —1);(v) Pr(X >2);(vi) Pr(1 < X <3);(vil) Pr(X =1).

(b) If two normally distributed random variables are uncorrelated, then
they are independent. True/False/Uncertain. Explain.

(c)Let ruspes rusps and rpw, be the daily return of [5] Hong Kong
Bank, [11] Hang Seng Bank and [13] Hutchison from 2/9/2013-31/8/2014
respectively.

(i)With the help of computer, plot the histograms of ryspc: rmsp: and

THWt-
(ii) From visual inspection, are they normally distributed?

1.4.3 Standardized Normal Distribution

X _
If X ~ N (u,0?), then Z = E follows N (0,1). Tts density function is
o
defined as:
P = o= (-5 <<
z) = exp | —=2° |, —00< 2z <00,
V2 P2

Example 1.5: If X ~ N (3,4), then Z = follows N (0,1).

1-3 _ X—-3 5-3
< <
2 ~ 2 ~ 2
= Pr(-1<Z<1)~067.

Prl1<X<5) = Pr(

Exercise 1.20: If X ~ N (0,1), find (i) Pr (X < 0);(ii)Pr (X < 1) ;(iii)Pr (X > 0);(iv)
Pr(X < —1);(v) Pr(X >2);(vi) Pr(1 < X <3);(vil) Pr(X =1).

Exercise 1.21: Let Z;, Z, be independent N (0, 1) random variables, let

U =min{Z,,max {7y, Z>}}.

(a) What is the distribution of U?
(b) Find E (U) and Var (U).
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Exercise 1.22: Let Z be a N (0,1) random variable

(a) Write down the distribution of Z2.
(b) Given that Var (Z?) = 2, find E (Z4).
(c) Are Z and Z?% uncorrelated? Explain.

1.4.4 The Lognormal Distribution

When we study the relationship between a person’s IQ score and his income,
we find that they are positively correlated. A person with a higher IQ score
usually makes more money than a person with a lower IQ score. 1Q scores are
approximately normally distributed, while the distribution of income skews
to the right and has a long right tail. Thus, it appears that IQ score and
income do not have a linear relationship. We use the lognormal distribution
to approximate the distribution of income. The lognormal distribution is
defined as follows:

If X ~ N (u,0%), and X = InY, or equivalently Y = exp (X), then Y
follows a lognormal distribution.

Its density function is:

1 1 lny—u)2
= exp [ —= , for 0 <y < o0,
/() o p( 2( = y

Distribution of Y when InY is N(0,1).
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Thus, if X is the I() score, Y is the income of an individual, then we can
treat X as a normally distributed random variable and Y as a lognormally

distributed random variable.

Exercise 1.23: If X ~ N (0,1), X =InY, find (i) Pr (Y < 0);(ii))Pr (Y < 1)
;(ili)Pr (Y > 0);(iv) Pr (Y < —1);(v) Pr(Y > 2);(vi) Pr(1 <Y < 3);(vii)) Pr(Y =1).

1.4.5 Chi-square Distribution

Chi-squared distribution
If Z ~ N (0,1), then Z? follows a Chi-squared distribution with 1 degree

of freedom.

Example 1.6: If Z ~ N (0,1), then U = Z? follows x3.

Pr0<U<1)=Pr(-1<7<1)~0.67,

Pr0<U<4)=Pr(-2<7<2)~0.95,

Pr(0<U<9)=Pr(-3<27<3)~0.99.

Thus, a Chi-squared random variable must take non-negative values, and
the distribution has a long right tail.

If Zy,Zs, ..., Z) are independent N(0,1), then U = ZZ + Z2 + ... + Z}
follows chi-squared distribution with k& degrees of freedom, and we write it
as x3.

The mean of a chi-squared distribution equals its degrees of freedom. This

is because

E(Z*)=Var(Z)+ E*(Z)=1+0=1,

and thus

EWU)=E(Z}+Z;+ ..+ Z}) =k

It density function of U is
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T e
flu) = == 0<u<oo

26121 (k/2)’
fw) =0 elsewhere

where I'(n) = (n—1)T(n—1),T'(1) =1 and I' (3) = /7.
A Chi-square random variable must take non-negative values, and the

distribution has a long right tail.

Chi-square distributions with d.f.=1, 3.
Exercise 1.24: If Z ~ N (0,1), U = Z?, find (i) Pr (U < 0);(ii)Pr (U < 1)
;(1i1)Pr (U > 0);(iv) Pr (U < =1)5(v) Pr (U > 2);(vi) Pr (1 < U < 3);(vil) Pr (U = 1).

1.4.6 Exponential Distribution

For # > 0, if the random variable X has an exponential distribution with

mean ¢, then X has the following density function.

1
f(x) = 5671/9, 0<z<o0
0

elsewhere

Note that a chi-squared distribution with degrees of freedom equal 2 is

identical to an exponential distribution with 6 = 2.
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Exercise 1.25: If X is an exponential distribution with mean 2, find (i)
Pr (X < 0);(ii)Pr (X < 1);(iii)Pr (X > 0);(iv) Pr (X < —1);(v) Pr(X > 2);(vi)
Pr(1 <X <3);(vil) Pr(X=1).

1.4.7 Student’s t-Distribution

If Z~ N(0,1), U ~x2, and Z and U are independent, then:

Z
NEL
has a t-distribution with k& degrees of freedom.
The t-distribution was introduced by W. S. Gosset, who published his

work under the pen name “Student”. The density function of the t-distribution

with degrees of freedom k is given by

t-distributions with d.f.=1,10.
The t-distribution has a thicker tail than the normal distribution. When

the degree of freedom goes to infinity, that is when k& — oo, the t-distribution
becomes a standardized normal distribution.

This is because as k — 00, the random variable

U ZB+7Z3+ .+ 72}
ko k
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which is the sample average of Z2, (i = 1,2, ...k) will converge to the true

mean of Z?2, i.e., E(Z?). Since E (Z?) = Var (Z;)+ E*(Z;)=1+0=1, we

have

2 2 2
2221+Zz+---+Zk_)1‘
k k
Thus,
Z Z
t=——>—==2Z~N(0,1).

Uk V1
Hence, a t-distribution with degrees of freedom infinity is a standardized
normal distribution. You may check the t-table to see if those critical values
for large degrees of freedom are close to the critical values from a N (0,1)
table.

Exercise 1.26: If the random variable ¢ has a t-distribution with de-
gree of freedom 5, find (i) Pr (¢ < 0);(ii)Pr (¢ > 0.267) ;(iii)Pr (¢ > 0.727) ;(iv)
Pr(t <1.476);(v) Pr (¢t > 2.015) ;(vi) Pr(2.571 < t < 3.365) ;(vii) Pr(t = 1).

1.4.8 Cauchy Distribution

Let Z; and Z5 be independent and follow N (0, 1), then the ratio

_4
-7

will have a Cauchy distribution. A Cauchy distribution is a t-distribution

R

with 1 degree of freedom.

Its density has the form:

1

=— — 00 < T < 00.
7(1+a?) osEe

f(x)

For most distributions, the mean and variance are finite. However, the
mean and variance of a Cauchy distribution do not exist. In other words,

when we draw a sample of size n from a Cauchy distribution, the sample
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average will not converge to a constant no matter how large the sample size

is.
Exercise 1.27: If the random variable R has a Cauchy distribution,

find (i) Pr (R < 0);(ii)Pr (R > 0.325) ;(iii)Pr (R > 1) ;(iv) Pr (R < 3.078) ;(v)
Pr(R > 6.314) ;(vi) Pr(12.706 < R < 31.821);(vii) Pr(R=1).

1.4.9 F-Distribution

If U~ 2 and V ~ x2, and if U and V are independent of each other, then

_U/m
F_V—/n

has an F-distribution with m and n degrees of freedom.

Note that:

F(1,k)=1t.

The density function of the F-distribution with degrees of freedom (m, n)

is given by
NG LT e
f@)==—~2F~(— 257 (1425 for 0 <z < o0,
F(g)f‘(i) (n) ( n )
and

f(x)y=0 forx<0.
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F-distributions with d.f.=(1,1) and (3,4).
The F-distribution was named after Sir Ronald A. Fisher, a remarkable

statistician of this century.

Example 1.7: Let Zi,..., Zy, Z;+1 be independent N (0,1) random

variables, let

U=Z34+Z3+ 72+ ..+ 2} |+ 7}
(a) What is the distribution of U? Find F (U).
Z 72
(b) What are the distributions of ——— and £+

VO " T

(c) If we define another random variable V = U — Z7,, , then V must

have a Chi-square distribution with degrees of freedom k£ — 1, true or false?

Explain.

Solution:
(a) U~ X3

EU) = BE(Z}+Zi+..+7})
= E(Z)H+B(Z3)+ ..+ E(Z})

= 14+1+...+1 since E(Z2) = Var(Z) + [E(Z)]? fori=1,2,...

= k. -
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2

. . Zk+1 Zk+1
b) Since Z; 1 and U are independent, ~ t; and ~ F(1,k). &

(c) This statement is false. It is possible that Z7, , > U and hence V < 0.

Since, as we know, chi-square distribution should be positive, V' does not

have a chi-square distribution. [ |

Exercise 1.28: If the random variable F' has a F-distribution with de-
grees of freedom (1, 5), find (i) Pr (£ < 0);(ii)Pr (£ > 0.071289) ;(iii)Pr (F' > 0.528529) ;(iv)
Pr(F < 2.178576) ;(v) Pr (F > 4.060225) ;(vi) Pr (6.610041 < F' < 11.323225) ;(vii)
Pr(F=1).

Exercise 1.29: Let Z;, Z> be independent N (0,1) random variables,
and let

Z
U = =~
Zy’
V - Z1Z2.

(a) Write down the distribution of U.
(b) Is the distribution of V a x3? Why?

Exercise 1.30: For k > 4, let Z,..., Z) be independent N (0, 1) random

variables, and let

U=22+72+ 72,

V=Z;+Z2+Z+..+ Z; 1+ 7}
(a) What are the distributions of U and V? Find E (U) and E (V).

(b) What is the distribution of % ? Find E (%) and
EUV).

Exercise 1.31: True/False.
(a). A Cauchy distribution is a t-distribution with 1 degree of freedom.
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(b). A Cauchy distribution is special case of uniform distribution.

(c¢) An F distribution is a t-distribution with 1 degree of freedom.

Exercise 1.32: Let X be a discrete random variable with the probability

distribution as follows:
) . 1
X = 2" with probability on forn=1,2,3,....

(a) Find E(X).
o i (1) ant v (2

Exercise 1.33: True/False/Uncertain. Explain.

(a). (Z (2: — 7) y) <Y (@-7 L w7

(b). Let X,Y and Z be three random variables, then

Cov(XZ,YZ))=ZCov(X,Y)).

(c). If two random variables X and Y are independent, then Cov (X?,Y?) =

(d). The Central Limit Theorem states that the sample average has a

uniform distribution when sample size is large.
Exercise 1.34: Suppose you are invited to play a game of coin flipping.
The possible outcomes are {H, T}. If H appears in the n'* trial (n = 1,2, ...),

your payoff is HK$ 2" and the game stops. Let X be your payoff. It is a

discrete random variable with the probability distribution as follows:
. e 1
X = 2" with probability on forn=1,2,3,....

(a) What is the expected payoff E(X) of this game?
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(b) Suppose you need to pay an amount of money M in order to play this
game. Suppose you will play the game as long as the E(X) > M, should
you play the game if (i) M =HK$ 2 and (ii) M =HK$ 2 million?

(c) In reality, will you play this game, assuming that there is no budget

constraint problem.

(d) Suppose your utility (or happiness) of having X dollar is U(X) =
log X, i.e., your have a diminishing utility in money. Suppose you do not

have any money to begin with. Show that your expected utility F(U(X)) of
1
this game is E(U(X)) =7, o log 2™.

(e) Show that E(U(X)) =log4 < cc.

(f) Suppose you will play the game as long as the E(U(X)) > log M, will
you play the game if (i) M =HKS$ 2 and (ii) M =HK$ 2 million? Explain.

Exercise 1.35: Suppose X ~ N(0,1). We define a new random variable
Y, where

Y=1-X ifX>0

and

Y=-X ifX<O0.

(a) Find Cov(X,Y).
(b) Does Y takes continuous or discrete values?

(c) Let Z = X + Y, what values will Z take? What is the associated

probability for each value? Is Z a discrete or a continuous random variable?
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(d) Find Cov(X, Z2).

1.5 More Demanding Material

Theorem 1.1: (Chebyshev’s Inequality) If X is any random variable

with finite variance o2 and k is a finite positive constant, then
1
Pr(|X —pu| > ko) < =k

Proof. (for continuous random variable)

2= [ @-w i@

—0o0

> [Te-wrwans [T eowi@a

—0o0 utko

> / 0 f () de / T R0 () da

—00 utko

= K*0*P(X < p— ko) +K*0*P (X > p+ ko)
= Ko*P (X —p| > ko),

this implies
1
P(|X = p Zka)ﬁﬁ-.

Theorem 1.2: (Jensen’s Inequality) Let ¢ : R — R be a convex
function on an interval B C R and let Z be a random variable such that
P(Z e B)=1. Then g(E(Z)) < E(9(2)).

Proof. (exercise)

Example 1.6: Let g (z) = |z|. It follows from Jensen’s inequality that
|E(Z)| < E|Z].

Example 1.7: Let g(z) = 2% Tt follows from Jensen’s inequality that
E?(Z) < E(Z?%).
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Theorem 1.3: For random sample of size n from an infinite population
which has the value f(z) at x, the probability density of the r** order
statistic Y, is given by

o) = =y [ @] o [T rwa

fory; < ... <y, <. <y
Proof. Suppose we divide the real line into 3 intervals, (—oo, y.], (¥, y, + h]
and (y, + h, 00), then the probability that » — 1 of the sample values fall into
the first interval, one falls into the second interval, and n — r fall into the

last interval is

Pr(y, <Y, <y.+h)
n!

= ToOmm o P X Sl T Py <X <yt B [Pr(X > g+ R

1
Let h — 0 and use the facts that lim;_.g 7 Pr(y. < X <y, +h)=f(y.)

1
and liInh—>0 E Pr (yr < Y;“ S Yr + h) =g (yr>> we have

o) = e [ [t @] s [[Trwa]
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Chapter 2

Matrix

2.1 Vectors

Definition 2.1: Letting z; denote the it observation where i goes from 1

to n, the n x 1 vector x is represented as

a1
X2
X =
Tn
Definition 2.2: The transpose of x is defined as x’ = ( Ty Ty o Ty > :

The vector x with n elements represents, geometrically, a point in the
n-dimensional Euclidean space. Note that, if the x-y axis rotates, the cor-

responding value of a vector may change. For example, consider a vector

4
X = . If the x-y axis rotate anti-clockwise such that the original point

5
fall into the new x-axis, then the new vector will be read as ( 0 ) :

Definition 2.3: The inner product of two k by 1 vectors x and y is

37
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n
/ y2 -
xyz(ml Ty - mn> . :x1y1+$2y2+~-+xnyn:inyi-
: i=1
Yn

Definition 2.4: Two k by 1 vectors x and y and perpendicular (or called

orthogonal) if X'y = y'x = 0.

=

Definition 2.5: The length of a vector x is defined as L, = (x'x)? =
Vvl +ag+- 4l

The sum of two n x 1 vectors can be defined as

x1 (1 T1+ U
T2 Y2 To2 + Y2
xty=1 . |t . | = :
Two vectors x and y are linearly dependent if for some non-zero constants
a and b,
ary + by, 0
are +0b 0
ax + by = ? ] Sl | =0.

ax, + by, 0

Exercise 2.1: Plot the following x and y vectors. Are x and y orthogo-

nal? Are x and y linearly dependent?

1 0 1 1
(a) x = Y = ;(b)X=<1>, =<_1>;

_ = O~ o
<
Il

N = O N
2
"
Il
N
_ =
N~
<
I
N
LoL
~_
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Exercise 2.2: et x=| 2 |,y = 6 |. Find
12

(a) X" and y’.

(b) L, and L,

(c)x+y

(d) x'y and y’x. Are x and y orthogonal?

(e) Are x and y linearly independent.

Exercise 2.3: Consider the P/E and dividend of the following stocks as
of 14/9/2011.

4 19 267]
Wharf Holding Swire Pacific A Citic Pacific

P/E 3.32 3.79 5.70

Dividend(%) 2.32 3.63 3.24

(a) Treat the data as three 2 x 1 vectors, plot the three vectors (using
P/E as the x-axis and Dividend as the y-axis).

(b) Now treat the data as two 3 x 1 vectors called PE and Dividend.
Let

1
h = 1
1

)

1
x = PE- N (PE)h
y = Dividend — %h’ (Dividend) h.

(i) Find h’'PE. Are h and PE orthogonal to each other?

(ii) Find h'Dividend. Are h and Dividend orthogonal to each other?
(ili) Find h'x. Are h and x orthogonal to each other?

(iv) Find h'y. Are h and y orthogonal to each other?
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2.2 Matrix

Definition 2.6: A n x k matrix X is defined as

T11 L1z - Tik

To1 Tz -+ T2k
X =

Tpn1 Tp2 - Tnk

If n = k, the matrix is called a square matrix.

Definition 2.7: The transpose of X is defined as

X111 T12 - Tk T11 T21 -+ Tnl
X! T21 L22 T2k Ti2 T22 - Tp2
Tp1 Tp2 - Tpk Tk T2k -+ Tnk

Definition 2.8: The determinant of a 2 by 2 matrix X = ( Z ccl > is

written as | X| and is equal to ad — bc.

The determinant of a k& by k matrix is more complicated. One may
calculate it with the help of a computer. This note will use 2 by 2 matrices

as examples for simplicity.

For two k by k matrices X and Y, the determinant has the following
properties:

(a) |X] = 7).

(b) If there is a zero row or zero column in X, then |X| = 0.

(c) If any two rows (columns) are linearly dependent, then | X| = 0.

(d) The determinant of XY equals the product of their determinants, i.e.,
[ XY|=[X[[Y].



2.2. MATRIX 41

Definition 2.9: The trace of a square matrix, written as tr(X), is the
sum of the diagonal elements. In the above 2 by 2 matrix, tr(X) = a + d.
For k by k matrices X and Y, the trace has the following properties:
(a) tr(X) =tr(X").
(b) tr(X £Y) =tr(X) £tr(Y).
(0) tr(XY) (Y X).
(d) tr(Y1XY) =tr(X) .
(e) For any constant ¢, tr(cX) = ctr(X).

Exercise 2.4: True/ False. Explain. For a k by k matrices X and Y,
HIX +Y[=[X[+[Y].
(i) tr(XY)=tr(X) xtr(Y).

Hint: If the statement is true, prove it mathematically. If the statement

is false, give a counter example.

1 2 2 2 31
Example 2.1: Let X = , Y = .
3 45 6 0 1

Find

(a) X’ and Y.

(b) X +Y.

(c) XY, V'X. XY’ and Y X'

(d) Are x and y linearly independent.

Solution:
1 3 2 6
() X'=| 2 4 | and Y’ 30 |;
2 5 11
3 5 3
(b) X +Y = :
9 4 6
L3 2 31
() X'Y=| 2 4 ( >
6 0 1
25
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I1x24+3%x6 1x34+3x0 1x1+3x1 20 3 4
=] 2x244%x6 2x34+4x0 2x14+44x1 | =] 28 6 6 |;
2X245%x6 2x3+5x0 2x1+5x1 34 6 7
2 6 20 28 34
1 2 2 ,
Y'X=1]30 = 3 6 6 = (X'Y);
3 4 5
11 4 6 7
1 2 2 20 10 8
XY’ = 30 |= :
3 45 23 23
11
2 31 L3 10 23
YX = 2 4 | = = ( y/)/
6 0 1 5 & 8 23

. 1 2 2 3 .
Exercise 2.5: Let X = Y = . Find
3 4 6 0

(a) X’ and Y.

(b) X +Y.

c) XY, Y'X. XY and Y X"
()

Definition 2.10: The row (column) rank of a matrix is the maximum

number of linearly independent rows (columns).

1 2
Example 2.2: Both the row rank and column of ( 5 4 ) is 1.

Definition 2.11: A 2 by 2 symmetric matrix is of the form X =

b
< Z ) . It has the property that X’ = X.
c
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0
Definition 2.12: A 2 by 2 diagonal matrix is of the form X = < g ) .
c

10
Definition 2.13: A 2 by 2 identity matrix is defined as [ = ( 01 > :

Exercise 2.6: X'X = [ if and only if X = I. True or False? Explain.

Definition 2.14: The inverse of a square matrix X is denoted as X !,
it has the property that X 'X = X X1 =T,

b
How to find the inverse of an matrix? Consider X = ( “ ) , and

c d
y=X1= 4 B )
C D

XY — a b A B B aA+bC aB+bD - 10
\ecod c D) \cA+dc eB+dD )] =~ \o0 1/’

We have four equations four unknowns.

aA+bC =1,
cA+dC =0,
aB+bD =0,
cB+dD =1.

Multiply the four equations by c, a, d , b respectively, we have

acA + beC = ¢,
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acA+ adC =0,
adB + bdD = 0,
bcB + bdD = b.

The first equation minus the second, and the third minus the fourth, we

have

(bc —ad) C' = ¢,

(ad — bc) B = —b.
Then we solve

—b

B—__°
ad — bc’

—c
C = :
ad — be

Using equations 2 and 3, we also have

—d d
A="Co-_2_

c ad — bc’

a a
D__ZB_ad—bc‘

Thus, the inverse of X is equal to
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(b) A matrix whose determinant equals zero does not have an inverse.

Example 2.3: Consider a regression model

Yi = By + 81 X1 + BaXoi + 1,

We have the following data

Define
1 an
1

X = T12
1 13
1 T14

and

1=11=2 1=3
T21 1 31
T929 . 11 2
To3 123 |
Toq 1 0 4
Bo
/6 — 61 , U —
e
Y = X3+ U.

1 =4

Ot =~ O

Uy
Uz
Uus

Uy

Y1 2
v | |1
Ys HENS
Ya 5

The least squares estimator for 3 is obtained by to minimizing > u? =
ming U'U = ming (Y — X3)' (Y — Xf3) . The first-order condition is

and we have

X' (Y -=XB)=0
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B=(X'X)"XY.
Thus, we need to find the inverse of X’X. Note that

131

1111 4 6 10
, 11 2

X'X=|3120 = 6 14 11
12 3

1234 10 11 30
10 4

For a 3 by 3 matrix, the inverse can be calculated by a computer program,

we have
-1 299 3 37
1 4 6 10 2 2 &
! -t _ _ 35 5 4
(X'X)" =16 14 11 = - 3 2
37 4 5
10 11 30 = 3
Bo
B = 3, | =(xX'X)"' XY
By
L —n = 1111 ’ —1
36 18 18 1 2
_ 35 5 4 _
= -3 3 2 3120 L | = 1
37 4 5
- 4 3 1 2 3 4 - 2

Note: The inverse of a 3 by 3 matrix A is complicated. If A is symmetric
a b c
of thefoom A= | b d e |, then

c e f

. e2—df bf —ce cd—be
Ail:fb2—26bc+dc2+a62—adf bf —ce 2 —af ae—bc
cd —be ae—bc b*—ad

In particular, if b = ¢ = e = 0, then A is a diagonal matrix of the form
a 0 0 al 0 0
A= 0 d 0 |and A7! = 0 dt 0
00 f 0o o [
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Definition 2.15: A square matrix is orthogonal if X1 = X"

An orthogonal matrix has the following properties:

(a) X'X = 1.

(b) The columns are vectors with length equal one and are mutually

perpendicular.

b
Let X = ( “ i ) be an orthogonal matrix, then
c

2, 2
xx—[®¢ a b _ [ @ +e ab + cd (1! 0 .
b d c d ab+cd b*+ d? 01

A 2 by 2 orthogonal matrix must satisfy the followings.

al+c*=1.
ab+ cd = 0.
v+ d* = 1.
. 4 3 4
The are many solutions. For example, a = = b=c= = d= —x satisfy
4 3
the above conditions. Therefore, X = ( g 5 4 ) is an orthogonal matrix
5 5

e ot
I e[V
(SN
\_/
|
<

[S1] [SUIN] I
| ulw
(SN
N——
I
-
Il

since X! = (

Exercise 2.7:
10
(a) Verify that I = ( 01 ) is an orthogonal matrix.
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-1 1 1 1
1 -1 1 .
(b)Is X = = L1 . an orthogonal matrix?
1 1 1 -1

4 3
UX={235 ° | findX?>=XX and X'

5 5

. a b e
Definition 2.16: Let X = J be a 2 by 2 matrix, its eigenvalues
c

can be found by setting the determinant of (X — A\I) to zero. i.e.,
a b A0
_ =0,
c d 0 A
a— A\ b
c d—A

(a—A)(d— M) —bc=0,
N —(a+d) A+ ad—be=0.

The solutions are:

)\1:%<a—l—d+ \/(a+d)2—4(ad—66)),

)\2:%(@+d—\/(a+d)2—4(ad—bc)).

The roots can be simplified to

1
M= <a+d+ (a—d)2+4bc),

Note that the eigenvalues may not be real numbers. The eigenvalues of
a matrix has many nice properties.

(1) The determinant of a 2 by 2 matrix is A;As.

(2) The trace of a 2 by 2 matrix is equals to A\; + As.

In our case
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MAy = %(a+d+ (a—d)2+4bc)%(a+d— (a—d)2+4bc)
1
= 1((a+d)2—(a—d)2+4bc)
= ad — be.

/\1+)\2:a+d.

In general, for a k by k£ matrix
(1) The determinant is A\ Ag... Ag.
(2) The trace of a 2 by 2 matrix is equal to Ay + Ay + ... + Ag.

6 2
Example 2.4: Find the eigenvalues of A = ( 5 3 )

Solution:

6-2NB-A)-2(@2)=0,

A —9\+ 14 = 0.

A = % (9 + \/(—9)2 —4(1) (14)) 7.

Ao = % (9 — (=97 — (1) (14)> _

(1) The determinant of A is A\j Ay = 14.
(2) The trace of Ais equal to A\; + A2 = 9.
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Definition 2.17: Let A be a k by k£ matrix and A be its eigenvalue. If x
is a nonzero vector such that Ax = Ax, then x is said to be an eigenvector
of A.

Example 2.5:
2
A= 0 ,
2 3
Ax = Ax,
6 2 T - /\l’l
2 3 i) )\.I’Q 7
6371 + 2372 = )\ZL’l,
21’1 + 31’2 = )\l‘g.
When A\ =7,

61‘1 + 21‘2 = 7ZL'1,

2I1 + SIQ = 7ZL’2.

Thus, we have

xr1 = 2ZC2,

which gives ;1 = 2x5 and there are infinite number of solutions. To
normalize the solutions, we impose the condition that /22 + % = 1. i.e., we
require the eigenvectors to have the unit length. Under this condition and

1
V5

2
and 1 = —. So one of the

V5

1 = 275, we have 4/ (2x2)2 +2i=1,1 =

eigenvector is
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Similarly, when \ = 2,

We have

Ty = —2ZC1.

The eigenvector is

8

I
/
SIS
~——

Note that the two eigenvectors are orthogonal.

Definition 2.17: The spectral decomposition of a k£ by k symmetric

matrix A can be expressed as

k
§ : /
A= )‘ieieiu
1=1

where e is the eigenvector.

Note that 3% el = 1.

6 2
Example 2.6: Find the spectral decomposition of A = ( 5 3 ) )

Solution:
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k

Z )\ieie; =7

=1

(SIS NGIN | |
S Gl

Tl ot

I
\]
N~

6 2
Exercise 2.8: Let A = ( 5 3 ) ,

1
(a) Show that A™! = ( Mo ) :
77
(b) Find the spectral decomposition of A~1.

Exercise 2.9: Let Pop; Pspa,i (i =1,2,3,4,5) be the daily closing price
of [267] Citic Pacific and [19] Swire Pacific A from 15/9/2014-19/9/2014
respectively.

(a) Plot (Pcp,i, Pspa;) on the X —Y plane.

(b) Calculate the sample variance of Pop; and Pspa, called them sq; =

1
4

L.

— 9 5 5 .
(PCP,t - PCP) and sy = iz (PspA,i - PSPA) respectively.
i=1

=1

5
(c) Calculate the sample covariance s12 = so1 = 3> (Pop; — Pop) (Pspai — Pspa) -
i=1

S21 S22

(d) Let X = ( s ) Find X 1.

(e) Find the spectral decomposition of X.

6 -9
Exercise 2.10: Let x=| —-14 |,y = 6 |. Find

8 3
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(a) x’ and y’.
(b) L, and L,
(c) x+y
(d) x'y. Are x and y orthogonal?

_7 9
(e) Repeat (a) to (d)ifx=| 4 |, y=

3 3
Exercise 2.11: Let A = (1) g ,

1
(a) Show that At = ( (1) ) :
0

2
(b) Find the spectral decomposition of A~1.

A_(ll)
“\o 1/’
(a) Find A2, A% and A™.

(b) Write down A~!. Verify that A™*A = I.
(c) Find the spectral decomposition of A’A.

Exercise 2.12: Let

1 1
Exercise 2.13: Let A = ( L 9 > )

(a) Find A~
(b) Find the spectral decomposition of A~

. 271 0
Exercise 2.14: Let A = 0 2 )

¢) Find the Eigenvalues of A™ and A™".
d) Find the spectral decomposition of A™ and A~".

93
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Exercise 2.15: True/False.

(i). If the eigenvalue of a square matrix equals zero, then the matrix is
of full rank.

(ii) Let X be a k by k matrix, then X/X = I if and only if X = I.

(iii) Let X and Y be two square matrices, and |X| and |Y| be their
determinants respectively, then | X + Y| = | X| + |Y].

(iv) Let X and Y be two square matrices, and then trace (XY') = trace (X)x
trace (Y).



Chapter 3

Inference about a Mean Vector

3.1 Point Estimation

Population and sample are two different concepts. We would like to estimate
the unknown mean (p) and the unknown variance (62) of a population. Given
limited resources, what we can do is to draw a sample from the population.
A sample is a subset of a population. We hope that the sample will be
representive enough for us to retrieve the information of a population. One

can construct estimators to estimate the population mean and variance.

Definition 3.1: An estimator is a rule or formula to estimate an un-
known population quantity, such as the population mean and population

variance.

An estimator is usually constructed based on the sample information. It
is a random variable since it takes different values under different samples.
As a random variable, an estimator itself has a mean, a variance and a

distribution.

Definition 3.2: An estimate is the numerical value taken by an esti-

mator, it usually depends on the sample drawn.

25
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Example 3.1: Suppose we have a sample of size n, the sample mean

Xi+Xo+ ..+ X,
n

X =

is an estimator of the population mean.
If X turns out to be 3.4, then 3.4 is an estimate of the population mean.

Thus, the estimate differs from sample to sample.

Example 3.2: The statistic

~ Xi+Xo+ .. +X,_
- 1+ Xo+ ...+ 1

n

is also an estimator of the population mean. Conventionally, X denotes

the sample mean, we may use X , X , X*, etc. to denote other estimators.

Example 3.3: A weighted average

n

X = Xqg +wXe+ ... +w, X, where Zwi =1
i=1

is also estimator of the population mean.

Example 3.4: A single observation X; is also an estimator of the pop-

ulation mean.

Example 3.5: A constant, for example, 3.551, is also an estimator of the
population mean. In this case, 3.551 is both an estimator and an estimate.
Note that when we use a constant as an estimator, the sample has no role in
this case. No matter what sample we draw, the estimator and the estimate

are always equal to 3.551.

Example 3.6:

O XP+ X3+ + X
n

X*

can also be estimator of the population mean.
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Thus, there are a lot of estimators for the population mean. The problem
is how to select the best one, and what criteria should be used to evaluate an
estimator. In choosing the best estimator, we usually use criterion such as
linearity, unbiasedness and efficiency. The first criterion in choosing estimator
is linearity, a linear estimator is by construction simpler than a nonlinear
estimator. The mean and variance of a linear estimator are easier to compute

compared to those of a nonlinear estimator.

Definition 3.2: An estimator X is linear if it is a linear combination

of the sample observations. i.e.,

X =a; X1+ asXo + ... + a, X,

where a; (i =1,2,...,n) takes a value between zero and one. In some
cases, they can be negative or larger than 1, and some of them can be zero.
If all a; are zero, then X is no longer an estimator. Thus, estimators in
examples 3.1-3.4 are linear, while estimators in example 3.5 and 3.6 are not
linear. The reason why the linear estimator is a desirable estimator because
its mean and variance are easy to calculate. For example, the estimator in
example 3.6 is nonlinear, and its mean and variance are difficult to obtain.
We reduce the set of all possible estimators to the set of linear estimators.
Still, there are plenty of linear estimators, so how should they be compared?

We introduce the concept of unbiasedness.

Definition 3.3: An linear estimator X is unbiased if E ()? ) = U,

where p is the true mean of the random variable X.

It is important to note that any single observation from the sample is

unbiased. i.e.,

E(X;) = u, 1=1,2,...,n.

This is because when an observation is drawn from a population, we
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expect it to be the true mean () of the population. For an estimator con-
structed by using two or more observations, whether it is unbiased depends

on the way it is constructed.

Example 3.7: If X; (i = 1,2, ..., n) are random variables with £ (X;) = p
and Var (X;) = 0. Show that:

>_Xi

(a) X = =— is an unbiased estimator for .
n

(b) Find E (X?) and E ((7)2) in terms of y and o?.

2

(c) Show that > (X, = X)" = 2 X? —n (X)”.
i=1 i=1
- =\ 2
> (X; — X)
(d) Use (a) and (c), show that s* = MT is an unbiased estima-
tor for o2

Solution:(a)
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Also,

S (-X)" = Y (x2-2xX+X)

=1 =1
B ) S Re s ¢
=1 =1

= ZXE — X 4 X
i=1

Y x2aX
=1

5 - p(SlE=Ty

n—1

n 2
_ E(Zi_le—nX )

n—1

S B (X2) —nE (X7)
n—1
n(o?+ %) —n(o? / n+ pu?)
n—1

-1
n—1

2
= 0"
|

Exercise 3.1: Show that the estimators in examples 3.1, 3.3 and 3.4 are

unbiased, and that the estimators in examples 3.2, 3.5 and 3.6 are biased.
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Still, there are many linear and unbiased estimators, how should we com-

pare them? Here, we introduce the concept of efficiency.

Definition 3.4: An estimator X is more efficient than another estima-
tor X* if Var ()?) < Var (X*).

Example 3.8: If we look at the efficiency criteria, the estimator in ex-
ample 3.5 is the most efficient estimator since the variance of a constant is
zero. However, it is neither linear nor unbiased. A constant as an estimator
gives us no information about the population mean. Thus, despite the fact

that it is efficient, it is not a good estimator.

Exercise 3.2: Suppose we have a sample of 3 independent observations
X1, X, and X3 drawn from a distribution with mean p and variance o2
Which of the following estimators is/are unbiased? Which one is more effi-

cient? Explain.

~ Xi+2Xo+ X
o 1+ 42+ 3’

K=t

Exercise 3.3: Rank the efficiency of the estimators in examples 3.1 to
3.5.

Definition 3.5: An estimator X is a consistent estimator of the pop-

ulation mean p if it converges to the u as the sample size goes to infinity.

A necessary condition for an estimator to be consistent is that Var (5(\' ) —
0 as the sample size goes to infinity. If the estimator truly reveals the value of

the population mean p, the variation of this estimator should become smaller
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and smaller when the sample is getting larger and larger. In the extreme case,
when the sample size is infinity, the estimator should have no variation at
all.

An unbiased estimator with this condition satisfied can be considered a
consistent estimator. If the estimator is biased, it may also be consistent,
provided that the bias and the variance of this estimator both go to zero as
the sample size goes to infinity.

Consistency is a rather difficult concept as it involves the understanding
of asymptotics. It is very important for an estimator to be consistent since
we would like to retrieve information about the population mean from the
estimator. If an estimator is inconsistent, it tells us nothing about the pop-
ulation no matter how large the sample is. One of the consistent estimators

is the sample mean

- X1+ Xt ..+ X,
v_N+Xot . +X,

n
Note that it is unbiased as

EE®) - p(XtXeto+Xa) EX)+B)+. +F(X)
n n
N+M+...+u_%
_ - s

Second, suppose the variance of X;, Var (X;) = 0? < oo fori =1,2,...n,
then

Xi+Xo+ ...+ X,
n

— 1
Var (X) = Var( ) :ﬁVaT(X1+X2+...+Xn)

= % Var (X1) + Var (Xs) + ... + Var (X,,)]

Lo, o 2
= ﬁ[a +o +...—|—J]
1 o?
= —[naz}:——>0 as n — oo.
n? n
Note that consistency and unbiasedness do not imply each other. An
estimator can be biased but consistent. Consider the estimator in example

3.2,
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~ X +Xo+ .. +X,_
¥ - 1+ Xo+ ...+ L

n

For any given value of sample size n,

E(f)znglu#u,

The bias is

1
—p
n

which goes to zero as n — oco. Thus, we say X is biased in finite sample

but is asymptotically unbiased. Note also that as n — oo,

~ X1+ Xo+ ...+ X, -1 1 1
Var(X)zVar( ikt i n1>:n 02:(———2>02—>0.
n

Since both the bias and the variance of X go to zero, X is a consistent

estimator.

An estimator can also be unbiased but inconsistent. Consider the estima-
tor in example 3.4, a single observation as an estimator for the population
mean. It is unbiased. However, it is inconsistent as we only use one observa-
tion from a sample of size n, no matter how large n is. Thus, increasing the

number of other observations cannot improve the precision of this estimator.

In general, consistency is a concept for both linear and nonlinear esti-
mators, while unbiasedness is a concept for linear estimators only. This is

because it is hard to evaluate the expected value of a nonlinear estimator.

Exercise 3.4: Construct an estimator which is biased, consistent and

less efficient than the simple average X.

Exercise 3.5: Suppose the span of human life follows an i.i.d. distri-

bution with an unknown upper bound ¢ < oo. Suppose we have a sample



3.2. THE LAW OF LARGE NUMBERS AND THE CENTRAL LIMIT THEOREM®63

of n observations X7, X, ..., X,, on people’s life span, construct a consistent

estimator for ¢ and explain why it is consistent.

3.2 The Law of Large Numbers and the Cen-

tral Limit Theorem

Definition 3.6: A sequence of random variables X;, (i = 1,2, ...n) follow an
Independent and Identical Distribution (i.i.d.) if all the X; have the

same distribution and X; does not depend on X for any 7 # j.

The Law of Large Numbers states that, if X; is an i.i.d. with finite
mean p and finite variance o2, the sample average X converges to the true

mean 4 as the sample size n goes to infinity.

Exercise 3.6: To illustrate the Law of Large Numbers, consider the
random experiment of throwing a dice n times. Let X; be the outcome at
the ¢ trial, i = 1,2, ..,n. Let X be the sample average of these X;.

(a) What is the population mean of the outcome for throwing a dice
infinite number of times?

(b) What possible values will X take if n = 17 n =2? n = 37

(c) Conduct the experiment, record the value of X and plot a diagram
which indicates its behavior as n increases from 1 to 30. Does X converge to
3.57

Theorem 3.1: The Central Limit Theorem states that, if X; is an

i.i.d. with finite mean p and finite variance 02, the sample average X con-

verges in distribution to a normal distribution with mean p and variance —,
n

as the sample size n goes to infinity.

It is a powerful theorem because X; can come from any distribution.
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Example 3.9: Let X; and X5 be two independent random variables
distributed as

1
where ¢ = 1, 2. Then the distribution of

— X+ X
X:g

will be

Pr(X=0) = Pr{Xi=-1land X, =1} or {X;=1and X, =—1})
= PI'(Xl :—1>PI'(X2:1)+PI'(X1:1)PI'(X2:—1)

N | =

Pr(X=1) = Pr(X;=1and X, =1)
= Pr(X;=1)Pr(Xy=1)
_ Lt
272 4

Note that although X; and X, are evenly distributed, X is not evenly
distributed but has a bell-shape distribution. As the number of observations

tends to infinity, X will have a normal distribution.

Exercise 3.7: To illustrate the Central Limit Theorem, let us consider
the random experiment of throwing a dice n times in the previous exercise.

(a) Conduct the experiment yourself with n = 30. Record the value of
X.
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(b) Throw the dice for another 30 times, record the value of X, does the
value of X different from the previous one?

(c) Repeat part (b) until you obtain 20 values of X.

(d) Plot the histogram (the frequency diagram) of X for the range 0 to
6, with each increment equal 0.1.

(e) Repeat part (d) by finding four other classmates and pool the result
of 100 values of X.

Exercise 3.8: Use a computer or a calculator to generate 36 random
numbers from the uniform distribution U (0, 1); calculate the sample mean,
and repeat this procedure 100 times. Define a variable Y; = /36 (YZ — 0.5) ,
1 =1,2,...,100. Now make two frequency tables of Y; with the length of each
interval 0.01 and 0.1 respectively. Plot the two histograms.

3.3 Testing a Statistical Hypothesis

When we observe a phenomenon, we would like to explain it by a hypothesis.
We usually post a null hypothesis, and an alternative hypothesis. The two
hypotheses should be complementary. For example, when we observe that the
death toll in winter is usually higher than the death toll in the other seasons,
we may conjecture that the death toll is negatively related to temperature.
The alternative hypothesis would be that the death toll has nothing to do
with or is positively related to temperature. A hypothesis is not a theorem.
A theorem is always true under certain assumptions. A hypothesis is just a
conjecture, we have to test how likely a hypothesis is going to be correct. In
testing a hypothesis, we may commit errors when making conclusion. There

are two possible types of errors:

Definition 3.7: The rejection of the null hypothesis when it is true is
called the Type I Error; the probability of committing the Type I Error is
denoted by «.
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Definition 3.8: The acceptance of the null hypothesis when it is false is
called the Type II Error; the probability of committing the Type II Error
is denoted by f.

We would like to reduce both Type I and Type II errors as much as we
can. However, as there is no free lunch, there is no way to reduce both errors
at the same time. Reducing the chance of committing Type I Error will

increase the chance of committing Type II Error, and vice versa.

Exercise 3.9: In a judicial trial, suppose the null hypothesis is that “the
defendant is not guilty”.

(a) State the alternative hypothesis.

(b) What is the Type I Error in this case?

(c) What is the Type II Error in this case?

(d) How can you fully eliminate the Type I Error in this case? How will
this affect the chance of committing the Type II Error?

(e) How can you fully eliminate the Type II Error in this case? How will
this affect the chance of committing the Type I Error?

(f) How can you fully eliminate both Errors in this case?

(g) Suppose the defendant is charged with the murder of first degree,
whose penalty is the capital punishment (death). From your point of view,

which type of error has a more serious consequence?

3.4 Test for mean when ¢? is known

Consider a random sample X7, Xs,...X,, drawn from a normal distribution

with unknown mean p and a known variance o2. We would like to test

whether 1 equals a particular value . i.e.,

Hoy : ppo= pg

o is a pre-specified value, e.g. p, = 0.
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We construct a test statistic Z, where

X — g
o/

Under Hy : pt = py, X; ~ N (g, 02). Since the sum of normal random

7 —

variable is also normal, as a result, X is also normally distributed for all sam-

ple size n, no matter n is small or large. Thus, X = % (X1 +Xo+ ...+ X,) ~

o2
N (Mm ?> . Hence,

Z~N(0,1).

In the two-sided case (i.e., Hy : u # p,), we reject Hy at a significance
level a, if |Z] > Zg. For example Zg 25 = 1.96.

In the one-sided case (i.e., Hy : u > (<)py), we reject Hy at a significance
level aif 7 > Z, (Z < —Z,).

A 100 (1 — a) % confidence interval for 1 is

J— g — g
X—Ta— X+ Za—|.
< s \/ﬁ)

If 14, does not fall into this interval, we reject Hy at the significance level

This test is of limited use since we have two very strong assumptions: (i)
the observations X; come from the normal distribution and (ii) the variance
is known. A more commonly used test is the t-test, which is used when the

population variance is unknown and the sample size is small.

2

3.5 Test for mean when o° is unknown

Consider a random sample X7, Xs,...X,, drawn from a normal distribution
with unknown mean p and unknown variance o?. We would like to test

whether 11 equals a particular value .

Hy: = py.
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We construct a test statistic, defined as

X — g
s//mn’
where ¢, stands for the observed value of the statistic under the null

hypothesis that ;1 = p,. What is the distribution of ¢,,s7 Recall that

Lobs =

n

> (X -X)
s=A\T n—1
Note that
tobs = Xy _ f/?;%) :
3/\/_ \/Llﬁ: Y)Q
Under Hy : pt = pig, X; ~ N (9, 0?). As a result,

1 o’
X:E<X1+X2+---+Xn)NN For —

and

X —
Fo N (0,1).

o/v/n

Further, it can be shown that (difficult)

()

o
=1

has a Chi-squared distribution with degrees of freedom (n — 1), and that
(also difficult)

X — 1o
o/\n

and
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are independent. Recall the definition of t-distribution that,

— X —pig

X —py o//n B N (0,1)
obs = 3/\/_ \/n 12 Xl ) X2,/ (n—1)

t

will have a t-distribution with degrees of freedom (n — 1).

In the two-sided case (i.e., Hy : u # p,), we reject Hy at a significance
level « if |t| > ts n-1. For example, {o025,9 = 2.262. In the one-sided case
(ie., Hy : p > (<)pg), we reject Hy at a significance level a if ¢t > t,,,-1
(t < —ton-1).

A 100 (1 — ) % confidence interval for j is

(y_tanleH_nl;ﬁ)

If 1, does not fall into this interval, we reject Hy at the significance level

Example 3.10: Suppose the body height of the population of Hong Kong
is normally distributed N (i, 02). Suppose we would like to test the hypoth-
esis that the mean height of the population of Hong Kong is p =160cm.
We test this based on a sample of 10 individuals, the sample mean being
X =165cm and the standard error (note that standard error is the square
root of the sample variance while standard deviation is the square root of
the population variance) is s =5cm.

Thus, we test

Hy @ p=160
o : 160

Since the sample size is small and o2 is unknown, we use the t-test, the

observed t-value is calculated by
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X —p 165160
obs S/\/ﬁ 5/\/ﬁ

tops Will have a t-distribution with degrees of freedom equal n — 1. In the

= 3.163.

two-sided case, we reject Hy at the significance level « if |typs| > te n-1. Now,
let o = 5%, then

t0.025,9 - 2262

Since |tops| > t0.025,0, We reject Hy at o = 5%. Thus, we are 95% sure that

the population mean is not equal to 160cm.

A 95% confidence interval for p is

V10 V10

Since 160 does not fall into this interval, we reject Hy at o = 5%.

~ 5
X F 10,0250 (i> — 165 T 2.262 <—> — (161.4,168.6) .

Note that the conclusion depends on the value of o that we set, if we set
a = 1%, then

10.01,9 = 3.25.

Since |tops| < to.01.9, we do not reject Hy at o = 1%. This means we cannot

be 99% sure that the population mean is not equal to 160cm.

Exercise 3.10: A random sample of size n = 12 from a normal popula-
tion has the sample mean X = 28 and sample variance s> = 3.

(a) Construct a 95% confidence interval for the population mean .

(b) Test the hypothesis Hy : ;1 = 30 against Hy : u # 30 at « = 5%.

Exercise 3.11: Let r; = In P, —In P,_; be the daily return of [1] Cheung
Kong on day i. Assume that r; ~ N (u,0?). Consider a sample of r; from
22/9/14 to 26/9/14.
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(a) Find 7 and s2
(b) Use t-test to test the hypothesis Hy : = 0 against Hy : u # 0 at
a = 5%.

(c) Construct a 95% confidence interval for the population mean .

Exercise 3.12: Let X; be the monthly total number of deaths in Hong
Kong. Assume that X; ~ N (u,0?). Consider a sample of X; from September
2013 to August 2014.

(a) Find X and s2.
(b) Use t-test to test the hypothesis Hy : = 3000 against H; : u < 3000
at a = 5%.

Exercise 3.13: Let X; be the monthly total number of marriages in
Hong Kong. Assume that X; ~ N (u,0?). Consider a sample of X; from
September 2013 to August 2014.

(a) Find X and s2.
(b) Use t-test to test the hypothesis Hy : = 3000 against H; : g > 3000
at a = 5%.

3.6 Bivariate Normal Distribution

Recall that a random variable which follows a normal distribution with mean

2

p and variance o2 can be expressed as X ~ N (u, 0?). Its density function is

defined as

Flo) = == e (—% (;“))

When there are two independent random variables which are jointly nor-

mally distributed, their joint density can be expressed as
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@) = f(21) f(22) |
e (4(272)) (5 (272))

]
- e (A [(ER) (222 )

If the two variables are not independent but have a correlation p, , we

have

f (xlv 1'2)
1

X
21/ 011092 (1 — py)

o (s (3 + (372) - (50) (572 )

Let

—_

0!l — 022 —012
01109 — 02
11022 12 —012 011

B 1 O22  —012
- > ]
011092 (1 = piy) —012 011

012

P12 = —F—-
/011022

0 1
Exercise 3.14: Let x; and x5 be jointly normal N (( 0 > , ( f )) .
p

(a) Find the joint density f (z1,x2).
(b) Use the computer to plot f (z1,xz9) for p =0, 0.8, —0.8, 1, —1.
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3.7 Multivariate Normal Distribution

T
x
In general, for a random vector x = _2 , if the variables are jointly
Lp
normally distributed N (u, €2), we have
_ 1 1 ' Q-1
f(@1,22,.mp) = W Xp\ 735 (x — ) (x—p) ),

where || is the determinant of €2.
Contours of constant density for the p dimensional normal distribution

are ellipsoids defined by x such that

(x—p) Q7" (x—p)=¢?

The solid ellipsoid of x values satisfying

(x—p) Q" (x—p) <X ()

has probability 1 — a.

Example 3.11: Contours of constant density for the one dimensional

normal distribution are ellipsoids defined by = such that

T — 2
g

The solid ellipsoid of x values satisfying

(1) <.

Suppose o = 5%, = 2, 02 = 9, then the solid ellipsoid of z is the values
of = such that

r—2\7 9
3 < xi (0.05) = 3.84.
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For example, x = 11 will not be in this solid ellipsoid, while z = 5 will

be in this ellipsoid.

0/ \01
Contours of constant density for this two dimensional normal distribution are
ellipsoids defined by x such that

0 10
Example 3.12: Let x; and x5 be jointly normal N ) .

(x—0)T'(x—-0)=¢

or

This implies

x] + a5 = ¢,
which is a circle on the plane of x5 vs x1. The solid ellipsoid of x values

satisfying

7t + 5 < X (a)

has probability 1 — a.
Suppose o = 5%, then the solid ellipsoid of z is the values of x such that

r] + 25 < x3(0.05) = 5.99.
For example, x = ( 5 > will not be in this solid ellipsoid, while x =

1
< ) ) will be in this ellipsoid.

1 2 2
Exercise 3.15: Let x; and x5 be jointly normal N << 5 ) , ( 5 4 ))

(a) Find the joint density f (z1,x2).
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(b) Use the computer to plot f (x1,x2).
(c) Is the point (10,-10) in the ellipsoid with o = 5%?

. ! . .
Exercise 3.16: For a random vector x = (x1,22,...,90) , if the variables

are jointly normally distributed N (u, €2), then the joint density function is
[ (x1,29,...;w90) = — 1 &P (—4x'Q27'x), where || is the determi-
2m) |9

nant of Q. True/False?

3.8 Hotelling’s T

Now consider testing the mean vector of a bivariate normal distribution. Our

null hypothesis is Hy : 1t = py, where p, is a 2 by 1 vector. The data matrix

L1 T12
To1 T
is X = _21 ?1 is n by 2. A natural generalization is to use
Tn1 Tn2
T° =n (Y—Ho)/ Ch (7_#0) ;
where
v_ [ nXima
. i1 T2
[ S11 S12
a1 sm )
1 O _
S11 = —— Tin —T1)°,
11 1 ;( 1 — 1)
IR _ —
S12 = 891 = —— i — T1) (T2 — T2) ,
1258501 = o (zi1 — T1) (Ti2 — T2)

=1

n

1
S22 = 2—1: (22 —$_2)2.
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The statistic 72 is called Hotelling’s T2. It is distributed as

2(n—1)
—Fy ., .
n—2 2,n—2
Example 3.13: Let the data matrix for a random sample of size n = 3

from a bivariate normal population be

6 9
X=110 6
8 3

Evaluate the observed T2 for Hy : p = . What is the sampling

distribution of T2 in this case? Should we reject Hy at 5% level?

Solution:

The mean vector is

. 6+10+8 ]
X = 9 2+3 -
+ )
3 6
3
(z1 —T7)° = (6 — 8)> + (10 — 8)* + (8 — 8)?,
i=1

(i1 —T1) (i = T2) = (6 -8) (9-6)+(10-8) (6 -6)+(8-8)(3-6),

3
1=

1

Z(mig—x_g)Qz(9—6)2+(6—6)2+(3—6)2.

=1

g — ( % 2?21 (zi1 — 35_1)2 % Z? (@i —77) (242 — 72) )

3 Z?:1 (zi1 — 71) (222 — T2) 3 Z?_l (2o — T3)°

_ (_43 —93).
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n
N
|
VR
|
) [IEN
o |
w
~_—
N
|
S
X
Ne
|
s
w
N—
T
w
N—
N
w O
=~ W
~_—
Il
VR
Ol—= W
S
~_—

I
(OV]
VR
|
—_

—_
~_
N
Ol—= Wl
] N

The sampling distribution of 72 is

2(3—1)

Fs3 9 =4F5.
3 g 1232 2,1

Note that at o = 5%, Fy1 = 199.5, and 4F5; = 798. Since % < 798, we
do not reject Hy at o = 5%.

In general, if there are p variables and n observations, the sampling dis-

tribution of 72 is
p(n—1)

Exercise 3.17: Let X be the data matrix for a random sample of size
n = 3 from a bivariate normal population. Find the sampling distribution of

T? and evaluate the observed T? for p, when

0 -5 9
(a)X: 9 5 » Ko = <5>
18 15

6 —9 .
b)yX=] 14 6 ,uo=< )
10 —3
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-1
-2 3
-7 2
2
3 3
6 -9 ]
8 3

3.9 What if X, are not Normally Distributed?

Thus far we have assumed that the observations are normally distributed.
What if this assumption does not hold? Consider a random sample with
observations X1, Xs,...X,, drawn from any distribution with unknown finite
mean p and a finite unknown variance o?. We would like to test whether

1 equals a particular value .

Ho : o= pig.

If the sample size is small, say if n < 30, then the hypothesis cannot be
easily tested since we do not know the behavior of the sample mean X and
sample variance s if X; is not normally distributed. However, if the sample
size is large, say n > 30, we can apply the Central Limited Theorem that X
is normally distributed and the Law of Large Numbers that s? will converge

to the population variance 0. Then, the test statistic

X — g
Z:
s/v/n

will be approximately normally distributed as N (0,1). In the two-sided

case(i.e., Hy : 1 # f19), we reject Hy at a significance level o, if |Z] > Za.
For example Zj g5 = 1.96. In the one-sided case (i.e., Hy : p > (<)py), we
reject Hy at a significance level a if Z > Z, (Z < —Z,). A 100(1 —a) %

confidence interval for y is
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— s
XFla—.
T2

If 14y does not fall into this interval, we reject Hy at the significance level
«. Thus, if the observations X; are not normal, we need a large sample to

perform the test.

Exercise 3.18: A random sample of size n = 100 from a population has
the sample mean X = 28 and sample variance s = 3.

(a) Construct a 95% confidence interval for the population mean p.

(b) Test the hypothesis Hy : = 30 against H; : p # 30 at a = 5%.

(Note that we cannot apply the t-test as we do not assume the observa-

tions come from a normal distribution.)

Exercise 3.19: True/False.
(a) Rejection of the null hypothesis when it is true is called the Type I
Error.

(b) In general, if there are p variables and n observations, the sampling
p(n-1),

n—p PP
(c¢). The Central Limit Theorem states that the sample average has a

distribution of T2 is

uniform distribution when sample size is large.
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Chapter 4

Regression

4.1 Introduction

Suppose a variable Y, referred to as the dependent variable, is related to
another variable X, called independent or explanatory variable. If the rela-

tionship between Y and X is linear, then we have:

Y:50+61X7

where 3, and 3, are constants.

This is an exact (or deterministic) linear relationship. An exact linear
relationship is the exception rather than rule. In most situations, X and Y
may not be perfectly linearly related. There may be other unknown factors
that also affect Y, we use u to represent all these unknown factors, and

estimate the following regression model

Y:/60+/61X+u

Regression is a statistical technique that is used to explain the relationship
among variables. For example, if Y is consumption and X is income, then
the above model is a consumption function. The value of 3, indicates that
if income increases 1 by dollar, consumption will increase by 3, dollar. j3, is

the consumption when income is zero.

81
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We would like to estimate the unknown parameter 3, and 3, based on
our sample observations {X;,Y;}._;. We plot the observations and draw a
line which fits these observations the best. What criteria should we use? In
general, we minimize the “distance” between the observations and the line.
We may use vertical distance, horizontal distance or a distance perpendicular
to the line. In regression analysis, we use the vertical distance, since Y is the
variable of interest. However, we are not just minimizing the sum of errors,
as it is possible that the positive errors and negative errors may cancel out
each other, ending up with a small value of net errors. We may take absolute
values, but we cannot find the optimal estimator in that case by using simple
calculus. In addition, we would like to penalize observations which are far
away from the line. Thus, we minimize the sum of squared errors. This is
called the Ordinary Least Squares (OLS) estimation method, proposed
by Adrien Legendre, a French mathematician in the 19th century. Let Bo:
Bl be the OLS estimators for [, and 3, respectively. To ensure that the
estimators have the desirable properties such as unbiasedness, efficiency and

consistency, we make the following assumptions:

4.1.1 Assumptions

1: The true model (population) is a linear model, i.e.,

Yi = By + B, Xi +uy.

Linearity means linear in 3’s, not necessarily linear in Y and X.
e.g., Y; = By + B, X? + u; is a linear model, while Y; = 3, + £3X; + u; is

not.

This assumption allows us to derive the OLS estimator Boand Bl via

simple calculus.

2: E(u;) =0  forall i.
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This assumption is to ensure that the OLS estimators are unbiased, i.e.,
E <Bo) =, and F (Bl> = f3, if this assumption is made.

3: X, cannot be all the same.

This assumption is to ensure that one will not obtain a vertical line. If

the slope is infinity, the model becomes meaningless.

4: X, is given and is non-random, in the sense that one can choose the values
of Xz

This assumption simplifies our analysis when we discuss the unbiasedness
of the estimators, since X can be treated as a constant and taken out of the
expectation operator. For example, F (X;u;) = X;F (u;) = 0 by assumption
2. This also implies Cov (X;,u;) = 0.

2

5: Homoscedasticity, i.e., Var (u;) = o for all 1.

6: Serial Independence, i.e., Cov (u;,us) =0  for all i # s.

Assumptions 5 and 6 simplify the calculation of Var <Bo> and Var (Bl)
They also ensure that the OLS estimators are the most efficient estimators
among all the linear and unbiased estimators. As far as the estimation of
A's is concerned, assumptions 1 to 6 ensure the OLS estimators are the best
linear unbiased estimators (BLUE).

4.2 Least Squares Estimation

K:60+61XZ+UZJ

u; = Y; —50 —ﬁle*

The problem is
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n

min Y, — By — Xz-2.
i (1= 6y = 1)

The first-order conditions are:

037 (Vi — By — BrX)? \

=1 3 =2 (Yz — Bo - Ble) =0, ()

62 (Y; = Bo — B Xi)’
851 = —22 <Y 50 51 ) = 0. (**)

i=1

BOﬂBl

Solving these two normal equations gives the Ordinary Least Squares

Estimators:

X (x-T)

Blzz:i _27
3 (% - X)
30:7—&7-

Note: If X is also a random variable, then when sample size increases,
Cov(X,Y)

Var(X)
Example 4.1: Show that

Bl will converge to
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Solution:
3, - Y (X X))V Y (X = X) (Bo+ 81 Xi + w)
S (- S (X=X N
~ B, D (X _i()z + 8, Do (X — )9)2(1 " D (X — )i) 12‘1
Z?:l (Xi - X) Z?:l (Xi - X) Z?:l (Xi - X)
0 D i (Xi - Y) Ui

= 1

S X7 O - xp
— B+ D i (Xi _X) U

n <\2
D i1 (Xi o X)
Exercise 4.1: Solve (*) and (**) for Bo and J3,.

4.3 Properties of OLS Estimators

Under the above assumptions 1-6, the Least Squares Estimators BO and /Bl

have the following properties:

(1) They are linear estimators, i.e., they are linear combinations of ;.

Proof.

> (X - X) Vi - - - .

X —-X Xo—X X,—X
= ! }/1—’— p 2 }/'2—|——|——Yn = Zainv

S (X=X S (6G-X)P S (X -X) S (xn-X) S

i=1 i=1 i=1 =1
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where

X, — X
- (X, - %)’

1

)

(2) They are unbiased, i.e., £ (Bo) = (3, and E <B1> =5;.
Proof. From Example 4.1,

D it (Xi _7) Ui

By =B+ Z§:1 (Xz _Y)2 .

Thus
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E (BO> S

VS

. YN e
Y—Xﬁl) —E <ZT1> ~XE (51>
> i1 (Bo+ 81X + uz)) X8,

n

TL, ]. 7-17 XZ TL U; —
Z =1 + 51 Zz_l + Zz_l ) _ Xﬁl
n n n

= K

Bo

I
&5
AN N

= 50 "’751 +E (%) —751
~ e (Z0)
n

1 n
= 50+E;E(Ui>

= [y, since E(u;) =0 -

(3) They are consistent, i.e., /Bo 2 B, and Bl 2. B, as the sample size
goes to infinity.
Proof. Skip.

(4) They are efficient among all the linear unbiased estimators.

(5) The estimated regression line must pass through the point (X,Y).

Proof. Note that the estimated regression line is

y = Bo+ bz

A~

By the definition of Bo =Y - X5,

Yy
y-Y = B (c-X)

If the line passes through the point (X,Y), then the equality should hold

when we put z = X and y = Y. This is obvious since
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=l
|
=
I

5 (%)
0 = 0m

Theorem 4.1: Gauss—Markov Theorem: Under assumptions 1-6,
the Ordinary Least Squares(OLS) estimators are the Best Linear Unbiased
Estimators (BLUE):

Proof. Skip.

If we are just interested in the relationship between X and Y, we can
simply use Cov(X,Y) or Corr(X,Y). A regression line can also be used to
predict the value of Y at a given value of X. For any given value of X, you
can find a corresponding value of Y. Make sure that you can distinguish the

differences between

Y, = 50+51Xi + Uy,

Yi:Bo“‘EXH-@

and

Y, = Bo + Blew

The first equation is the true model, the second is the estimated model.
The actual observed values of Y; do not necessary lie on the line, so there are
residuals in both equations. The last equation represents a regression line,
every )/;Z is a point in the regression line, no error term is needed. We use the
regression line 2 = Bo + BlXi to make predictions, e.g., if Bo =1, Bl =1,
the predicted value EAQ at X; = 10 will be 11.

Although the OLS method has many nice properties, it also has short-
comings. If there are observations whose values are extremely large, those
observations will dominate other observations in the determination of the

OLS estimates. In other words, the OLS estimator is not robust to outliers.
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Exercise 4.2: True/False/Uncertain. Explain.

a) The OLS estimators are most efficient among all estimators.

b) The OLS estimators are the best linear unbiased estimators.

c¢). The OLS estimators are inefficient linear unbiased estimators.

d). In a linear regression model Y; = 3,4+ 3, X;+u;, Var (Y;) = Var (u;).

e) The R? increases with the number of observations.

£) If E (u;) = 2, B, will be biased.

g) If E (u;) = 2, 3, will be biased.

h) In a linear regression model Y; = 3,+5, X;+u;, we have zn: (Y; - 2) Y; =
i=1

(i). In a linear regression model Y; = 3, + 3, X; + u;, we have ZYJA/; =0.
i=1

4.4 Goodness of Fit

To see whether the regression line fits the data, we first define the variation

of Y about its mean as the total sum of squares (TSS), where

7SS =Y (v;-Y)".
i=1
Let
2 = Bo + Ble’
be the predicted value of Y; given X;. Consider the following identity:
i-Y=(%-7)+(vi-%).

Squaring both sides gives
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Summing up from ¢ = 1 to n, we have

3067 =3 (7)Y (1) 23 (7 7) (- 7).

i=1 =

The last item in the R.H.S. can be shown to be zero. Thus, we have:

ST = (T ey (v R
= TSS = RSS = ESS

where
TSS stands for the total sum of squares,
RSS stands for the regression sum of squares, and

ESS stands for the error sum of squares.
Thus, the difference between Y; and Y can be decomposed into two parts:

V-V =(Yi-%)+(%-7).

The first part is

(:-7) = (Bo+BiX) = (Bo + BiX) = By (X - ).
This part shows that the predicted value 17; differs from Y because X;

differs from X. The second part (Yi — 2) is the residual that remains un-

explained by the regressor X;. We define

R2—1- L5

Since ESS and T'SS are positive, and T'SS > ESS, the range for R? is

0< R2<1.

We use R? to measure the goodness of fit of a regression line. If R? is
close to 0, X and Y do not have a linear relationship. If R? is close to 1,

then X and Y are highly linearly correlated. If X cannot explain Y at all,
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then RSS = 0, TSS = ESS, and R? = 0, and the regression line does not
fit the data in this case. If there is nothing that remains unexplained, then
ESS = 0. This implies the variation of Y can be totally explained by the
variation of X, and R? = 1, and all the data must lie on the regression line

in this case.

Example 4.2: Given the data (X;,Y;), i = 1,2,..n, suppose we know

X = 30. We run a regression of Y; on X; and obtain the following results

Y, =08409X;, R2=0.0.

Now suppose we use the same data and run a regression of X; on Y;, and

obtain the following regression.

X;i=a+bY;, R*=c

Find the values of Y, a, b, and c.
Solution: Given that Y; = 0.8 4+ 0.9X;, R2 = 0.9 and X = 30.

Y =0.840.9X = 0.8 +0.9(30) = 27.8.
Regression of Y; on X; yields

|
R2 — (Z?:l (Xl__ 27) (Y; _?))_2 - =0.9.
Z?:l (Xi - X) Z?:l (Yi o Y)
Regression of X; on Y; yields
S [l
Yin (Yi—Y) XL (X - X)
Thus,
c=0.9. [ |

Moreover,
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(L, (6 -X) (v;,-Y))’

" D i (Xi_7)22?:1 (Y‘_?)2
_ SLE DY) S (G -X) (-T)
S (X = X)° Z ( v)’
09 = (09)b
=b = L m

Since X = a + bY,

30 = a+27.8
=a = 2201

Example 4.3: Consider the model: Y; = 5, X; + u;, 1=1,2,.

ZX Y,
(a) Show that the OLS estimator for 3, is given by 61 ; :
2 X?
i=1
(b) If we have three observations of (X;,Y;), i =1,2,3.
X, 01 2
Y, 210

Calculate the numerical values of:
i) 513
i) Y; = 5, X,; fori=1,2,3;
3 N2
if) £S5 =3 <Yi - Yi) :

iv) TSS = z(y 72,

ESS

2 127

v) /=1 TSS"
Solution:

(a) The problem is
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The first-order condition is

0y, (Yi-Xif) ¢ P YP.0 ¢
55 ——2;%—&/30&-—0:61—m
(b)
) | 3
Y; 0
(i)
3, = 0@2)+1®H+@)0) 1
SO O OO
(i)
-~ 1
i = é(O) = 01,
Y, = é(l) = g;
Y; = = (2) = 5

93
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Note that R? is negative because the regression line excludes the intercept
term and Z?:l u; # 0.

Exercise 4.3: Given the data (X;,Y;), i = 1,2,..n, We run a regression

of Y; on X; and obtain the following results
}//\; :BO+31X17 R® = a.
Now suppose we use the same data and run a regression of X; on Y;, and
obtain the following regression.
X;=ap+aY;, R:=0.

Show that

Exercise 4.4: Suppose we run a regression of Y; on X; with an intercept,
and get the slope estimate of 0.8. Using the same data, if we run a regression

of X; on Y; with an intercept, is it possible to get a slope estimate of —0.87

Exercise 4.5: Given the data (X;,Y;), i = 1,2,...,n, and X = 10.
Suppose we run a regression of Y; on X; with an intercept, and obtain the

following results:

~

Y, =X, R*=1.

Now, suppose we use the same data and run a regression of X; on Y; with

an intercept, and obtain the following regression:

X;i=a+bY; R=c

Find the values of Y, a, b, and c.
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Exercise 4.6: Given the data (X;,Y;), i =1,2,...,n. Suppose we run a

regression of Y; on X; with an intercept, and get the following results:

~

Y;=X,, R*=05

Now suppose we use the same data and run a regression of X; on Y; with

an intercept, and get the following regression:

X;,=14+aY; R2=b.

Find the values of X, Y, a and b.

Exercise 4.7:  Consider the model: Y, = 8, + 5, X; + w;, 1=
1,2,...,n.
If we have three observations of (X;,Y;), i =1,2,3.

X; 01 2
Y, 2 10
Calculate the numerical values of:
i) Bo, s ;
ii) Y, = BO—I—BlX fori=1,2,3;
iii) £SS = Z (Y Y) ;

’L 1

iv) TSS = z(y v

ESS
2 _1_
V) R =1 TSS .
—2 n—
DR =1-(1-R)——~
vi) R ( R)n—k‘—l

Exercise 4.8: Consider the model: Y; = 8,4+ 5, X; +u;, 1=1,2,...n
(a) Suppose we have four observations of (X;,Y;), i =1,2,3,4.

X, 01 ¢ 1—c
Y, 01 1 0

Find the followings in term of c:
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1) BO? Bl
i) Y; = By + B, X; fori =1,2,3,4
4 N\ 2
iii) £SS =S (E- - Y¢>
=1
4 _
iv) 7S5 =3 (V; - Y)’
i=1
ESS

2 1 —
V) B =1-7g3

(b) For what value(s) of ¢ will the B, equal 17

(c) For what value(s) of ¢ will the R? be maximized? For what value(s)

of ¢ will the R? be minimized?

Exercise 4.9: If we have four observations of (X;,Y;), i = 1,2,3,4.

i=1 i=2 i=3 i=4
X, -1 1 -1 1
Y, 1 1 -1 -1

(a) Calculate the numerical values of:
1) 507 51‘
i) Y; = By + B, X; for i = 1,2,3,4.
4 o\ 2
i) £SS = 3 (Yi - Y,.) .

=1

4
iv) 7SS =3 (v, - Y)".
=1

ESS
21—
v) RP=1 ok 1
N\ 2 N
vi) - =1—(1 R>n—2'

(b) Plot the four observations and draw the estimated regression line.

(c) Suppose there are two additional observation (Xj5,Y5) = (0,1) and
(X6, Ys) = (0,—1) How will this affect the regression line in (b)?
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Exercise 4.10: Let X and Y be random variables, W = 1 — X, and
Z=1-Y,

(a) Show that Cov (W, Z) = Cov (X,Y) .

(b) Suppose we draw a sample of size n from the above distributions of

X and Y, and run the following two regression models:

}/i - BOa +ﬁ1aXi + Uy,

Zi = Boy, + BryWi + s,

then the two estimates of 3, are identical in the two regression models.

True or False? Explain.

Exercise 4.11: Let A, B, C, D be four random variables with zero mean
and unit variance.

(a) Is Cov (A, B) — Cov (C, D) = Cov (A — B,C — D)?

(b) Suppose we draw a sample size n from the above distributions of A,

B, C and D, and run the following regression models:

Bi = BOa +61aAi + ug,
D; = Boy, + B1,Ci + s,

Ci — D; = Bo. + B1e (Ai — By) +

Is /810 = 51a - 511)?

4.5 Hypothesis Testing on s

Consider the following regression

Yi = By + 81X +uy.

We would like to test whether 3, equals zero.
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Suppose we find that Bl = 0.34 from the sample. After the estimation, we
may perform hypothesis testing. We may test whether the true parameter (3,
equals zero or not. That is, we test Hy : f; = 0. We must perform this test
because if we cannot reject Hy, X cannot explain Y and the regression model
will be useless. When we test this hypothesis, we need a test statistic and find
its distribution. In the context of regression models, the random elements
are u;. Note that we have not yet specified the distribution of u;. Thus far,
we have only assumed that wu; are uncorrelated and identically distributed
with mean zero and variance o2. Therefore, we have to make the following

assumption when we carry out hypothesis testing:
Assumption 7: Normality of errors: u; ~ N (0, 02).

This assumption is not needed as far as estimation is concerned. It is
called for when we would like to perform hypothesis testing on 5’s. Suppose

we perform a two-sided test on [3;:

Ho : 5120
H1 : 517&0

A standard way to test the hypothesis is to form a test statistic
BB
Var (5 1)

where 51 is the OLS estimator for the unknown parameter 3, and

Var <51> = m

i=1
from Example 4.1. Since u; has a normal distribution by assumption 7,
if 02 is known, then by the property that normal plus normal is still normal,

the test statistic ¢ will have a N (0,1) distribution. The problem again, is
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that o2 is unknown in the real world, so we will have to estimate it. Recall

that o2 is the variance of u; in the true model:

Y, = ﬁo + ﬁ1Xi + u;.
Now after the OLS estimators Bo and Bl have been obtained, the esti-
mated residual is
T =Y~ By — BiX;
and we define

n2
>

2 =1
-2

ST =

S

We use s to estimate o2.

2

The reason why we have to use (n —2) is
because s? is an unbiased estimator of o2. This number should be equal
to the number of 3's in the regression. If we have a multiple regression
with k& 's, then it should be (n — k) at the bottom. The test will have a

t-distribution with degrees of freedom (n — 2) .

Exercise 4.12: Consider the sample period from 1/9/14-30/9/14. Let
Y'=Daily closing price of the call warrant [25453];

X=Price of [2628] China Life ;

i) Plot (X,Y).

ii) Run the following regression model

K:60+61XZ+UZJ

Find the values of /5\0, Bl. What is the meaning of Bo in this case?
Interpret /51-

iii) Test Hy : B, = 0 against H; : 5; # 0 at o = 0.05. Is the warrant price
affected by the price of the underlying stock?
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Exercise 4.13: Let Z;, Z> be independent N (0,1) random variables.
Suppose we draw a sample size n from the above distributions of Z; and Z,.

In a linear regression model Z3; = 3, + 3,2 + u;, what will 3, converge to?

Exercise 4.14: Let X, Y be two independent identical discrete random
variables with the probability distributions as follows:

X = —1 with probability %

X =1 with probability %

Y = —1 with probability %

Y =1 with probability %

Find the distribution of Z if:

(a) Z=min{X,Y}.

(b) Z = XY.

Suppose we draw a sample size n from the above distributions of X, Y
and Z, and run the following regressions:

(1) Yi = By + 51X + w;,

(i) Z; = By + B1.Xi + i,

(iii) Z; = By + B1Y; + u;.

When n goes to infinity, what are the values of Bo; Bl in each of the

possible cases 7

Exercise 4.15: Find the closing (i.e., unadjusted closing) price of [572]
CHINA PACKAGING from Septemberl-September 30, 2014. Extract your
data from Yahoo Finance. Let P; be the price and r; = In P, — In P,_; be
the daily return of GOME on day ¢. Assume that r; ~ N (u,0?). Consider
a sample of r; from 2/9/14 to 30/9/14.

(a) Find 7 and 5.

(b) Use t-test to test the hypothesis Hy : = 0 against Hy : u # 0 at
a = 5%.

(c) Construct a 95% confidence interval for the population mean .
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(d) Let HSI be the Hang Seng Index of the same period, estimate the

following regression model

Py = By + B1HST; + uy,

(e) Test Hy : 8; = 0 against Hy : 3, # 0 at o = 0.05. Is the price of
CHINA PACKAGING affected by Hang Seng Index?

4.6 Multiple Regression

In many situations, a single explanatory variable is not sufficient to explain
the variation of Y. We may regress Y on some more other explanatory

variables. A multiple regression is of the following form:

Yi = By + 81X + BoXoi + .o 4 B Xk + .

The OLS estimated model is:

Y, = Bo + B1X1¢ + BQXm +.+ Bkai-

It should be noted that the number of regressors cannot exceed the num-
ber of observations. Here the interpretation of B’s is a little bit different from
the case of simple regression. Bo is interpreted as the predicted value of Y if
all the X’s are zero. Sometimes 50 is not interpretable as X cannot be zero
or the predicted value of Y is beyond its possible range. Bk is interpreted
as the increase in the value of Y if X} is increased by 1 unit, holding all
other X’s constant. Sometimes, the sign of B may be counter-intuitive. For
example, if you regress the price of a house on its size and the number of
bedrooms, it may happen that the estimated coefficient associated with the
number of bedrooms is negative, although we expect it to be positive. The
reason is that we are holding the size of the house constant, but keep adding

bedrooms, this may reduce the price of the house.
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Example 4.4: Consider a regression model

Yi = By + 81 X1 + By Xoi + 1,

We have the following data

LY X1 T
1 2 3 1
2 1 1 2
3 4 2 3
4 5 0 4
Define
1 T11 T21 1 31
X — 1 T12 T92 _ 1 1 2 7
1 T13 T23 1 2 3
1 T14 T24 1 0 4
Y1 2 31
Y2 1 U2 o
Y: e s U: s /6: /81 ,
Ys 4 us
By
Ya 5 Uy

and Y = X + U. The least square method is to find # to minimize
S u? = ming U'U = ming (Y — XB)' (Y — X3). The first-order condition is

2(=X) (Y = XB) =0
and we solve that
B=(X'X)"XY.

We need to find the inverse of X'X
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1 31
1 11 L1 o 4 6 10
X'X=1]1312 =1 6 14 11
1 2 3
1 2 3 Lo 4 10 11 30
-1 299 35 37
1 4 6 10 2 8 &
(X'X)" = 6 14 11 =1 - 2 3
7 4
10 11 30 . T
2
299 35 37 7
R 36 18 18 111 1 —3
_ 35 5 4 _
B=1| -5 2 s 3120 L | = 1
-3 4 ] 1 2 3 4 2
18 9 9 5

Again, we use R? to measure the goodness of fit of multiple regression
models. However, we cannot use R? to measure the correlation between

Y and X, since we have more than one regressor here. We define R? =

1- g—?g As we increase the number of regressors, the explanatory power
of the regression increases, the error sum of squares is reduced. Thus, R? is
always non-decreasing with the number of X’s. In principle, as the number
of regressors goes to infinity, R? should approach 1. However, even if we have
a lot of observations, it is not always a good idea to increase the number of
regressors. A good model is a model that is simple and has high explanatory
power. Even if we add a garbage variable to the model, the R? may still
increase. Thus, we should not use R? to compare models. Instead, we define

an adjusted R? as follows:

T7—-1
T—k—1

Note that as k increases, there are two effects. The direct effect is a

R =1- (1-R?).

reduction in . This is because including an additional regressor reduces
the degrees of freedom of the model. The indirect effect is an increase in

=2 . . . =2 . .
R” via the increase in R%. Thus, whether R” increases or decreases with k
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depends critically upon the importance of the additional regressor. If the
additional regressor is significantly explaining the variation of Y, then R?
will increase substantially, and the indirect effect will dominate the direct
effect, ending up with an drop in R, However, if the additional variable
is a garbage variable, R? will only increase much. Hence, the direct effect
dominates the indirect effect, ending up with a decrease in R. In light of
this, we normally use R to compare across models. Note that when R is
maximized, the absolute value of the t statistics of all the slope coefficient

estimates will be greater than one.

Exercise 4.16: True/False. Explain.
(a) The more explanatory variables we have, the higher the .
(b). The R’ cannot be negative.

(c) When the sample size increases, the R? must be higher.

4.7 Simple Hypothesis Testing

If we are just interested in one of the coefficients in the multiple regression

model, the t-test is performed as usual, the degrees of freedom are n — k — 1.

For any « = 0,1, 2, ..., k, we test:

Hlﬁl%o

We define

Lobs = — Bf\ .
s (B,)

/Bi (1=0,1,...,k) are obtained by solving the k£ + 1 normal equations.




4.7. SIMPLE HYPOTHESIS TESTING

sd (ﬁz> = v 326i+1,i+17

2
2 =1
S
up = Y= By — 51X — BaXoi — . — B X,
Cit1i41 18 the (i + 1,74 1)"™ element of the matrix (X'X) .
1 X11 X21 e Xkl
1 X Xy X2
1 Xln X2n T an

We reject the null at the significance level « if |t ] > }t%7n_k_1|.

Example 4.5: Consider the following data

1=11=2 1=3 1=4

Xu 3 1 2 0
Xy 1 2 3 4
i 2 1 4 5
1 Xi1 Xon 1 31
I X X 112
X: 12 22 _
1 X3 Xos 1 2 3
1 Xy Xog 1 0 4
1 3 1
L1 L1 o 4 6 10
XX=13120 PR el BCAR EaR
L2 Lo 4 10 11 30
-t 299 35 37
. 4 6 10 w o _m_w
(X'X)" =] 6 14 11 | -z 5
7 4
10 11 30 _% 4 g

105
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299 5
,C2 = —,C33 =

36 9

€11 =

Ol ot

4.8 Joint Hypothesis Testing

Sometimes, we are interested in testing the significance of a set of coefficients.

For example,

Hy: By =03 =0,=0,
i.e., we would like to test whether X5, X5 and X, do not affect Y.
Be careful when you write down the alternative hypothesis H;. Most
students make mistakes here. Remember Hy U H; = S, where S is the

sample space. Thus, H; must be the complement of the statement Hy. Some

of you may write down Hy : B, = 3 = 8, # 0 or Hy : By # 3 # By # 0,
which are inappropriate, as those statements are not the complements of H.

The correct statement should be H;: At least one of the f,, 35,5, is not

equal to zero.

Sometimes, we are just interested in the linear relationship among f’s
rather than testing if the 3's equal some prespecified values. For instance,

we may like to test

Hy : By =P5=0,
Hy, : By, B5and (3, are not all the same.

or

Hy 52:253
Hy @ By # 208,

In all the aforementioned situations, the t-test is no longer appropriate,

as the hypothesis involves more than one 5. We use the F-test in these cases.
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The idea behind the F-test is as follows:

We run two regressions, one is the unrestricted model:

Y =B+ 51 Xui + By Xoi + oo + B Xk + wie

We obtain the unrestricted error sum of squares from this model, called
ESSy. Next, we impose the restriction of Hy on the model. For example, if
Hy: By = B4 = B, =0, then our restricted model is:

We obtain the restricted error sum of squares from this model, and call
it £SSg. (Note that ESSgr > ESSy.)

If Hy is true, the estimates of 3,, 35 and 3, in the unrestricted model will
converge to zero, and there will be no difference between the restricted and
unrestricted models. Thus, their error sum of squares should be the same
when the sample size is very large.

If Hy is false, then at least one of the /3, 35, 3, is not equal to zero, and
ESSy # ESSg as a result. We can therefore construct a test statistic based
on the difference between ESSk and ESSy. We define

(ESSgr — ESSy) / (dfr — dfy)
ESSy/dfy !

where dfr and dfy are the degrees of freedom for the restricted and un-

Fobs =

restricted model respectively.
If Hy is true, ESSr — ESS, will be very small. This implies F,;, will be
small if Hy is true. But how small is small? We have to find a critical value.
Now at a given value of «, find out the critical F'—value at df = (dfr —
dfy, dfy) from the F-table. If the observed F-value is bigger than the critical

F—value, we reject Hy at a level of significance.

Example 4.6: Consider the following demand function for chicken.

IDY;' = 50 +61 lnXli +621I1X2i —|—631HX31' —|—641DX4Z‘ —|—’UZ
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Suppose we run an OLS regression and obtain

—_

Y, = 2.1898 +0.34251n X;; — 0.5046 In Xo; + 0.1485In X, + 0.0997 In X,;

(0.1557) (0.0833) (0.1109) (0.0997) (0.1007)
R?2 = 0.9823
i=1,2,...30.

where

Y =per capita consumption of chicken (1bs)
X;=real disposable per capita income ($)
X,=real retail price of chicken per Ib (cents)
Xs=real retail price of pork per Ib (cents)
X,=real retail price of beef per Ib (cents)

and the figures in the parentheses are the estimated standard errors.

(a) Interpret each of the above coefficient estimates. Perform the t-test
for Hy: 3, =0v.s. H :3; #0,i=0,1,2,3,4 at a = 5%.

(b) Suppose we would like to test the hypothesis that Hy : 3 = §, = 0.
What is the purpose of testing this hypothesis? Now suppose under Hj, we

obtain

Y, = 2.0328+0.4515In Xy — 0.37221n Xy
(0.1162)  (0.0247) (0.0635)

R? = 0.9801

Perform an F-test for Hy : 53 = 3, = 0 at a = 5%.

Solution: Given

IHY; = 60 +61 thli —|—52111X2i +631HX31‘ +64IHX4Z' -+ uj;.
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OlnY; 0lY; 9y; 0Xy  0Y/Y
alant n 8Y; ath (9lanZ n ath/th
= elasticity of Y with respect to X; for i =1,2,3,4

(i.e., when X; increases 1%, Y will increase [3,%)

Thus,

B, = estimated elasticity of per capita consumption w.r.t. disposable

per capita income (income elasticity)

By = estimated elasticity of per capita consumption w.r.t. price of chicken

(price elasticity)

Bs = estimated elasticity of per capita consumption w.r.t. price of pork

(cross price elasticity)

B, = estimated elasticity of per capita consumption w.r.t. price of beef

(cross price elasticity)
exp (Bo) = estimated autonomous amount of per capita consumption when

X1, Xoi, X3; and Xy equal one.

To test the hypotheses Hy : 5, = 0 for ¢+ = 0,1,2,3,4, we find out
the critical value of the t-statistic at 5% level of significance with degree of
freedom (30 — 5) = 25.

t = 2.06.

The observed t-statistics are
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12,1898

When i = 0, tys = = 01557

= 14.06. Hy is rejected.

W)@
o

F>H
N——— N——— N——— N———

2)

v
)
) ) ) )

03425

Wheni = 1, tys = = 00833

= 4.11. H, is rejected.

05046

When i = 2, tys = = 01109

= 4.55. H is rejected.

2)
o) |
[\]

~0.1485
~0.0997

When i = 3, tys = = 1.49. H, cannot be rejected.

2)
o) |
w

)
N

0.0997
=N = 01007 — 0.99. H, cannot be rejected.
sd <54> ‘ [ |
b) The purpose of testing hypothesis Hy : #3 = 5, = 0 is to test the
3 4

relevance of the variables X3 and X4. If the hypothesis cannot be rejected,

When i = 4, ty =

this implies that we do not need to introduce the variables X3 and X, into
the model.
ESS

Using R2=1— g e have

(ESSk — ESSy) / (dfr — dfv)
ESSU / de
[TSS(1—RE) —TSS(1—Ry)] / (dfr — dfv)
TSS(1—RE) [ dfy
(RY — R%) / (dfr —dfv)
(1—RE) / dfy
(0.9823 — 0.9801) 25

1-00823  27—25
— 1.5537.

Fobs =

Thus, Fups < Foos(2,25) = 3.39. The hypothesis Hy : 3 = 6, = 0

cannot be rejected at 5% level of significance. [ |

Exercise 4.17: A model of death tolls due to heart disease is estimated

as follows:
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C@i = 139.68 + 10.71CIG; + 3.38EDF AT; + 26.75SPIRITS; — 4.13BEER;
n = Sample size = 34

k= 4 = Number of explanatory variables excluding the constant term
34

_—\2
ESS = Z(OHDi—OHDZ) — 21922
=1
= _ ,_BSS/n—k-1)
TSS/(n—1)

=0.672

where

C'HD = Death rate (per million population) due to coronary heart disease
in the U.S. during each of the years 1947-1980.

CIG =Per capita consumption of cigarettes measured in pounds of to-
bacco.

EDF AT = Per capita intake of edible fats and oil, measured in pounds.

SPIRITS =Per capita consumption of distilled spirits in gallons.

BEFER = Per capita consumption of malted liquor in gallons.

(a) Find the value of R?, Total Sum of Squares (T'S.S = Z (CHD; — CHD) )
and the Regression Sum of Squares (RSS) in the above model

(b) Suppose we would like to test the joint hypothesis Hy : 5, = 5 =

Bs = B4 =0, and run the restricted model as:

i) Show that the Ordinary Least Squares estimate for 3, is Bo =CHD,
34
Y CHD;
where CHD = =

34

i) Show that CHD; = CHD for all i = 1,2, ...,34. What is the value of
34 \2
the restricted error sum of squares £SS, = > (CH D,—CH Di> ?

=1
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iii) Perform an F test on Hy : B, = 85 = 63 = 5, = 0 at a = 5% using

the F-statistic defined as F' = ESS,/df.

Exercise 4.18: Suppose we have 4 observations of a trivariate model.

1=11=2 1=3 1=4
Xu 3
Xo 1
Y; 2

— N =

2
3
4

Tt = O

(a) Find Bo, Bl: /B2§
b FmdﬂZ:YZ—ﬁ _ﬁXlz_ﬁXZL fori:1,2,3,4;
( 0 1 2

n
>
1=1

Find §? = —=L
(c) Find s — 7
(d) Find sd (5) fori =0,1,2;
(e) Test
Hlﬁl%o
fori=0,1,2.

Exercise 4.19: Consider the model:

PRICE; = B, + 8,SQFT, + 8,BEDROOM; + u;,

i=1,2,..,19.

where

PRICE; is the price of house i (thousands of dollars)
SQFT; is the living areas of house i. (square feet)
BEDROOM,; is the number of bedrooms in house i

Suppose we estimate the model and obtain
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PRICE;, = 142.2 +0.313SQFT, + 43.9 BEDROOM,
(L53)  (6.73) (2515)

n = Sample size = 19,

= 2 = Number of explanatory variables excluding the constant term,
19

N2
ESS = Z (PRIC’Ei — PRIC’EZ) = 1332 = Error Sum of Squares,
i=1
7 - q_ ESS/(n—k—1)
TSS/(n—1)

= 0.75,

and the figures in the parentheses are t-ratios.

(a) Interpret each of the above coefficient estimates.

(b) Perform the t-test for Hy : 5, = 0vs. Hy : 3, # 0,1 =0,1,2 at
a = 5%.

(c) Find the value of R?, Total Sum of Squares (T'SS = Z (PRICE; — PRI C’E) )
and the Regression Sum of Squares (RSS = T'SS—ESS) in the above model.

(d) Suppose we would like to test the joint hypothesis Hy : 5, = S5 = 0,

and run the restricted model as:

i) Show that the Ordinary Least Squares estimate for 3, is 60 PRICE =
ZPR] CE;

i=1
19

i) Show that PRICE; = PRICE foralli = 1,2, ..., 19. What is the value
19 N2
of the restricted error sum of squares ESS, = ) (PRI CE; — PRI CEZ) ?
i=1
iii) Perform an F test on Hy : 5; = 5 = 0 at a = 5% using the F-statistic

_ (ESS’I‘ - ESSu)/(dfr - dfu)
defined as F = ESS, /d], )

Exercise 4.20: If the true model has X;, but we estimate a model with
X; and Xs. If Syo = 0, then 5, will be over-estimated. True/False/Uncertain.
Explain.
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Exercise 4.21: Consider the following production function for gross

national product at time t.

InY; =08y+ 6, In K + By In Ly + uy.

Suppose we run an OLS and get

mY, = 118+ 025InK,+046InL, t=1,2,.., 30
(6.94)  (3.13) (2.42)

R* = 0.93;

where

Y,=GDP at time t in constant dollars;
L,=Total employment at time t;

K,;=Capital stock at time t in constant dollars;

and the figures in parentheses are t-ratios.

Define an F-statistic

ESSp — ESSy) / (dfs — dfy)
ESSy / dfy 7

where dfr and dfy are the degrees of freedom of the restricted and unre-

o

stricted models respectively; £ SSr and ESSy are the error sum of squares

of the restricted and unrestricted models respectively.

E
(a) Use the definition R? = 1 — FS?, show that the F-test can be rewrit-

ten as

(R} — R%) / (dfr —dfv)
(1—-Rg) / dfv
(b) Suppose we want to test Hy : f; = 5 = 0 at « = 5%.What is
restricted model? Show that the R? = 0 in this restricted model.

F =
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(c) Compute the value of F in part (b) under Hy : 5, = 8, = 0.

Exercise 4.22: Consider the sample period from 1/9/14-30/9/14. Let

Y'=Daily closing price of the call warrant [25453];

X;=Price of [2628] China Life;

X,=The square of the price range of [2628] China Life in the previous
trading day, i.e, (Pmaxt—1 — Pmin’t_l)Q.

i) Run the following regression model

Y = By + B1.X1i + By Xoi + s,

Find the values of EO, BI,BQ. What is the meaning of Bo in this case?
Interpret Bl and 32.

ii) Test Hy : f; = 0 against H; : f; # 0 at o = 0.05. Is the warrant price
affected by the price of China Life?

iii) Test Hy : B4 = 0 against H; : 5, # 0 at o = 0.05. Is the warrant price
affected by the volatility of China Life?

iv) Compare your results with those from the simple regression. What
are the differences in terms of the estimated values of the coefficients, test
result for Hy : 8, = 0, R? and the adjusted R?.

4.9 Multivariate Multiple Regression

Multivariate regression is a technique that estimates a regression model with
more than one outcome variable. Mathematically speaking, one would like
to model the relationship between m responses Y7, Ys, ..., Y,, and a single set
of predictor variables 21, 29, ..., z,.. Each response is assumed to follow its own

regression model, so that for j =1,2,....n

Yii = Bo1 + Buizjn + -+ Brazir + €0

Yio = Boz + Br2zj1 + - + Brozjr + €j2
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Y}m = BOm + Blm’zﬂ +...t Brmzﬂ“ + €jm

where 2;1, ..., zj» denote the values of the predictor variables for the ;"
observation.

For example, one may like to examine how the three measures of health
of individual j, namely, cholesterol (Yj;), blood pressure (Yjs2), and weight
(Yj3) are affected by his/her eating habits such as how many ounces of red
meat (2;1), fish (zj2), dairy products (z;3), and chocolate (z;4) consumed per
day.

In matrix notation,

1 zi1 -0 21y Y Y2 -0 Yin
1 201 -+ 2o Yor Yo -0 Yo,
p— y Y pu—
nx(r+1) : : : nxm : : :

1 Zn1 " Znr Ynl Yn2 e Ynm
€11 €12 €1m 501 502 T 50m
€21 €22 " Eam 511 512 T 61m

€ o s B o
nxm (r+1)xm : :
Enl En2 "¢ Enm Brl 6r2 o Brm

The multivariate linear regression model is

Y =703 +e¢.

The estimator is for S
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B=(Z'2)'Z7'Y.

Example 4.7: Consider the following model for j = 1,2, ..., 5.

Yi1 = Bor + Bz + €51

Yio = Boo + Brazj1 + €j2.

The data are given as follows:

z 0 1 23 4
i 1 4 389
Y; -1 -1 2 3 2
10 1 -1
11 4 -1
Z =112 Y =|3 2
5x2 5%x2
1 3 8
1 4 9
B = (Zz2)'ZY
-1
10 1 -1
11 4 -1
11111 11111
_ 1 2 3
01234 01234
13 8
1 4 9

B 5 10 25 5

B 10 30 70 20

B 1 10 25 5\ (1 -1
T 5x30—102\ —10 5 7020/ \2 1 /)

The fitted values are generated from
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~

}/}1:14—22]'1.
?}'2:—14—2’]'1.
10 1 -1
11 3 0
Y=2Z8=|1 2 L s
- - ) 1 -
1 3 7T 2
1 4 9 3
The residual matrix is
1 -1 1 -1 0 0
4 —1 3 0 1 -1
e=Y-Y=|3 2 [-]5 1 |=]| —2 1
8 3 7T 2 1 1
9 2 9 3 0 -1

oS 0O 1 -2 1 0
Y =
0O -1 1 1 -1

O N Ot W

171 43
43 19 )

I
N
[
—_
S
—_
N W
w ©o
N ©
~—
© 00 W B
|
I
N
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1 -1
1 3579 30 165 45
Y'Y = 5 1 | = .
-1 01 2 3 45 15
7T 2
9 3
0 O
1 -1
PN 0O 1 -2 1 0 6 -2
€Ee = -2 1 = .
0o -1 1 1 -1 -2 4
1 1
0 -1
Note that

Y'Y =Y'Y + &5

Exercise 4.23: Consider the model
Yii = Bo1 + Bz +€n

Yjo = Boa + Br22j1 + €52

The data are given as follows:

2 -2 -1 0 1 2
Y, 5 3 4 21
Yo =3 -1 -1 2 3

(a) Solve :\Bop Bn, BOQa 312-

(b) Find Y.

(c) Verify that Y'Y = Y'Y +€%.

(d) Repeat (a), (b), (c) if the data are given as follows:
z7 3 1 0 2
Y 3 5 6 4
Y 1 1 11
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Chapter 5
Principal Components Analysis

Principal components analysis (PCA) aims to transform a set of correlated
response variables into a smaller set of uncorrelated variables called principal
components. The objectives of a PCA are (1) to reduce the dimensionality
of the data set and (2) to identify new meaningful underlying variables. If
the data are plotted in a p-dimensional space, will the data take up all
p dimensions? If not, the original variables can be replaced by a smaller
number of underlying variables without losing any information. Note that
we cannot guarantee that the new variables, called principal components,

will be meaningful. The principal components have the following properties:

(1) They are uncorrelated;

(2) The first principal component accounts for much of the variability in
the data as possible;

(3) Each succeeding component accounts for as much of the remaining

variability as is possible.

5.1 The Two-Variable Case

Let the random vector X’ = (X7, X5) have the covariance matrix

121
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Q_ Var (X;) Cov (X, X?)
\ Cov(Xy, X1)  Var (Xo) ’

with eigenvalues A\; > Ay > 0. We make two linear combinations of X
variables, called them Y variables. Note that X may be correlated, but Y
must be uncorrelated. If one of the X is uncorrelated with other X, then
this X will become one of our Y, i.e., the weight associated with other X is
zero. In the extreme case, where all X are uncorrelated, then Y will just be

X. Mathematically speaking, consider the linear combination

Y1 = an X1 + a2 Xo = ai X,

Yo = ag1 X1 + aXs = ajX.
Var (Y1) = Var (a]X) = ajVar (X) a; = a]Qay,
Var (Ys) = Var (a,X) = ajVar (X) a; = a,Qa,,

Cov (Y1,Y3) = a]Qa,.

The first principal component=linear combination of a} X that maximizes

Var (a)X)

subject to

p
/ _2 : 2
Jj=1

The second principal component=linear combination of a;,X that maxi-
mizes Var (a,X) subject to abas = > °"_, a3; = 1 and Cov(a,X, ajX) = 0.
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What values of the vector a will satisfy the above condition? Here, we re-
call the eigenvalues and eigenvectors that we have learned in previous classes.

In general, if

Y; = e;X = eile + 6¢2X2 for ¢ = 1, 2,

where e; = (e;1, 61'2)/ is the eigenvector of €2 associated with the i*" eigen-

value );, then the above condition will be satisfied.

Note that since €2 is a covariance matrix, it is a positive definite matrix

and its spectral decomposition can be expressed as

2

/

Q= g €€,
=1

where ); is the i*" eigenvalue and e; is the i'" eigenvector. We can rewrite

the decomposition in matrix form such that

2
)\1 0 e
_ oo — 1 o /
p&}p—g /\lezez—(el7 e2)<0 )\2><el2>—PAP,

i=1

where

A
v(03)
2%2 0 X

P is a matrix collecting the eigenvectors

€11 €21
P - ( €1, € ) - .
2x2 €12 €22

Using the properties that eje; = 1 and eje; = 0 for ¢ # j, we have
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Var (Y1) = Var(e)X)=eVar(X)e; =€|Qe; = e]PAPe;

, )\1 0 ell
el<el» e2><0 )\2><e,2>91
. , MO ele;
2
A O 1

Similarly, Var(Y2) = A2 and

Cov(Y1,Ys) = € Qey =ePAPe,
1 1

= e’1<e1, e2><)§ ;\)2)(:2)82
e (0 0)(50)
- (o) () (1)

The proportion of total population variance due to first principal compo-
A1

A+ Ao

nent =

Example 5.1: Consider the covariance matrix

1 4
0= .
(4 100)

(a) Determine the population components Y; and Y5.
(b) Calculate the proportion of the total population variance explained

by the first principal component.
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b
Solution: Recall from Chapter 2 that for a 2 by 2 matrix < ¢ y ) , the
c

eigenvalues are

1
M= (a+d+ \/(a—d)2—|—4bc> :
1 2
)\2:§(G+d— ((Z—d) +4bC)
Thus, we have
0.04034
A1 = 100.16, e = :
0.99998
0.99998
A2 = 0.83865, ey = .
—0.04034

Y: = €/ X = 0.04034X; + 0.99998 X5,

Y, = e,X = 0.99998 X; — 0.04034.X,.

Note that the first principal component attaches a very large weight to
Xy, since X has a large variance (This large variance may be due to the unit

of measurement used).

Var (Y1) = Var(0.04034X; + 0.99998X5)
= (0.04034)* Var (X1) + (0.99998)* Var (X5)
+2(0.04034) (0.99998) Cov (X1, X5)
= (0.04034) (1) + (0.99998)* (100) + 2 (0.04034) (0.99998) (4)
— 100.16
= A

Similarly, we can show that Var (Y3) = 0.83865 = \y. Note that
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Cov (Y1,Y2) = Cov(0.04034X; + 0.99998X5,0.99998 X, — 0.04034.X5)

= 0.04034(0.99998) Var (X1) — ((0.99998)% — (0.04034)%) Cov (X1, X2)

—0.04034 (0.99998) Var (X»)

= (0.04034) (0.99998) + ((0.99998) — (0.04034)7) (4) — (0.04034) (0.99998) (1

= 0.

Therefore, the proportion of total population variance due to first princi-

al component M 100.16 0.99
111 nent = = = U. .
P P M+ A 100.16 + 0.83865

Exercise 5.1: The two Eigen values of a 2 by 2 square matrix can be

equal to each other. True/ False

Exercise 5.2: The smallest Eigen values of a 2 by 2 square matrix can

be equal to zero. True/ False

Exercise 5.3. Determine the population components Y; and Y. and

calculate the proportion of the total population variance explained by first

2 1
principal component for the covariance matrix 2 = ( L ) .

Exercise 5.4. Determine the population components Y; and Y. and

calculate the proportion of the total population variance explained by first

2 2
principal component for the covariance matrix 2 = ( 5 4 ) .

10
Exercise 5.5: True/False. For the correlation matrix p= < 01 ),

10
(a). The corresponding covariance matrix can be Q = ( 0 o ) :

10
(b). The corresponding covariance matrix should also be Q = ( 0 1 ) .
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5.2 The General Case

Let the random vector X' = (X7, X», ..., X,,) have the covariance matrix

Var (X;) Cov(X:1,Xs) -+ Cov(Xy,X,)
| Cov(Xa, Xy)  Var(Xz) -+ Cov(X3 X,)
Cov (X, X1) Cov(X,, Xs) -+ Var(X,)

with eigenvalues \; > Ay > ... > A, > 0. We make p linear combinations

of X variables, called them Y variables. Consider the linear combination

}/1 = a;_X = CLlle + CL12X2 + ...+ CLlep,

Yé = a/QX = CLQle —+ CLQQXQ + ...+ CLngp,

Y;J = a;)X = Clple —+ CLp2X2 + ...+ CLprp.

Note that
Var (Y;) = a/Qa;,
Cov (Y;,Yy) = a)Qay.
First principal component=linear combination of a|X that maximizes

Var (a)X)

subject to
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P

Po 2 _

aja; = E ay; = 1.
=1

The second principal component=linear combination of a;,X that maxi-

mizes Var (a5X) subject to ajay = > °F_, a3; = 1 and Cov(a5X, a}X) = 0.

j=1
The ™" principal component=linear combination of a;X that maximizes
Var (a;X) subject to aja; = >-"_, af; = 1 and Cov(ajX,a,X) = 0 for k < i.

What values of the vector a will satisfy the above condition? In general,
if

Y;:e;X:eile—l—eing—i—...—i—eipo, (i:1,2,...,p),

where e; = (€1, €2, ..., eip)/ is the eigenvector associated with the i eigen-
value )\;, then the above condition will be satisfied. Note that 2 is a positive
definite matrix with the spectral decomposition of a p by p symmetric matrix

X can be expressed as

p
2 : /
Q= /\ieiei,
i=1

where ); is the i*" eigenvalue and e; is the i** eigenvector. We can rewrite

the decomposition in matrix form as

Q =PAP/,
pXp
where
A0 0
pPXp :
0O O Ap

P is a matrix collecting the eigenvectors
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Pz(el, €, - ,€) >
pXp
Fori=1,2,...,p,
Var (Y;)
= Var(eX)=eVar (X)e; = e;Qe;, = e{PAP'¢;
A0
0 Ao
= ( ele;, €ejey, --- ele, --- ,ele, > N
0 0 Ap
A O
0 Ao
- (0, 0, 1, ,0)
i 1
0 0 Ap 0
= A\
Note that

Var (Y1) +Var (Ya)+ ...+ Var(Y,) = M+ +..+)
= Trace (S2)
= Var(Xy)+Var (X)) + ...+ Var (X,)

and

Cov (Y;,Yy) = e,Qe, = e,PAP'e, =0  fori# k.

The proportion of total population variance due to k™ principal compo-
k

. Note that dY iable should have 1
VI ote that a goo variable should have large

nent is
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variation, since we need the variation of Y to reflect the variation in X. Al-
though we have p principal components Y, not all of them are useful. For
example, if it just happens that one of the Y variables (say, Y,) has no vari-
ation at all, i.e., for all the X observations we have, Y, has the same value.
In this case, Y, contains no information of X and can be dropped, so the
number of variables is reduced from p to p — 1. The principal components
analysis will be extremely useful if we can reduce a very large value of p (say,

50) to just a few useful variables (say, 3).

Example 5.2: If the covariance matrix of X7, X5 and X3 is

1 -2 0
0= -2 5
0
We can show that
0.383
A1 = 5.83, e = —-0.924 |,
0
0
Ay = 2, €y = 0 )
1
0.924
A3 = 0.17, es =1 0.383
0

Y) = e X =0.383X; — 0.924 X5,

}/2 :eéX:X&

Yy = e4X = 0.924X; + 0.383X,.
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Var (Y1) = Var(0.383X; —0.924X5)
= (0.383)° Var (X1) + (—0.924)* Var (X5) + 2(0.383) (—0.924) Cov(X1, X,)
= (0.383)% (1) + (—0.924) (5) +2(0.383) (—0.924) (—2)
= 5.83=\.

Cov (Y1,Ys) = Cov(0.383X; — 0.924X5, X3)
= 0.383C0ov (X1, X3) — 0.924Cov (X3, X3)
= 0.383(0) — 0.924(0)
= 0

Similarly, we can show that Var (Y2) =2 and Var (Y;) = 0.17.

Therefore, the proportion of total population variance due to first princi-

al component = M = 083 =0.73
P P M+t B83t2+017

The proportion of total population variance due to second principal com-

ponent = 2 = 0.25.

Mt 583+2+40.17

Thus, the first two components account for 98% of the population vari-

ance. In this case, the component Y3 can be dropped.

5.3 Principal Components Obtained From Cor-

relation Matrices

Since the covariance matrix will be affected by the unit of measurement,
sometimes it is better to standardize the variable and use the correlation
matrix. Principal components obtained from covariance and correlation ma-

trices are different.
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Example 5.3: Note from the previous example that the first principal
component attaches a very large weight to X, since X, has a large variance.
This large variance may be due to the unit of measurement used. The prob-
lem can be solved by using the correlation matrix. Consider the covariance

matrix of the previous example

1 4
Q= .
(4 100)

(a) Convert the covariance matrix into a correlation matrix.

(b) Determine the population components Y; and Y, from the correlation
matrix.

(c) Calculate the proportion of the total population variance explained

by the first principal component.

Solution: We first perform a standardization of X

X1 — 1y

7 = —F/—,
VVar (Xy)

Xo — py
VVar (Xs) .

The corresponding correlation matrix is

B Var(Z,) Cov(Z1,Z,) \ ([ 1 04
= Cov (Zy, Z1)  Var(Zs) S \o04 1 ‘
0.707
)\1 = ].4, e; = )
0.707

0.707
)\2 = 06, 82 = .
—0.707

Jy =
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Similarly

Note that

Var (Y1) =

Similarly

Cou (¥3, Ya)

Y,

0.707Z; + 0.707Z;

X, — X, —
0.707—2—H1_ | gpo7—22_"H2
Var (X7) Var (Xs)

X1 — Ho
1

X9 —
0.707 + 0.707T

0.707 (X1 — ptq) + 0.0707 (Xa — p1y) -

Yy = 0.707 (X1 — p1,) — 0.0707 (X2 — 1) .

Var (0.707Z; + 0.7072Z5)

0.707*Var (Z;) + 0.707*Var (Zy) + 2 (0.707) (0.707) Cov (Z1, Zs)
0.707% (1) 4+ 0.707* (1) + 2(0.707) (0.707) (0.4)

14 =\,

Var(Ys) = 0.6.

Cov (0.707Z; + 0.707Z,,0.7072, — 0.707Z,)

0.707*[Cov (Zy, Z,) — Cov (Z1, Zy) + Cov (Za, Zy) — Cov (Zy, Z5))
0.707*[Cov (Zy, Z,) — Cov (Zy, Z5)]

0.707* [Var (Z,) — Var (Z,)]

0.707% [1 — 1]

Therefore, the proportion of total population variance due to first prin-

cipal component

A1 14

M+ 14406

= 0.7. Note that this proportion is
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much lower than the case of the previous example when the variables are not

standardized.

5 2
Exercise 5.6: For the covariance matrix €2 = ( - ) ,

(a) Determine the population components Y; and Y5.

(b) Calculate the proportion of the total population variance explained
by Y;.

(c) Convert the covariance matrix to a correlation matrix. Repeat (a)
and (b).

(d) Compare the components in (a) and (c), Are they the same?

1 -2 0
Exercise 5.7: For the covariance matrix =] -2 5 0 |,
0O 0 2

(a) Show that the corresponding correlation matrix is

o)
I
(e} | —
e
o = &|w
= o O

(b) Show that the eigenvalues are A\; = 1.89443, Xy = 1, A3 = 0.10557.
find the corresponding eigenvectors.

(c) Calculate the proportion of the total population variance explained
by Y;.

Exercise 5.8: Find the daily return r;, = In P, — In P,_; of the six stocks
of Hang Seng Index Property sector [1], [12], [16], [83], [101] and [688] for
October 3 to October 31, 2014.

(a) Construct the sample covariance matrix S, and find the sample prin-
cipal components.

(b) Determine the proportion of the total sample variance explained by

the first three principal components.
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5.4 Covariance Matrices with Special Struc-

tures
Q= o0 .
0 2
Setting
M =5, M\ = 2.
0 1
e = , €9 = .
! 1) 0
Y =€ X = X;.
}/QZGIZX:XQ.

Thus, the set of principal components is just the original set of uncorre-

lated variables, and nothing is gained by extracting the principal components.

In general, if we have a set of p uncorrelated variable with covariance

matrix

011 0
Q- 0 0"22

0 0 Opp
with 011 Z 0929 Z Z Opp- Settmg
1 0
0 1

e — 0 ,€9 = 0 y ey €p =
0 0 1
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)\1 =011, >\2 = 0922, ..., >\p = Opp-

We will have Y; = X for all 4.

Exercise 5.9: For the covariance matrix

Q:

o O N
S =~ O
-~ O O

(a) Determine the population principal components Y7, Y2 and Y.
(b) Calculate the proportion of the total population variance explained

by the first principal component.

5.5 Equicorrelation Matrix

Consider the 3 by 3 covariance matrix
L pop
Q=0 p 1 p
pp 1

For 0 <p <1

The corresponding correlation matrix is

DD

L p

p=1p 1

p P

It can be shown that the greatest eigenvalue of this matrix is

M=1+B-=1)p=1+2p

and its normalized eigenvector is

, (1 1 1)
ei=|—=—= =]
3'V3

w
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The remaining two eigenvalues are all equal, i.e., A\ = A3. Since A\; + Ay +

A3 is the dimension of the correlation matrix (=3), we have

3—A  3—(1+2p)

Ao = A3 = —1—
2 3 5 5 P
We can also show that
1 1
V1x2 V2%x3
_ —1 1
€2 V1x2 3 V2x3
-2
0 V2x3
The first principal component is
Y—e’X—1X+1X+1X
1 1 \/g 1 \/g 2 \/g 3

of the total variance. Note that the higher the value of p, the higher the

which accounts for

importance of the first principal component. It is proportional to the sum
of the three original variables, which might be regarded as an "index" with

equal weights.

Example 5.4: Let

1 06 06
Q=306 1 06
06 06 1

(a) Determine the population components Y; to Y3.

(b) Calculate the proportion of the total population variance explained
by Y;.

Solution: It can be shown that the greatest eigenvalue of this matrix is

A =3[1+2(0.6)]

and its normalized eigenvector is
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()

Xy =A3=3(1—06) =12

1 1

V1x2 V2x3
_ -1 _ 1

€2 = VIX2 €3 = V2x3
—2

0 V2x3

The first principal component is

1 1 1

Vi =—=X;+ —=Xo + —=X;,
RV R S R
1 1
Vo= —X; — —Xo,
? \/51 \/52
1 1 2
V= —X; +—=Xo — =X,
’ \/61 \/62 \/63

which accounts for [1 4 2(0.6)] /3 = 0.7333 (or 73.33 percent) of the total

variance.

In general, consider the p by p covariance matrix

1 p PR p
Q=0 Pl P

For 0 <p <1
Note: Please do not mix up p and p.
The greatest eigenvalue of this matrix is

M=c[1+(p—1)p]
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and its normalized eigenvector is

The first principal component is

1 1 1
Yi=eX=—"X+—=Xo+ ...+ —X,,
1 1 /P 1 /P 2 /P p

which accounts for

—

1+ (p—1)pl/p

of the total variance. The remaining p — 1 eigenvalues are all equal to

)\2:)\3:...:)\p202[1—p].

The remaining p — 1 eigenvectors are

1 L L
1 -
%) e (i—1)i (p—1)p
—1 1 .
T2 723 :
0 —2 1
€ = . €3 = 20><3 y ey €5 = LéZ:Bz 30 €p = .
: (i—1)2 1
' : (r—1)p
0 0 —(p—1)
0 (p—L)p

Exercise 5.10: Find the eigenvalues of the correlation matrix

= (01)

Exercise 5.11: Let

06 06 --- 1
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(a) Determine the population components Y; to Y.

(b) Calculate the proportion of the total population variance explained
by Y;.
5.6 Sample Principal Components

Let the sample covariance matrix of the random vector X’ = (X3, Xo, ..., X,)
be

S11 S12 0 S1p

S21 S22 "t Sp
S =

Spt Sp2 ttt Spp

The " sample principal component is given by

Y, = X =1 X1+ €pXo+ ... +€,X,.

Sample variance of Y

Var <§A/;> :/)\\i, 1=1,2,...,p.
Sample covariance
Cov (f/f/k) —0  fori+#k

Total sample variance of Y = 511 + 592 + .. + 55, = Xl—i— Xg + ..+ Xp.

5.7 Standardizing the Sample Principal Com-

ponents

Let the standardized observations be
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Tl —T1 T2 — X2 Tip — Tp
V511 V522 \/Spp
To1 — X1 T2 — T2 Top — Tp
7 = S11 522 Spp
nxp .
Tn1 — z1 Tn2 — T2 Tnp — Ep

The sample mean vector is

Tj1— T

V511

Tj2 — T2

VS22 =0.

2 =1
2 =1

NI
Il

Zn Tjp — Tp
j=1

Spp

The i*" sample principal component is given by

Y, = enZy + inlo+ ... + €2y = 6.
Sample variance of y
vur(ﬁ):zii i=1,2...p.
Sample covariance
Cov (2,%) =0 for i # k.
Total sample variance of Y = /):14— /):2 + ...+ Xp =Dp.

Example 5.5: Let X, ..., X5 denote observed weekly rates of return for
Allied Chemical, du pont, Union Carbide, Exxon, and Texaco, respectively.

Suppose we have
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0.0054
0.0048
0.0057
0.0063
0.0037

and the sample correlation matrix is

1
0.577
0.509
0.387
0.462

0.577
1
0.599
0.389
0.322

0.509
0.599
1
0.436
0.426

0.387
0.389
0.436
1
0.523

CHAPTER 5. PRINCIPAL COMPONENTS ANALYSIS

0.462

0.322

0.426

0.523
1

The eigenvalues and the corresponding normalized eigenvectors of R are
A = 2.857, Ay = 0.809, Ag = 0.540, Ay = 0.452, A5 = 0.343 and

0.464
0.457
0.470
0.421
0.421

0.387
0.206
—0.662
0.472
—0.382

, €2 =

, €5 =

0.240

0.509

0.269
—0.526
—0.582

, €3 =

—0.451
0.676
—.400

—0.176
0.385

—0.612
0.178
0.335 ;
0.541
—0.435

}A/l =€,Z = 04647, + 045775 + 0.470Z3 + 0.421Z, + 0.421Z5,

?2 =e,Z = 0.240Z; + 0.50975 + 0.26973 — 0.526Z4 — 0.582Zs.
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2.857 + 0.809
The first two components account for + = 73% of the total

standardized sample variance. Note that 17'1 ~045(Z1+ Zo+ Zs+ Zy+ Zs) =
0.45 (57) = 2.257. Therefore, the first component is a roughly proportion to
the sample average, which can be perceived as a general stock-market com-
ponent. The second component represents a contrast between the chemical
stocks (Allied Chemical, du Pont, and Union Carbide) and oil stocks (Exxon
and Texaco). It might be called an industry component. Thus, most of the
variation in these stock returns is due to market activity and uncorrelated
industry activity. The remaining components are hard to interpret. They

may be variation specific to each stock.

5.8 Determining the Number of Principal Com-

ponents

Note that some of the Y variables have little variation, so we may drop them
without much loss of information. But what is the rule for dropping Y7
There are two methods to determine the number of principal components.
Both are based on the eigenvalues of covariance matrix €2. One is to drop
those Y with eigenvalue less than one. Another useful rule to determining
an appropriate number of principal components is a scree plot, with the
eigenvalues ordered from the largest to smallest. For example, if p = 6, and
the eigenvalues are 2, 0.9, 0.7, 0.24, 0.22, 0.19, then the first three Y should
be used. In the previous example, with /):1 = 2.857, /):2 = 0.809, /):3 = 0.540,
X4 = 0.452, X5 = 0.34, if we use the first rule, then number of principal
components should be one. If we use a scree plot, we may retain the first

two principal components.

Exercise 5.12: Find the unadjusted daily closing price from Yahoo Fi-
nance for the following Hong Kong stocks from 30/9/2014 to 31/10/2014:
[1], [5], [11], [12], [16].
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(a) Calculate the daily returns r;, = In P, — In P,_; for these stocks from
3/10/2014 to 31/10/2014 using the log difference of price.

(b) Standardized the returns and calculate the sample correlation matrix
R for the standardized daily returns of these 5 stocks.

(c) Based on the sample correlation matrix R, find the sample principal
components.

(d) Determine the proportion of the total sample variance explained by

the first two principal components.



Chapter 6
Factor Analysis

Suppose variables can be grouped by their correlations. i.e., all variables
within a particular group are highly correlated among themselves, but they
have relatively small correlations with variables in a different group. Then
it is conceivable that each group of variables represents a single underlying
construct, or factor, that is unobservable but is responsible for the observed
correlations. Factor analysis can be considered as an extension of principal
components analysis. Principal components analysis is concerned with ex-
plaining the variance in the variables while factor analysis is concerned with
explaining the covariances.

Factor analysis is an interdependence technique in which all variables are
simultaneously considered, each related to all others. The factor model can

be written as

X1 =y = Fy 4+ LBy + oo+ i B + €1,

Xo — g = lo1 F + looFo + .. 4 Lo Iy, + €2,

Xp — ,up = ZplFl + lp2F2 + ...+ lmem + Ep.

where

145
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,,,,, X, are observed variables;

Fy, F;, ..., F,,, are unobserved common factors, with m < p;

€1,€2,..€p are the error terms, or can be considered as specific factor.

77777

In matrix notation, we have

X—pu=L F + e .

(px1)  (pxm)(mx1) (px1)

The coefficient I;; is called the loading of the i*" variable on the j* factor

L is the matrix of factor loadings.

bl oo hm

l21 l22 l2m

L:

b1 Ly - Lm

Note that F is unobservable, so factor model is different from regression

model. We assume that

Cov(e,F)=E (eF') = 0.

These assumptions constitute the orthogonal factor model. The orthog-

onal factor model implies a covariance structure for X.
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Q = CoX)=EX-p)(X-p)
= E(LF +e¢)(LF +¢)
= LE(FF)L'+LE (Fe') + (eF)L' + E (e€)
= LIL'+ L0+ OL'+%¥
= LL'+W.

In factor analysis, the covariance matrix is partitioned into two parts:
that due to the common factors and that due to the unique factors. Any
covariance (correlation) not explained by the common factors are associated
with the mutual uncorrelated unique (residual) factors. In principal compo-

nent analysis, there is no residual variance, all variance is explained by the

components.

Cov(X,F) = E(X—pn)F)
= E((LF+¢)F)
— LE(FF)+ E (eF)
= LI+0
= L.

Thus, we have

Cov (Xz, F‘j) = ll.]

The portion of variance of the i'* variable contributed by the m common

factors is called the " communality, denoted by

The portion of Var(X;) due to the specific factor is called the uniqueness,

or specific variance ;.

Var(X;) = oi = hi + v,
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1=1,2,...,p.
Note that what we can observe are the X variables and their covariance
structure. We would like to derive the loading matrix.
Example 6.1: Consider the covariance matrix
1 0.
Q= > .
0.5 1
Suppose there is one factor, i.e., m = 1, we can decompose the matrix as
1 05 [ 0
= ! < i o ) + v
0.5 1 l21 0ty
_ B luln n Yy 0
lilon 15 0y

B+v, luln )

liloy By + 1y

= LL'4+W.
We have
l%l + ¢1 = 1;
Ll = 5
lgl + ¢2 =1L

Note that there is no unique solution in this case. One solution is l1; =
loy = \/g , and ¢, = ¢, = 3. The portion of variance of the first variable

contributed by the single common factor, i.e., the communality of X; is

1
W =12 ==
1 11 2

and the variance of X; can be decomposed as
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1 1
Var(X,) = o1 = hi + ¢, = 5 + 5

communality specific variance

Example 6.2: Consider the covariance matrix

19 30 2 12
30 57 5 23
2 5 38 47
12 23 47 68

We can decompose the matrix as

19 30 2 12 4 1 2000

30 57 5 23 | 7 2 47 -1 1 0400

2 5 38 47 | —16(1268>+0010

12 23 47 68 1 8 000 3
= LL'+W.

The portion of variance of the first variable contributed by the 2 common

factors, i.e., the communality of X; is

h? = li + l%2
— 42 4 12
= 17.

and the variance of X; can be decomposed as

Var(Xl) =011 — 19 = 17 + 2

communality specific variance
A similar breakdown occurs for other variables.
When m > 1, there is always some inherent ambiguity associated with the

factor model. Let I" be an m x m orthogonal matrix such that TT' = I"T" = 1.
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X-p=LF+e=LIT"F+e=LF +e.
The factors F and F~ have the same statistical properties, with

*

E(F)=E(I'F) =T'E(F) = 0.

Cov (F') = E(I'FFT) =I"E(FF)T =TI'T = 1.

The loadings L are also different from the loadings L

Q=LL+¥ =L () L'+¥ = (L) (L) +¥.

Note that principal component analysis is merely a transformation of the
data. No assumptions are made about the form of covariance matrix from
which data comes. On the other hand, factor analysis assumes that the
data comes from a well-defined model, where underlying factors satisfy the
above assumptions. Also, in principal component analysis the emphasis is on
a transformation from the observed variables to the principal components,
whereas in factor analysis the emphasis is on a transformation from the

underlying factors to the observed variables.

Exercise 6.1: Show that the covariance matrix

1 063 045
p=| 063 1 035
045 035 1

for standardized random variables Z;, Z, and Z3 can be generated by the

following factor model:

Z1 = 0.9F] 4 &4,

Zg = 07F1 + Eg,
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Zg = 05F1 + &3.

where Var (Fy) =1, Cov (e, F}) = 0, and

0.19 O 0
¥ =Cov(e) = 0 051 0
0 0 0.75

Exercise 6.2: Suppose the test score of a student depends on its intelli-

gence (an unobservable common factor),

Chinese = l11F} + €1,

Englzsh = l21F1 + &g,

Maths = l31F1 + 3.

and suppose the correlation of the test score is

Chinese FEnglish Maths

Chinese 1 0.4 0.9
English 0.4 1 0.7
Maths 0.9 0.7 1

Show that there is a unique choice of L and ¥ with Q = LL'+W¥, but
that 13 < 0, so the choice is not admissible.

6.1 Methods of Estimation

6.1.1 The Principal Component Method

Let © have eigenvalue-eigenvector pairs (\;, €;) with A\; > Ay > ...

WV
>

S
WV
@)

and m = p. Then
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ONCH
R Y
: (pxp)(pxp)

p
p{}p = Z )\ieie;7 - ( \/)\_lelv \/)\_Qe27 IR IRV )\pep

i=1 :
/
A /)\pep

In this case, if all the p factors are used, we have

v =0.

Note that since not all factors are used, if we just use m factors (m < p),
then

m
~ E /
i=1

Ve

Ve
= (\/)\7161, \/)\7262, 7\/>\mem> . 2
VAmel,
= L L

(pxm)(mxp)

Allowing for specific factors, the approximation becomes

Q ~ LL'+®
Ve Yy 0 - 0
\//\_Qe/ 0 o, -+ 0
= 1€1 2€9, - V AmCm ? 2
<\/)\_ ’ \/)\_ ’ VA ) : + : Do :
VAme, 0 0 - ¥,

where

m
2
Y, =0 — E lij‘
j=1
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6.1.2 Maximum Likelihood Method

If we assume F' and ¢ to be jointly normal, the observations X are then
normal. For each observation x; = (1, Zj2, ..., 7;,) . The joint density of x;
will be

1

[ (21,250, ..., 15) = Wex

1 _
(500205 - ).
This is the joint density for one point of observation of p variables. If
we have n points of observations in our sample, and if each observation is

obtained independently, the overall joint density will be

. 1 1 'Ot
o (3 0 )

! § 1 )
B e e <_§ (O = ) 2 G — )>

n

1 1 -1

Jj=1

1 1 ! / -1
= exp | —= g x; —p) (LL'+W¥ X;—pn) |-
(27T)np/2 ’LL/+\I’|H/2 < 9 = ( J ) ( ) ( J ))

This joint density function is a function of X. Given our data X, we
can also consider it as a function of L and W, we call this the likelihood
function. The maximum likelihood method is to choose the values in L and
¥ to maximize the above function. We can solve for the initial loadings and

W after proper constraints are imposed.

6.2 Factor Rotation

When a set of factors are derived, they are not always easy to interpret.
Do not try to interpret underlying factors until you have performed a factor
rotation. Most rotation procedures try to make as many factor loadings

as possible near zero and to maximize as many of the others as possible.
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Since factors are independent, it would be nice if response variables were not
loaded heavily on more than one factor. Consider the rotation in the two
factor cases. Let L be the original unrotated loadings, the rotated loading is

given by

where

cos sin
I' = ) ¢ ¢ clockwise rotation;
—sing cos ¢

r_ ( cos¢p —sing

] counterclockwise rotation.
sing  cos ¢

Example 6.3: Consider a simple case where p = 2 and
I 0.56 0.82 |
0.78 —0.52

what is the new coordinate if the axes are rotated clockwise / counter-
clockwise by 45°7

Solution: For clockwise rotation

i I T 0.56 0.82
0.78 —0.52

1

_ <O.56 0.82 )( %
1

0.78 —0.52 -5

For counterclockwise rotation

cos45°  sin 45° )

—sin45° cos45°

[ —0.1838 0.9758
~\ 09192 0.1838 |

(2x2) (2><2)(2><2):

N————
shek =~
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L = L T

(2x2) (2x2)(2x2)
B 0.56 0.82 cos45° —sin45°
L o078 —052 sin45°  cos 45°

(056 082 _
L 078 —0.52

0.9758 0.1838 )

S-S
&Fﬁ%

0.1838 —0.9192

Example 6.2: Consider the following correlation matrix on test scores
on 100 students

Chinese FEnglish History Maths A. Maths Physics

Chinese 1 439 410 .288 329 .248
English 439 1 .351 .354 320 .329
History 410 351 1 164 190 181
Maths .288 .354 164 1 595 470
A. Maths .329 .320 190 .595 1 464
Physics 248 .329 181 470 464 1

The maximum likelihood solution is

Unrotated Loadings Rotated Loadings (¢ ~ 20°)
Communalities Speci fic
F Fy Fy Fy ne? =12 42 Variance
:li21+li22:/f;12 @izl_/ﬁ?

1.C'hinese .5b3 429 .369 .594 490 510
2.English .H68 .288 433 467 406 594
3.History .392 450 211 .558 .356 .644
4.Maths 740 —.273 789 .001 .623 377
5.A. Maths 724 —.211 752 .054 .H68 432

6.Physics 595 —.132 752 .083 372 628
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Note that half of the original loadings are positive and another half of
them are negative for the second factor. A factor with this pattern of loading
is called a bipolar factor. We rotate the original factor by about 20 degrees.
This angle is chosen so that one of the new axes passes through the fourth
point (0.740, -.273). Note that all values are positive now after the notation,
and the two distinct clusters of variables are more clearly revealed. The first
factor might be called a mathematical-ability factor, while the second factor

might be labeled a verbal-ability factor.

6.3 Varimax Rotation Method

Sometimes, it may not be possible to rotate the factors just by visual inspec-

tion, especially when we are dealing with a higher dimensional space. Let

~

T Tx
li17li27’ [}

© Yim

nality h2% = I22 + 12 + ... + [2. Let

be the estimated rotated loadings with the estimated commu-

%2
12— Y
J /HTQ ’
K2

The varimax procedure selects the orthogonal transformation I'" that max-

1mizes

TR R A I 2
gy Zl?‘f—fo(Z”f)

=1

It can be rewritten as

-

j=1

[ =

z,,: (2 -72) ] .

=1

where

Zlu’
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V' can be considered as the sum of variance of squares of scaled loadings
for the j'* factor for all j. Since the squared loadings are all between 0 and
1, trying to maximize the variance of the squared loadings within a column
is somewhat equivalent to trying to spread out the squared loadings within
a column, i.e., forcing as many of the loadings as possible towards 0 and

forcing the others towards 1. After solving I*

Tx _ pEgx
i, we can solve [f; = hil;

Y

Example 6.3: Consider the rotated loadings in Example 6.2. Calculate
the value of V.

Solution:

Note that m = 2 and p = 6 in this case, we have

_ 732

12 — 2

T T, 2

LE 413
~ 132 3692
[ ¢ = (0.27845
Bz 3692+ .5942 ’
~ 12 4332
=2 __ — = 0.46228
U2 A3+ 467 ’
~ 132 2112
b= = = o 5 = 0.12510,
2402 + .558
~ 132 7892
2= 4 — = 1.00000
Tz 78924 .0012 ’
~ 132 7522
*2 51
=51 _ = 0.99487,

TRz 7522 4 0542
~ 12 7522
2= —%— = = 0.98796,

B2 {2 7522+ 0832

= 0.27845 + 0.46228 + 0.12510 + 1.00000 + 0.99487 + 0.98796
12 = i i Jg + + — 0.64144.
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13 = flgffilg N .3695534.25942 = 072155,
= ggffgg N .4335457.24672 = 055772,
5= g;fgg N .21155—5k8.25582 = 08740,
lis = lzgileg N .789.2031.20012 = 000000,
5= f;fl;g N .752'20—5:1.20542 — 00015,
= 76;65765 N .752‘20?%3.20832 = 00104,
Tz _ 072155 + 0.58772 +0.87490 +0.00000 +0.00518 + 001204 _ oo

6

AR

]:

1| (0.27845 — 0.64144)° + (0.46228 — 0.64144)° + (0.12510 — 0.64144)
6 | +(1.00000 — 0.64144)" + (0.99487 — 0.64144)” + (0.98796 — 0.64144)" |
1

6

(0.72155 — 0.35856)% + (0.53772 — 0.35856)° + (0.87490 — 0.35856)"
+ (0.00000 — 0.35856)> + (0.00513 — 0.35856)* 4 (0.01204 — 0.35856)

1 1
= 5 (0.804) + = (0.804)

= 0.268.

Exercise 6.3: Repeat the calculation of Example 6.3 using the unrotated

loadings in Example 6.2. Compare the value of V' in both cases.
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Exercise 6.4:
(a) Show that

=

I N | &y 1 (& ’

(b) When m = 2, show that

1M

|

z”: (2 _;?) z”: (i - l*2> |

i=1 =1

P ~9 =\ 2
§ * *2
=1

Exercise 6.5: Find the daily closing price of the following Hong Kong
stocks from 3/10/2014 to 31/10/2014: [1], [2], [3], [16], [823].

(a) Calculate the daily returns r, = In P, — In P,_; for these stocks from
3/10/2014 to 31/10/2014 .

(b) Standardized the returns and calculate the sample correlation matrix
R for the standardized daily returns of these 5 stocks.

(c) Based on the sample correlation matrix, perform a factor analysis
assuming there are 2 factors. Solve the factor model using the principal
component method. Find the communalities and the proportion of variance
explained by each factor.

(d) Find the residual matrix R — LL — .

(e) Perform a Varimax rotation.
Exercise 6.6: True/False.

(a) The portion of variance contributed by the i factor is called the "

communality.

(b) Six factors can be obtain from five variables.
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(c) Consider the estimated loadings in the two factor case, with L =
4 3

3
clockwise by 90°.

-~ 3 4
. The new loading matrix is L* = ( 43 > if the axes are rotated

(d) Most rotation procedures try to make the factor loadings as close to

each other as possible.

Exercise 6.7: Consider the estimated loadings in the two factor case,

with

(a) What is the new coordinate if the axes are rotated clockwise by 45°7

(b) What is the new coordinate if the axes are rotated counterclockwise
by 45°7

(c) Repeat (a) and (b) if

I 0.5 038 .
0.7 —=0.5



Chapter 7

Discrimination and

Classification

7.1 Introduction

Discrimination and classification are multivariate techniques concerned with
separating distinct sets of or observations and with allocating new observa-
tions to previously defined groups. A good classification procedure should
avoid misclassification. In other words, the probability of misclassification
should be small. Consider a very simple example, suppose we have two

groups of population 7, and my. For population 1, we have
Pr(x=0)=025 Pr(r=1)=0.5, Pr(z=2)=0.25.

For population 2, we have

Pr(x=1)=025  Pr(zr=2)=0.,5, Pr(z=3)=0.25.

If we have an observation with value xq = 1, should we classify this
observation as population 1 or population 27 Suppose each population has
the same size, and there is no misclassification cost, we should classify this
observation as population 1, since it has a probability of 0.5, which is higher

than the probability that this observation is coming from population 2.

161
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However, if we know that the size of population 2 is much larger than
population 1, for example, let p; be the prior probability of 7; and ps be
the prior probability of 7, where p; + ps = 1. If p = 0.01, and py, =
0.99, it may be more reasonable to classify an observation as population 2.
Therefore, an optimal classification rule should take these "prior probability
of occurrence" into account. An empirical example is that there tend to be
more financially sound firms than bankrupt firms. If we really believe that
the (prior) probability of a financially distressed and ultimately bankrupted
firm is very small, then one should classify a randomly selected firm as non-

bankrupt unless the data overwhelmingly favors bankruptcy.

Another consideration in classifying observations is the cost of misclas-
sification. In general, the cost of the two type of misclassification are not
equal. Sometimes, classifying a 7, observation as belonging to 75 represents

a more serious error than classifying a w9 observation as belonging to ;.

In the previous example, suppose the sizes of the two population are the
same, but the costs of misclassification are different. For example, if the
cost of misclassifying 7w observation as belonging to m; is 1000 HK dollars,
but the cost of misclassifying 7 observation as belonging to 7y is only 1
HK dollar. Then you may have a second thought when you would like to
classify the observation as 7 in the previous example. In reality, for example,
failing to diagnose a potentially fatal illness is substantially more "costly"
than concluding that disease is present when it is not. Therefore, an optimal
classification procedure should also account for the costs associated with

misclassification.

7.2 Expected cost of misclassification (ECM)

Let fi (x) and f; (x) be the probability density function associated with the

p X 1 vector random variable X for the population 7; and 7y respectively.
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An observation with associated measurement x must be assigned to either
w1 or mo. Let R; be the set of x values for which we classify objects as m;

and Ry be the remaining values for which we classify objects as 5.

The conditional probability of classifying an observation from m; as 75 is

P(2’1) = P(X ERQ"]T]_) .

The conditional probability of classifying an observation from 7y as 7 is

P(1]2) = P (X €Ry|ms).

Let p; be the prior probability of m; and py be the prior probability of
9, Where p; + po = 1. We have

P(observation is correctly classified as 77)
= P(observation comes from m; and is correctly classified as 1)

P(observation is misclassified as )
= P(observation comes from 75 and is misclassified as ;)

— P (X €Ry|m2) P (m2) = P (1]2) pa.

P(observation is correctly classified as 72)
= P(observation comes from 7, and is correctly classified as 73)
= P(X €R2|7TQ) P(ﬂ'g) = P<2|2)p2

(observation is misclassified as 7o)

P
P(observation comes from 7, and is misclassified as 72)
P (X €Ry|my) P (m1) = P (2|1) p1.

The costs of misclassification can be defined by a cost matrix
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Classify  as

m o
True T 0 c(2[1)
population 7o  ¢(1]2) 0

We define the expected cost of misclassification (ECM) as

ECM = c¢(2|1) P(observation is misclassified as ms)
+c¢(1]|2) P(observation is misclassified as )

= ¢(2]1) P (2[1) p1 + c(1]2) P (1]2) po.

It can be proved (difficult) that the regions R; and R, that minimize the
ECM are defined by the values of x for which the following inequalities hold

A (12 p
U T @
Ci(x) c(1]2) po

R c@D)p

In other words, we compare the values of

R

R

A\

c(21) f1 (x) p1

and

¢ (1]2) f2 (x) p2.

We allocate xq to 7y if

c(1]2) fo (x0) p2 < c(2|1) f1 (x0) p1.

7.3 Special cases

1. prl = P2
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B0 S
R < Sy
2. If ¢(2]1) = ¢(1]2)
- E
R <
3. 1f 2212"21))% ~1
m g 2
R g <1

Example 7.1: Consider the case of one X variable. Suppose the first
group of X is normally distributed with N (0,1), and the second group of

X is normally distributed with N (2,1). Consider a point zq = 0.5, which
D,
¢ (2[1) pr

group does this point belong to if

Solution:

1L (05— 0)?
filz) V2r 0 2
f2() 1 - (_(0.5 - 2)2>

V2T 2

(0.5—2)*  (0.5—-0)°
- eXp( 2 2 )

= exp (1) ~2.71828 > 1.
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So o = 0.5 € Ry and we should classify xy = 0.5 to group 1.

7.4 Classification of normal population when
2 =Q

Suppose that the joint density of X = (X;,Xo, ..., Xp)/ for population 7, and

o are given by

fi(x) = W exp (—% (x— ) Q7 (x - u1)> ,

0= e (g - w7 )

Here, we assume £; = , = 2. Using the fact that the product of the

matrices a’Bc = ¢'Ba if a’Bce is a 1 by 1 scalar, we have

1 1 'o-1
£ (%) Wexp (—g(X—Ml) Q (X—lh))
L& 1

exp (_% (x— M2)/ Q1 (x - Nz))
1

5 06 1) 07 G i)~ 5 x ) g

( XX — QX s )

— X' Q7 x + Q% — L
_ 1 _ _
= exp (= 1) Q7 x — 5 (IO g — o2 1#2))

_ 1 _
= exp ( (py —py) Q@ 'x— 5 (g — ) Q71 (py + M2)) .

The regions R; and R, that minimize the expected cost of misclassifica-
tion (ECM) are defined by the values of x for which the following inequalities
hold
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- 1 - c(1]2) po

Ry — o) Q7% — = (g — ) Q7! > P2
1:€xXp ((IJ’I 1) X 5 (g — pto) (g + py) | > ) o
Ry : exp ((u ) QK (1) @ (4 )) Al pe
L 2 VTR ) e

Thus, we allocate a point xy to population 1 if

(a0 1) 0= 5 (o= ) 07 ) ) = (302

¢(2[1) py

The above is based on the assumption that p,, p,, 2 are known. In
an empirical sample, we have to replace p,, p, by X; and Xs respectively.
How about the sample variance? The two sample variance S; and S, will
generally be different. Under the assumption that €2; = 25, we pool the two

sample variances together and let

n1—1 S—l— TLQ—].
m—1)+my—1)""" (n—1) + (ng — 1)

Spooled = ( SQ-

Therefore, in an observed sample, we allocate a point xy to population 1
if

T v | c(1]2) ps
/ 1 / 1
((Xl - X2) pooledX0 — 5 (Xl - XQ) Spooled (Xl + XQ)) > In <C (2|1) I’} :

112
If ﬁ@ = 1, we allocate a point xq to 7y if

¢(2[1) py

NP N - =
((Xl - X2)/ Spololedx0 o 5 (Xl o X2)/ Spololed (Xl + XQ)) > In (1) = 0.

or equivalently
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_ _ _ _ _ _ fl + i2
(X — %) Spololedxo > (X1 — Xa)' Spololed ( 2 ) :

112
Therefore, if c(1]2) P2 _ 1, we can define the linear discriminant function
c(2[1) px
as

~ — \V a-1 o~
Y= (Xl - XZ) Spooledx = ax.

Evaluate ¥ at xo and compare 7y to

where

— _ AN= (= — \/ —1 —
Yo —aXy = (Xl - X2) pooledX2-

Intuitively speaking, if there is only one X variable, and assume 7T; —
T1+Ty ..
, i.e., if the

observation z is above the mid-point of the two sample mean, or equivalently

Ty > 0, we allocate a point zy to population 1 if zq >

if x¢ is closer to the bigger mean ¥;, we allocate it to population 1. If there

are more than one X variables, we transform the set of X variables into a

scalar value ¥ and compare 7y with Dty

Example 7.2: Consider the following mean vectors
_ —0.0065
X1 = )
—0.0390

_ —0.2483
X9 = )
0.0262
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1 131.158 —90.423
Spooled = :
—90.423 108.147

—0.210
Should the point xy = ( 0.044 > be classified as population 1 or 2 if
R p
c(21) ;m

Solution: The linear discriminant function is

a'x

<)
I

= (il - §2>, S;ololedx
B —0.0065 _ —0.2483 / 131.158 —90.423 1
—0.0390 —0.0262 —90.423 108.147 T

131.158 —90.423 \ [ 2
- (0.2418 —0.0652>
00423 108.147 -

= 37.61x; — 28.92x,.

_ —0.0065
3, = &%, = ( 37.61 —28.92 ) — (.88,
—0.0390

L _0.2483
T, = 8%y = ( 37.61 —28.02 ) — ~10.10.
0.0262

1 1
i = 5 (B +7) = 5 (0.88 — 10.10) = ~4.61.

37.61 (—0.210) — 28.92 (—0.044)
—6.62
< —4.61

)
I

= m.
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—0.210
Therefore, we classify xq = as .
—0.044

Exercise 7.1: Consider the following data sets

P4

4

I
BN W
~ R

P4

(]

|

(a) Calculate the linear discriminant function y = a’x.

2
(b) Should the point x, = ( . ) be classified as population 1 or 2 if

c2)p2 _
c(2[1) ;

Example 7.3: The following table shows the survey results for the eval-
uation of a new model of mobile phone. Evaluation are made on a 10-point

scale (1=very poor to 10=excellent).
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Group based on purchase intention x;(Durability) z,(Performance) x3(Style)

Group 1: Would purchase

Subject 1 9 6
Subject 2 7 5
Subject 3 10 6 3
Subject 4 9 4 4
Subject 5 8 2
Group mean 7.4 6.8 4.0
Group 2: Would not purchase
Subject 6 5 4 7
Subject 7 3 7 2
Subject 8 4 5 5
Subject 9 2 4 3
Subject 10 2 2 2
Group mean 3.2 4.4 3.8
Difference between group mean 4.2 2.4 0.2

Group\Discriminant function y =2z, y=21+xs y=—4.53+0.4762; + 0.359x,
Group 1: Would purchase

Subject 1 8 17 2.51
Subject 2 6 13 0.84
Subject 3 10 16 2.38
Subject 4 9 13 1.19
Subject 5 4 12 0.25
Group 2: Would not purchase
Subject 6 5 9 —-0.71
Subject 7 3 10 —0.59
Subject 8 4 9 —0.83
Subject 9 2 6 —2.14
Subject 10 2 —2.86

Cutting score 5.3 10.9 —0.32
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Classification accuracy for iy = x1, using the cutting score of 5.3:

Predicted group

Actual group 1 2
1: Would purchase 4 1
2: Would not purchase 0 )

Classification accuracy for ¥ = x1 + x5, using the cutting score of 10.9:

Predicted group

Actual group 1 2
1: Would purchase ) 0
2: Would not purchase 0 )

Classification accuracy for ¥ = —4.53 + 0.476x; + 0.359x4, using the

cutting score of -0.32:

Predicted group

Actual group 1 2
1: Would purchase ) 0
2: Would not purchase 0 )

Exercise 7.2: Suppose we would like to classify stocks into Hang Seng
Index Constituent Stocks and non-Constituent Stocks. As of 31/10/2014,
we obtain the following financial information from the efinet website at
http://www.finet.hk/mainsite/index.htm.
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Total market

HSI Constituent
Stock code Company name capitalization PE Ratio

el Stock
(billions)
1] Cheung Kong 318.70 9.041 Yes
Sun H Kai
16] HiL S Bl 315.45 9.285 Yes
Properties
MTR
[66] _ 183.91 14.044 Yes
Corporation
[11] Hang Seng Bank 251.22 9.419 Yes
HK Exchanges
(388)] _ 200.78 43.519 Yes
and Clearing
8] PCCW 36.74 18.976 No
H L
[10] ans Lung 52.84 11.538 No
Group
[20] Wheelock 75.89 4.478 No
H 1l
[54] opewe 23.96 17.628 No
Holdings
[823] The Link 104.457 6.065 No

We can summarize the data as the following matrices:

318.70 9.041 36.74  18.976
315.45 9.285 52.84 11.538
X; = 183.91 14.044 |, Xy = 75.89  4.478
251.22  9.419 23.96 17.628
200.78 43.519 104.457 6.065

(a) Find the mean vectors X; and X;.
(b) Assume the variance covariance matrices are the same for the two

populations, find the sample pooled variance matrix

n1—1 HQ—]_

S iy s O S Y RS

Spooled = ( SQ-
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(¢) Assume joint normality of the two populations and suppose §(<12||21)) % =
1, find the linear discriminant function 1
y=(X1 - i2)/ S;ooledx =a'x.
(d) Define the cutting score to be
i = & (il ”2) .
2
Fill in the following Table
Group)\Discriminant function Y=z yY=ux9 y=a2ax
Group 1: HSI Constituent Stock
Cheung Kong 318.70  9.041 ?
Sun Hung Kai Properties 315.45  9.285 ?
MTR Corporation 183.91 14.044 ?
Hang Seng Bank 251.22  9.419 ?
Hong Kong Exchanges and Clearing 200.78 43.519 ?
Group 2: non-HSI Constituent Stock
PCCW 36.74  18.976 ?
Hang Lung Group 52.84 11.538 ?
Wheelock and Company 75.89  4.478 ?
Hopewell Holdings 23.96  17.628 ?
The Link 104.457  6.065 ?
Cutting score T, =7 Ty =" ?

Classification accuracy for y = x1 :

Predicted group

Actual group 1 2
1: Constituent Stock ? ?
2: Non-Constituent Stock ? ?

Classification accuracy for y = xs :
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Predicted group

Actual group 1 2
1: Constituent Stock ? ?
2: Non-Constituent Stock ? ?

Classification accuracy for j = a'x :

Predicted group

Actual group 1 2
1: Constituent Stock ? ?
2: Non-Constituent Stock ? ?

7.5 Scaling

The coefficient vectors a = (X1 — X2) S;ololed is unique only up to a multiplica-
tive constant. Thus, for ¢ # 0, any vector ca will also serve as discriminant
coefficients. The vector a is frequently scaled or normalized to ease the in-

terpretation of its elements. A commonly employed normalizations is

_a
Vaa’

so that a* has unit length and its elements all lie in [—1,1]. Another

~x

normalization is to scale the first element to 1, i.e.,

a
a = —.
ai

Normalization is recommended only if the X variables have been stan-
dardized.

- 37.61
Example 7.4: In Example 7.2, a = ( 53,02 ), we have
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. a 1 37.61
a = =
a’a —28.92

37.61
<37.61 —28.92)
~28.92
B 1 3761 \ [ 0.7927
V2251 \ —28.92 —0.6096 |
< a 1 37.61 | 1
a;  37.61 \ —28.92 —0.7689 |

7.6 Classification with three populations

Let p; be the prior probability of population 7; for i = 1,2, 3 with p;+ps+ps =
1. We have
P(observation is misclassified as 1)
= P(observation comes from 7y and is misclassified as )
+P(observation comes from 73 and is misclassified as )
= P (1|2) p» + P (1[3) ps.

P(observation is misclassified as 7s)

= P(observation comes from m; and is misclassified as )
+ P(observation comes from 73 and is misclassified as )
=P (2]1)p1 + P (2|3) ps.

P(observation is misclassified as 73)

= P(observation comes from m; and is misclassified as m3)
+ P(observation comes from o and is misclassified as m3)
= P (3[1)p1 + P (3[2) p2.

The costs of misclassification can be defined by a cost matrix
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Classify as

1 ) T3
True 1 0 c(2]1) ¢(3]1)
population w  ¢(1]2) 0 ¢(32)

w3 c(13) ¢(213) 0
The expected cost of misclassification (ECM)

ECM = c(1]2) P(1]2) p2 + c(1]3) P (1|3) ps
+c(2]1) P (2]1) p1 + ¢ (2[3) P (2[3) ps
+e(3]1) P (3]1) pr + ¢ (3]2) P (3[2) pa.

Recall that in the two-group case, we allocate xq to my if

c(112) f2 (x0) p2 < c(2[1) f1 (%0) 1.

In the three-group case, we compare

c(1]2) fa (x0) p2 + ¢ (1]3) f3 (x0) p3,

c(2]1) f1 (x0) p1 + ¢ (2[3) f5 (x0) p3,
nd

¢ (3[1) f1 (x0) p1 + ¢ (3[2) f2 (x0) p2-

We allocate xq to my if

¢ (1]2) f2 (x0) p2 + ¢ (1[3) f5 (x0) ps

is the smallest among the three;

We allocate xq to mq if
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¢ (211) fi (x0) pr + ¢ (2[3) f5 (x0) p3

is the smallest among the three;

We allocate xq to w3 if

c(3|1) f1(x0) p1 + ¢ (3]2) f2 (%0) P2

is the smallest among the three.

If all the misclassification costs are equal, it can be shown that we should

allocate xq to m;, if

Ir (Xo)pk

is the biggest among the three, £ = 1,2, 3.

Example 7.5: Consider the following case,

Classify as
1 w) T3
True m c(l]1)=0 c(2]1)=10 ¢(3]1) =50

population ma  ¢(1]2) =500  ¢(2]2) =0 ¢(3]2) =200
w3 ¢(13) =100 ¢(2]3) =50 ¢(3]|3)=0
Prior probability p1 = 0.05 po = 0.60 p3 = 0.35
Densities at xg fi1(x0) =0.01 f5(x9) =0.85 f35(xq) =2

(a) Should the point x¢ be classified as 7y, w3 or 73 using the minimum
ECM procedure?
(b) If all misclassification costs are the same, should the point xy be

classified as 7y, my or m3?



7.6. CLASSIFICATION WITH THREE POPULATIONS 179

Solution:

(a)

¢ (112) fa (x0) p2 + ¢ (113) f3 (x0) P
= 500 (0.85) (0.60) + 100 (2) (0.35)
= 325,

c(2|1) f1 (x0) p1 + ¢ (2]3) f3 (%0) 3
— 10(0.01) (0.05) + 50 (2) (0.35)
= 35,

c(3]1) f1 (x0) p1 + ¢ (3]2) f2 (%0) P2
— 50 (0.01) (0.05) + 200 (0.85) (0.60)
= 102.

Thus, we allocate x¢ to my since ¢ (2|1) f1 (Xxo) p1 + ¢(2]3) f3 (x0) p3 is the

smallest among the three;

(b) If all misclassification are the same, we have

f1 (x0) p1 = (0.01) (0.05) = 0.000 5,
fa (x0) p2 = (0.85) (0.60) = 0.51,

f3 (x0) p3 = (2) (0.35) = 0.7.

We should allocate xq to 73 since f3(xo)ps is the biggest among the
three.
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7.7 Classification with normal population

An important special case occurs when the density is multivariate normal

with p-dimensions, with

1 1 _ )
fi (X):WGXP (_E(X_ui)/ﬂil(x_l‘l’i>) : 1=1,2,3.

To simplify the analysis, assume all the costs of misclassification are the

same and equal 1, and the covariance matrices are equal. We compare

In(fi(x)p;) = Inp;+Infi(x)

= Inp,+1n (x—p) Q" (x— M@'))

1 1
@)y e 2

1 1
= Inpi— Sl (2m) — SR - 5 (x— p) Q7 (x - p)
2 2 2
In practice, the mean and variance matrices are unknown, we replace them
by their sample estimates. Further, since the term ZIn (27) and 1 In|€Q| are
the same for all 7, we can skip them and define

D} (x) = (x —%,)'S,,,

pooled (X - il) :

We should allocate xq to m; if

1
Inp;, — §Dz2 (Xo)

is the biggest among the three. If all the prior probability p; are the

same, then we allocate xq to m; if

1
§Di2 (%0)

is the smallest among the three.
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Example 7.6: Consider three groups of populations, and two bivariate
normal X variables. Assume p; = ps = 0.25, and p3 = 0.5. Suppose we draw

a sample of three observations from each group and obtain

-2 5 0 6 -2
X = 0 31, Xo=1| 2 4 X3 = 0 0
-1 1 1 2 -1 4

1 -1 1 -1 11
S, = . Sy = S, = .

Which group does the point xy = (

Solution:
711—1
SOO€ S
oot = iy = 1)+ (na— 1)+ (g —1)
n2—1
+ S
(np—1)4+(ng—1)+ (n3—1) 2

ng—l

D D m-D

B 3-1 1 -1
O B-D+B-1D)+B-1)\ -1 4
3-1 1 -1
BTGB+ 6D\ -1 4

31 11
B-D+EB-D+B-1\1 4

+
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Inp, — —D% (Xo)

1
Inpy — §D

1
Inps — §D

CHAPTER 7. DISCRIMINATION AND CLASSIFICATION

5 (x0)

5 (x0)

= Inps — 3 (xo —X3)'S,)

35

1

et ()

1
:1.2——(__)
n0.25 - 3 35(

= —10.51.

1

Inp; — 3 (%0 — X1)' S;ololed (xo —X

w2 ((2)- (1)) (3
- ln0.25—%<—1 —4)<

= —4.30.

1 _ _ _
111]92 - 5 (XO - XQ), Spololed (XO - X2)

)

0

pooled (XO - i3)

()

1 36

_ 35
_ 1no.5—§(—2 1) B
35

= —2.707.

w

6

Gleo &
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1
Thus, we allocate xy to 73 since In p3 — §D§ (xp) is the biggest among

the three.

Exercise 7.3: Consider three groups of students applying for the MBA
program of CUHK. Let x; = GPA score, x5 = GM AT score of the appli-
cants. Group 1 students are admitted to the program, group 2 students are
not admitted, and group 3 is marginal. Assume the proportion of each pop-
ulation is the same, i.e., p; = ps = p3 = —=. Suppose we have a sample of
31 admitted students, 28 not admitted, and 26 students are marginal, i.e.,

ny = 31, no = 28, ng = 26. The mean score of each group are

_ 3.40 _ 2.48 _ 2.99
X]. = N X2 = X3 = N
561.23 447.07 446.23

0.0361 —2.0188
Spooled = .
—2.0188 3655.9011

Suppose you would like to apply for the MBA program of CUHK. Your

3.21
GPA and GMAT score are xg = ( 197 > . Will you be admitted?

Exercise 7.4: Consider the case of one X variable. Suppose the first
group of X is normally distributed with N (0, 1), and the second group of X

is normally distributed with NV (1,1). Consider a point zy = 0, which group
2ps
c(2]1) p1

does this point belong to if

Exercise 7.5: Consider the following data sets

X, =

S g Ot
=W N
s
|
N = O
S Ot
]
A
Il
N
N D
~__—
[N~}

Il
N
(2 B
~—
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a) Find S, g and S 2
( p

(b
(

Calculate the linear discriminant function 7 = a’x.

pooled*

3
Should the point xy = ( 5 ) be classified as population 1 or 2 if

C
A12)p2
c(21) pr

Exercise 7.6: True/False. Let p; be the prior probability of population
k, k=12 3.

(a) If all the misclassification costs are equal, then we should allocate xg
to population k if p, is the smallest of the three.

(b) P(observation is misclassified as population 1)= 1 — P(observation is
classified as population 1).

(c) If all the misclassification costs are equal, the we should allocate x

to population k if fi (Xo) px is the smallest among the three.

Exercise 7.7: Consider the following data sets

4 10 8
2 1, Xo=1 11 5
6 12 8

w(2) = (3)

Find Sppoeq and S!

Calculate the linear discriminant function y = a’x.

a

(
(b
(

pooled*

6
c¢) Should the point x; = ( 6 ) be classified as population 1 or 2 if

[\

P2 _ 19

[\)

—_
~—
[y

Exercise 7.8: Consider the following data sets
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X =

(SN
e
Il
B~ ol o
o 3 ©

3
2
4
5
8 )
Calculate S !

(a
(b) Calculate the linear discriminant function y = a'x.
(

pooled*

7
¢) Should the point xy = ( 5 ) be classified as population 1 or 2 if

V)

P2 _ 19

Exercise 7.9: Suppose there are two groups of individuals. Each in-
dividual can be characterized by a single value x, which follows an extreme

value distribution, with

f(x) =exp(—z)exp(—exp(—x)) for — 0o < x < 0

Suppose f (x) is the same for both groups. For i = 1,2 and j = 1,2, let
pi be the prior probability of group i, and ¢(i|j) be the cost if an individual
from group j is misclassified into group i. Suppose we would like to minimize
the expected cost of missclassification. Consider a point o = 3, which group

does this point belong to if
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Chapter 8
Cluster Analysis

Cluster analysis involves techniques that produce classifications from data
that are initially unclassified, and must not be confused with discriminant
analysis, in which one initially knows how many distinct groups exist and
also has data that are known to come from each of these distinct groups. To
perform a cluster analysis, one must first be able to measure the similarity

or dissimilarity between two clusters of observations.

8.1 Similarity Measures

Let x;; be the score (1 or 0) of the j binary variable on the i item and zy; be

the score (1 or 0) of the j binary variable on the k' item, j = 1,2, ..., p.

(xij — ij)2 =0 lf ZL’z‘j = ij =1or xij = *ij =0
The square Euclidean distance

p

> (@i —wiy)

j=1
provides a count of the number of mismatches. A large distance corre-
sponds to many mismatches. Let us arrange the frequencies of matches and

mismatches for items i and k in the form of a contingency table:

187
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Item k
1 0 Totals
Item ¢ 1 a b a+b
0 c d c+d

Totals a+c b+d p=a+b+c+d

where a represents the frequency of 1-1 matches and so on.

However, the measure suffers from weighting the 1-1 and 0-0 matches
equally. In some cases, a 1-1 match is a stronger indication of similarity than
a 0-0 match. For instance, in grouping people, the evidence that two persons
both are the president of the United States is stronger evidence of similarity
than the absence of this position. Thus, it might be reasonable to discount

the 0-0 matches. We define some similarity coefficients for clustering items

as follows:
Coeflicient Rationale
d
_atae Equal weights for 1-1 matches and 0-0 matches.
a 42— b+ cd+ d
(a+d) Double weights for 1-1 matches and 0-0 matches.
2(a+d)+b+c
d
. dj—g 650 Double weights for unmatched pairs.
a
_— No 0-0 matches in numerator.
a+b+c+d
5 a No 0-0 matches in numerator or denominator.
a+b+c (The 0-0 matches are treated as irrelevant.)
5 2a No 0-0 matches in numerator or denominator, d=0.
2a+b+c (Double weights for 1-1 matches)
a+d No 0-0 matches in numerator or denominator, d=0.
a+2(b+c) (Double weights for unmatched pairs.)
8 2 i Ratio of matches to mismatches with 0-0 matches excluded.
c

Example 8.1: Suppose five individuals possess the following character-

istics:
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Height (inch) Weight (Ib) Eye Color Hair Color Handedness Gender

Individual 1 68 140 Green Blond Right Female
Individual 2 72 185 Brown Brown Right Male
Individual 3 67 165 Blue Blond Right Male
Individual 4 64 120 Brown Brown Right Female
Individual 5 76 210 Brown Brown Left Male

Define six binary variables X7, X5, X3, Xy, X5, X as

X =1 if height > 72 in.
= 0  if height < 72 in.

X, = 1  if weight > 150 Ib.
= 0 if weight < 150 b.

X3 = 1 if brown eyes.

=0 otherwise.

Xy, =1 if blond hair.
=0 if not blond hair.

X5 = 1  if right handed.
= 0  if left handed.

Xeg = 1 if female.

= 0 if male.
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The scores for individuals 1 and 2 on these 6 variables are

X1 Xo X3 Xy X5 Xe
Individuall 0 0 0 1 1 1
Individual 2 1 1 1 0 1 0

and the number of matches and mismatches are indicated in the two-way

array

Individual 2

1 0 Totals
Individual 1 1 1 2 3
0 3 0 3
Totals 4 2 6

Employing the first similarity coefficient, which gives equal weight to

matches, we have

a+d 1+0 1

a+btctd 14124310 6

we have

Individual
1 2 3 4 5
11
1
2 11
Individual 3 % % 1
4 3 2
4 5 % 6 1
5 2 2

Based on the magnitude of the similarity coefficient, we should conclude
that individuals 2 and 5 are most similar and individuals 1 and 5 are least
similar. Other pairs fall between these extremes. If we were to divide in-
dividuals into two relatively homogeneous subgroups, we might form the
subgroups (1, 3, 4) and (2, 5).
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Example 8.2: The following table gives the first 10 numbers in eleven
languages. Use the first letters of the numbers to split the languages into

different groups.

Eng. Nor Dan Dutch Ger. Fren. Span. Italian Polish Hung. Finnish

one en en een eins un uno uno jeden eqy yksi
two to to twee  zwei  deux dos due dwa ketto kaksi
three tre tre drie dretr  trois  tres tre trzy harom kolme
four  fire fire  wvier vier quatre cuatro quattro cztery neqgy neua
five  fem fem wijf  funf cing cinco cinque piec ot VLSt
sizx  seks seks  zes sechs ST seis set szesc hat kuust
seven sju  Ssyv  zeven sieben  sept siete sette stedem het seitseman
etght atte otte  acht acht huit ocho otto ostem  nyolc  kahdeksan
nine  ni ni  negen neun neuf nueve nove dziewiec kilenc yhdeksan
ten t t tien zehn dix diez dieci  dziesiec tiz kymmenen

From the following table, we see that English and Norwegian have the
same first letter for 8 of the 10 word pairs. The remaining frequencies are

calculated in the same manner.

Eng. Nor Dan Dutch Ger. Fren. Span. Ital. Polish Hung. Fin.
English 10
Norwegian
Danish
Dutch
German
French
Spanish

—_
(e

—_

[a=)

Italian
Polish

Hungarian

— o= W ok R R R W 0 o
— N W R kR ke O Ot ©
— N R Ol O R Ol
— N O = = = Ot
o= NN W W W

= O Ot O

Finnish
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From the table, English, Norwegian, Danish, Dutch and German seem to
form a group. French, Spanish, Italian and Polish might be grouped together,

whereas Hungarian and Finnish appear to stand alone.

Exercise 8.1: Consider the following ten Hong Kong stocks as of 31/10/2014.:

Total
HSI
C market Constit
ompan onstit-
pany capitaliz- PE Ratio Sector
name . uent
ation
. Stock
(billions)
Cheung Kong 318.70 9.041 Yes Property Development
Sun Hung
Kai 315.45 9.285 Yes Property Development
Properties
MTR Corporation 183.91 14.044 Yes Traffic
Hang Seng Bank 251.22 9.419 Yes Bank
HKExchanges
and 200.78 43.519 Yes Exchanges
Clearing
PCCW 36.74 18.976 No Telecommunications
H L
ang LUns 52.84 11.538 No Property Development
Group
Wheelock 75.89 4.478 No Property Development
H 11
ope\'ve 23.96 17.628 No Consolidated Enterprises
Holdings
The Link 104.457 6.065 No REIT
Define four binary variables X, X5, X3, X, as
X; = 1 if total market capitalization >200 billions

=0 otherwise
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Xy = 1 it PE >10

= 0 otherwise

X3 = 1 if HSI Constituent stock

=0 otherwise

Xy, = 1  if from Property Development Sector

=0 otherwise

(a) Calculate the coefficient for pairs of stocks.

a+b+c+d
(b) How would you classify the stocks into two clusters? How would you

classify the stocks into three clusters?

Exercise 8.2 Consider the following table for the US presidents.

Elected
President Birthplace First Party Congressman Vice President
Term

R. Reagan  Midwest Yes Republican No No
J.Carter South Yes Democrat No No
G. Ford Midwest No Republican Yes Yes
R. Nixon West Yes Republican Yes Yes
L. Johnson South No Democrat Yes Yes
J. Kennedy East Yes Democrat Yes No

Define five binary variables Xi, Xo, X3, X4, X5 as

X, = 1  if birthplace is South.
= 0 if birthplace is non-South.
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Xy, = 1 if elected first term.

=0 otherwise.

X3 = 1 if Republican.
= 0  otherwise.
Xy = 1  if Congressman.
= 0  otherwise.
X5 = 1  if served as vice president.

=0 otherwise.

a+d

a+b+c+d
(b) How would you put the presidents into clusters?

(a) Calculate the coefficient for pairs of presidents.

8.2 Agglomerative hierarchical clustering method

When the first cluster is formed, we need to measure the distance between
this cluster and other clusters/objects. Two commonly used methods are the

single linkage method and the complete linkage method.

8.2.1 Single linkage (nearest-neighbor) method

Consider the hypothetical distances between pairs of five objects as follows:
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1 2 3 4 5
1 0
2 9 0
D:{dz‘k}:s 3 7 0
4 6 5 9 0
5 11 10 2 8 0

First, we merge the two closet items. Since ds; = 2 is the smallest,
objects 3 and 5 are merged to form the cluster (35). Next, we calculate
the distance between this new cluster (35) and the remaining objects. The

nearest neighbor distances are

d(ssy1 = min {dsy, d51 } = min {3,11} = 3.

d(35)2 = min {dgg, d52} = min {7, 10} =7.

d(35)1 = min {dsy, d54} = min{9,8} = 8.

The new distance matrix becomes

(35) 1 2 4
(35) 0
1 3 0
2 7T 9
4 8 650

Since d(35)1 is the smallest, object 1 and cluster (35) and are merged to
form the cluster (135). The nearest neighbor distances between the new

cluster (135) and the remaining objects are

d(135)2 = min {d(35)2, dlz} =min{7,9} = 7.

d(135)4 = min {d(35)4, d14} =min {8,6} = 6.
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The new distance matrix becomes

(135) 2 4
(135) 0
2 70

4 6 5 0

Since d(42) = 5 is the smallest, objects 2 and 4 are merged to form the

cluster (24) . At this point we have 2 clusters, their nearest neighbor distance

1S

d(135)(24) = min {d135)2, d135) } = min {7,6} = 6.

The final distance matrix becomes

(135) (24)
(135) 0
(24) 6 0

How to cluster the objects depends on how many cluster we would like
to have. If we would like to have two cluster, then the two clusters are (135)

and (24). If we need three cluster, then we have (135), 2 and 4.

Example 8.3: Consider the clustering of 11 languages in the previous

example, the matrix of distances is as follows:
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1 2 3 4 5 6 7 8 9 10 11
Eng. Nor Dan Dutch Ger. Fren. Span. Ital. Polish Hung. Fin.

English 0

Nor. 2 0

Danish 2 1 0

Dutch 7 5 6 0

German 6 4 5) 5 0

French 6 6 6 9 7 0

Spanish 6 6 ) 9 7 2

Italian 6 6 5 9 7 1 0

Polish 7 7 6 10 8 5 4 0

Hung. 9 8 8 8 9 10 10 10 10

Finnish 9 9 9 9 9 9 9 9 8 0

We first search for the minimum distance between pairs of languages
(clusters). The minimum distance is 1, which occurs between Danish and
Norwegian, Italian and French, and Italian and Spanish. Numbering the
languages in the order in which they appear across the top of the array, we

have

d23 =1.
d68 - 1
d78 =1.

Note that 6, 7, 8 cannot be merged at this stage since dg; = 2 > 1. We
first merge 6 and 8. Next, we calculate the distance between the two clusters

(23), (68), and the remaining objects. The nearest neighbor distances are

d231 = min {day, ds; } = min {2,2} = 2.
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d(23)4 = min {d24, d34} = min {5, 6} = 5.

d(23)5 = min {das5,d3s} = min {4,5} = 4.

d(23)7 = min {da7, d37} = min{6,5} = 5.

d(23)9 = min {dgy, dz9o} = min {7,6} = 6.

d23)10 = min {ds 10, d3 10} = min {8, 8} = 8.

d(23)11 = min {dy,11,d3 11} = min {9,9} = 9.

d(esy1 = min {dg1, ds; } = min {6,6} = 6.

d(es)s = min {des, dsa} = min {9,9} = 9.

d(68)5 = min {d65, d85} = min {7, 7} =1.

d(esyr = min {de7, dg7} = min {2,1} = 1.

des)9 = min {deg, dgg} = min {5,4} = 4.

d(@'g)lo = min {dﬁ,lo, dg,lo} = min {10, 10} = 10.

d(68)11 = min {dﬁ,n, d&n} = min {9, 9} =0,

d(68)(23) = min {de2, de3, ds2, dg3} = min {6,6,6,5} = 5.
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Now, the new distance matrix becomes

(2,3) (6,8) 1 4 5 7 9 10 11
Nor,  French, Eng. Dutch Ger. Span. Polish Hung. Fin.
Dan Ital.
Norwegian, 0
Danish
French,
Italian ’ 0
English 2 6 0
Dutch 5 9 7
German 4 7 6 0
Spanish ) 1 6 7
Polish 6 4 7 10 8 3 0
Hungarian 8 10 9 8 9 10 10 0
Finnish 9 9 9 9 9 9 9 8 0

The nearest neighbor distances between (678) and the remaining objects

are

d(e78)1 = min {d(68)1, dn} = min {6,6} = 6.

d(g78)4 = Min {d(68)4, d74} =min{9,9} = 9.

d(678)5 = min {d(68)5, d75} =min{7,7} =7.

d(678)9 = Min {d(68)97 d79} = min {4,3} = 3.

d(678)10 = min {d(68),10a d7710} = mm{lO, 10} = 10.

d(67sy11 = min {d(gs)11, d7,11 } = min{9,9} = 9.
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d(678)(23) = min {d(es)(23), d(23)7 ) = min {5,5} = 5.

Norwegian,
Danish
French,

Spanish,
Italian
English
Dutch
German
Polish
Hungarian

Finnish

(2,3)

Nor,
Dan

© 00 O =~ Ot N

(6,7,8)
French,
Span.,
Ital.

1

Eng.

© © N o N O

4 5
Dutch Ger.
0
5 0
10 8
9
9

9 10 11

Polish Hung. Fin.

0
10
9 8 0

Since d(3)1 is the smallest, object 1 and cluster (23) and are merged to

form the cluster (123). The nearest neighbor distances between (123) and

the remaining objects are

d(123)4 = min {d14, d(23)4} = min {7, 5} = 9.
d(123)5 = min {d15, d(23)5} = min {6, 4} = 4.
d(lgg)g — min {dlg, d(23)9} = min {7, 6} = 6.

d(123)10 = min {dl,lo, d(23)10} = min {9,8} = 8.

d(123)11 = min {dl,lla d(23)11} =min{9,9} = 9.
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d(123)(678) = min {d(678)1a d(67s)(23)} =min {6,5} = 5.

(1,2,3) (6,7,8) 4 5 9 10 11
Eng., French,
Nor, Span., Dutch Ger. Polish Hung. Fin.

Dan Ital.
English,
Norwegian, 0
Danish
French,
Spanish, 5) 0
Italian
Dutch 5 9
German 4 7 5 0
Polish 6 3 10 8 0
Hungarian 8 10 9 10
Finnish 9 9 9 9 8 0

Since d(g7s)9 = 3 is the smallest, object 9 and cluster (678) and are merged
to form the cluster (6789). The nearest neighbor distances between (6789)

and the remaining objects are

d(67s9)2 = min {d(g7s)a, dos } = min {9, 10} = 9.
d(6789)5 = min {d(678)5, d95} =min{7,8} =7.
d(6789y10 = min {d(g7s)10, do,10 } = min {10, 10} = 10.
d(67s9)11 = min {d(e7s)11, dg11 } = min{9,9} = 9.

d(123)(6789) = min {d(123)(678)7 d(123),9} = min {5> 6} =5.
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(1,2,3) (6,7,8,9) 4 o 1l
Eng.,Nor, French, Span., Dutch Ger. Hung. Fin.
Dan Ital., Polish
English,
Norwegian, 0
Danish
French, Spanish, 5 0
Italian, Polish
Dutch o 9 0
German 4 7 o
Hungarian 8 10 8
Finnish 9 9 ) !

Since d(123)5 is the smallest, object 5 and cluster (123) and are merged to
form the cluster (1235). The nearest neighbor distances between (1235) and

the remaining objects are

d(1235)4 = min {d(123)4, d54} = min {5,5} = 5.

d(1235)10 = min {d(123)10, d5,10} = min {8» 9} =38.

d(1235)(6789) = min {d(123)(6789)7 d5(6789)} = min {5> 7} =5.
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(1,2,3,5) (6,7,8,9) 4 10 11

Eng.,Nor, French, Span., )
Dutch Hung. Fin.
Dan, Ger. Italian, Polish

English, Norwegian,

Danish, German 0
French, Spanish, 5 0
Italian, Polish
Dutch 5% 9
Hungarian 8 10
Finnish 9 9 9 8 0
Note that d(1235)6789) = d(12354 = 5, we can group them to form the

cluster (123456789). The nearest neighbor distances between (123456789)

and the remaining objects are

d(123456789)10 = min {d(1235)10, d(6789)107 d4,10} = min {87 10, 8} = 8.

d(123456789)11 = min {d(1235)11, d(6789)11> d4,11} = min {9, 9, 9} =9.

(1,2,3,4,5,6,7,8,9) 10 11
Eng., Nor, Dan, Dutch,
Ger.French, Span., Hung. Fin.

Italian, Polish
English, Norwegian, Danish,
Dutch, German,
French, Spanish,
Italian, Polish
Hungarian 8
Finnish 9 8 0



204 CHAPTER 8. CLUSTER ANALYSIS

Note that d(123456789)10 = d10,11 = 8, are the smallest, but d(123456789)11 =
9 > 8, we cannot group (123456789) and 10, but we can group 10 and 11 to
form the cluster (10,11). The minimum distances between (123456789) and
(10,11) is

d(123456789)(10,11) = min {d(123456789)107 d(123456789)11} = min {8= 9} =38.

(1,2,3,4,5,6,7,8,9) (10,11)
Eng., Nor, Dan,
Dutch, Ger., French, Hung., Fin.
Span., Italian, Polish
English, Norwegian, Danish,
Dutch, German, French, 0
Spanish, Italian, Polish

Hungarian, Finnish 8 0

8.2.2 Complete linkage (Farthest-neighbor) method

The single linkage has a shortcoming that, as long as a new object is close
to one of the objects in the cluster, it will be assigned to this cluster even if
it is very different from other objects in the cluster. For example, consider
a cluster that contains 1000 African people and one Chinese, then a Chinese
not in this cluster will be assigned to it since there is a single linkage (Chinese-
Chinese). Because of this shortcoming, we need another clustering method.
One method that can avoid the aforementioned shortcoming is called the
complete linkage method. Complete linkage clustering is different from single
linkage clustering in that at each stage, the distance between clusters is the
maximum distance between two elements from each cluster. In the above
example, a Chinese who is not in this cluster will not be assigned to the

cluster.
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Example 8.4: Consider again the hypothetical distances between pairs

of five objects as follows:

1 2 345
1 0
2 9 0
D=tda}=o o ;1 §
4 6 5 90
5 11 10 2 8 0

At the first stage, we merge the two closet items. Since dz5 = 2 is the
smallest, objects 3 and 5 are merged to form the cluster (35).
At stage 2, we calculate the maximum distance between this new cluster

(35) and the remaining objects. The maximum distances are

d(35)1 = max {ds1,ds1} = max{3,11} = 11.

d(35)2 = Imax {d32, d52} = max {7, 10} = 10.

d(35)4 = max {d347 d54} = max {9, 8} =9.

Now, the new distance matrix becomes

(35) 1 2 4
(35) 0
1 11 0
2 10 9 0
4 9 650

The next merger occurs between the most similar groups, 2 and 4, to
form cluster (24).
At stage 3, we have

d(24)(35) = max {d(35)2, d(35)4} = max{lO, 9} = 10.
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di2ay1 = max {dy,ds } = max{9,6} = 9.

Now, the new distance matrix becomes

(35) (24) 1
(35) 0
(24) 10 0

1 11 9 0

Repeat the merging procedure again. Since d(z4; = 9 is the smallest,
cluster (24) and 1 are merged to form the cluster (124) .

At the final stage, the groups (35) and (124) are merged as the single
cluster (12345), with

d(124)(35) = max {d(35)1, d(35)(24)} = max {]_]_, 10} =11.
The final distance matrix becomes
(124) (35)

(124) 0
(35) 11 0

Note that object one is grouped with 2 and 4 under the complete linkage,
while it is grouped with 3 and 5 in the single linkage case.

Example 8.5: Consider the clustering of 11 language in the previous ex-
ample, The first two clusters are (23), (68). We find the maximum distances

between (23), (68), and the remaining objects. The maximum distances are

d(23)1 = max {dgl, d31} = Imax {2, 2} = 2.

d(23)2 = max {da4, d34} = max {5,6} = 6.

d23)5 = max {ds, d3s} = max{4,5} = 5.
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d(23)7 = max {da7, d37} = max {6,5} = 6.

d(23)9 = max {dzg, dzo} = max{7,6} = 7.

d(gg)lg — Imax {dg,lo, d3,10} = max {8, 8} = 8

d(23)11 = max {d2711, d3711} =max{9,9} = 0.

d(esy1 = max {de1, ds1 } = max {6,6} = 6.

d(es)s = max {des, dsa} = max {9,9} = 9.

d(6s)s = max {des, dgs } = max {7,7} =7.

d(esy7 = max {de7, ds7} = max {2,1} = 2.

d(es)9 = max {deg, dsg} = max {5,4} = 5.

d(68)10 = Imax {dﬁﬂlo, d8,10} = max {10, 10} = 10.

d(68)11 — Imax {dﬁ,ll, dg,u} = max {9, 9} = 9

d(68)(23) = max {dg2, dg3, ds2, dgs} = max {6,6,6,5} = 6.

Now, the new distance matrix becomes



208 CHAPTER 8. CLUSTER ANALYSIS

(2,3) (6,8) 1 4 5 7 9 10 11
Nor,  Fren,, Eng. Dutch Ger. Span. Polish Hung. Fin.
Dan Ital.

Nor-.,

Danish ’

French,

Italian 0 0

English 2 6 0

Dutch 6 9 7

German 5) 7 6 0

Spanish 6 2 6 7

Polish 7 ) 7 10 8 0

Hung. 8 10 9 9 10 10

Finnish 9 9 9 9 9 9 0

Since d(23)1 d(gs)7 are the smallest, object 1 and cluster (23) and are
merged to form the cluster (123). Object 7 and cluster (68) and are merged
to form the cluster (678). The maximum distances between (123), (678) and

the remaining objects are

d(123)4 = Inax {d14, d(23)4} = Inax {7, 6} = 7

d(123)5 = Imax {d15, d(23)5} = max {6, 5} = 6.

d(123)9 = max {dlg, d(23)9} = max {7, 6} =T.

d(123)10 = max {d110, d(23)10 } = max {9,8} = 9.

d12sy11 = max {dy 11, d(23y11 } = max {9,9} = 9.

d(e78)1 = max {d(68)17 d71} = max {6,6} = 6.
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d(g78)4 = max {d(68)4; d74} =max{9,9} =09.
d(e7s)s = max {d(68)5, d75} =max {7,7} =7.

d(678)9 = max {d(sg)g, d7g} = max {5, 3} = 5.

d(678)10 = max {d(@g)lg, d7710} = max {10, ]_O} = 10.

d(678)11 = max {d(68)117 d?,ll} = max {9, 9} =0

d(123)(678) = Inax {d1(68)a d(23)(68)> di7, d(23)7} = Inax {6, 6,6, 6} = 6.

(1,2,3) (6,7,8) 4 5 9 10 11
Eng., French,
Nor, Span., Dutch Ger. Polish Hung. Fin.

Dan Ital.
English, Norwegian, 0
Danish
French, Spanish, 6 0

Italian
Dutch 7 9 0

German 6 5 0
Polish 7 5 10 8 0

Hungarian 9 10 8 9 10 0

Finnish 9 9 9 9 9 8 0

Since dys and de7s)9 is the smallest, objects 4 and 5 and are merged to
form the cluster (45). Object 9 and cluster (678) and are merged to form
(6789). The maximum distances between (45),(6789) and the remaining

objects are
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dsy10 = max {dy 10, ds 10} = max {8,9} = 9.
dsyi1 = max {dy11,ds 11} = max{9,9} = 9.
d(45)(123) = max {d(123)4, d(123)5} =max {7,6} =7.
d(6789)(123) = Max {d(678)(123), d9(123)} =max {6,7} = 7.
d(67s9)10 = max { d(grs)10, do1o } = max {10, 10} = 10.
d(67s9y11 = max {d(grs)11, do11 } = max{9,9} = 9.

d(45)(6789) = max { d(g7s9)a, d(e7s9)5 } = max{9,9} = 9.

(1,2,3) (6,7,8,9) 4,5 10 11
Eng.,Nor, French, Span., Dutch, .
Hung. Fin.
Dan Italian, Polish  German
English,
Norwegian, 0
Danish
French, Spanish, - 0
Italian, Polish
Dutch, German 7 9 0
Hungarian 9 10 9
Finnish 9 9 9 8 0

Note that d(123)(6789) = d(lgg)(45) = 7, but d(6789)(45) =9> 7, we cannot
group (6789) and (45) at this stage, but we can group (123) and (6789) to
form the cluster (1236789). The maximum distances between (1236789) and

the remaining objects are
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d(1236789)10 = max {d(123)10, d(6789),10} = max {97 10} = 10.

d(1236789)11 = max {d(123)11, d(6789),11} = max {9, 9} =9.

d(1236789)(45) = max {d(123)(45), d(6789)(45)} = max {77 9} =9.

(1,2,3,6,7,8,9) (4,5) 10 11
Eng., Nor, Dan,
Dutch, .
French, Span., Hung. Fin.
German

Italian, Polish
English, Norwegian,
Danish,

French, Spanish, 0
Italian, Polish
Dutch, German 9 0
Hungarian 10 9 0
Finnish 9 9 8 0

Since djg11 is the smallest, objects 10 and 11 and are merged to form the
cluster (10,11). The maximum distances between (10, 11) and the remaining

objects are

d(1236789)(10,11) = max {d(1236789)107 d(1236789),11} = max {107 9} = 10.

d(10,11)(45) = Max {d(45)10> d(45)11} = max {9,9} = 9.
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(1,2,3,6,7,8,9) (4,5) (10,11)

Eng., Nor, Dan,
Dutch, Hung.,

French, Span., o
German Finnish

Italian, Polish
English, Norwegian, Danish,

French, Spanish, 0
Italian, Polish
Dutch, German 9 0
Hungarian, Finnish 10 9 0

Exercise 8.3: For the following dissimilarity matrix

D ={ds} =
6 0

1
0
9 0
7
710 7 0

= W N =

Cluster the five items using each of the following procedures.

(a) Single linkage hierarchical procedure.

(b) Complete linkage hierarchical procedure.

(c) Draw the dendrograms and compare the results in (a) and (b).
(d) Repeat (a) to (c) if

1 2 3 4 5
1 0
2 2 0
D:{dik}zg 48
4 7 9
5 9 8 5 0
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8.3 Non-hierarchical clustering method

8.3.1 K-means method

Non-hierarchical methods start from an initial partition of items into groups,

then assign an item to the cluster whose centroid (mean) is nearest.

Example 8.6: Suppose we measure two variables X; and X5 for each of

the four items A, B, C and D. The data are given in the following table:

Item\Observations z;

A 5 3
B -1

C 1 =2
D -3 =2

The objective is to divide these items into K=2 clusters such that the
items within a cluster are closer to one other than they are to the items in
different clusters. First, we arbitrarily partition the items into two clusters,
such as (AB) and (CD), and compute the coordinates of the cluster centroid

(mean), (T1,72). We have

Cluster\Centroid T To
(AB)  BED_, sl
(CD) 1+(2—3) 1 —2+2(—2) - 9

Next, we compute the Euclidean distance of each item from the group
centroids and reassign each item to the nearest group. Note that the clus-
ter centroids must be updated before proceeding. We compute the squared

distances

d? (A, (AB)) = (5—2)* + (3 —2)* = 10.

d* (A, (CD)) = (5+ 1)+ (34+2)° = 61.
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Since A is closer to cluster (AB) than to cluster (C'D), it is not reassigned.

Next, we check

d*(B,(AB)) = (-1 -2+ (1-2)>=10

d*(B,(CD)) = (=1+1)*+(1+2)*=9.

Now, we need to reassign B to cluster (CD), giving cluster (BCD). We

need to update the coordinates of the centroid to

Cluster\Centroid T To
A 5 3
(BCD) —1+1;(—3) 1 1+(—2?))+(—2) _ 1

Each item is checked for reassignment. Computing the squared distances

gives the following table:

squared distances to group centroid

Cluster\Item A B C D
A 0 40 41 89
(BCD) 52 4 5 5

Since the items B, C and D is closer to the centroid of the cluster (BCD)
than to A, the final K=2 clusters are A and (BCD).

Exercise 8.4: Suppose we measure two variables X; and X, for each of

the four items A, B, C and D. The data are given as follows:

Item\Observations z; 9

A 5 4
B 1 =2
C -1 1
D 3 1

Use the K-means clustering technique to divide the items into K=2 clus-
ters. Start with the initial groups (AB) and (CD).
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Exercise 8.5: Suppose we measure two variables X; and X, for each of

the four items A, B, C and D. The data are given as follows:

Item\Observations z;
A -2

oOaww

—4

Use the K-means clustering technique to divide the items into K=2 clus-

ters.
(i) Start with the initial groups (AB) and (CD).
(i) Start with the initial groups (AD) and (BC).
Exercise 8.6: True/ False.

(a). The complete linkage clustering is a hierarchical clustering method.

(b). The solutions of the single linkage and complete linkage procedures

can be the same.

(c). The solution of the single linkage hierarchical procedure is unique.

(d). The single linkage clustering is a hierarchical clustering method.

(e). In the complete linkage clustering, the distance between clusters is

the maximum distance between two elements from each cluster.

Exercise 8.7: Suppose we measure two variables X; and X, for each of

the four items A, B, C and D. The data are given as follows:



216 CHAPTER 8. CLUSTER ANALYSIS

Item\Observations z; 5

A -2 2
B 2 10
C 0 15
D 0 1

Use the K-means clustering technique to divide the items into K=2 clus-
ters.

(i) Start with the initial groups (AB) and (CD).

(ii) Start with the initial groups (AD) and (BC).

1 2 3 4
10
Exercise 8.8: For the following dissimilarity matrix D ={d;;,} = 2 8 0
35 1 0
4 6 10 7 0

Cluster the four items using each of the following procedures.
(a) Single linkage hierarchical procedure.
(b) Complete linkage hierarchical procedure.

(c) Draw the dendrograms and compare the results in (a) and (b).

Exercise 8.9: For the following dissimilarity matrix

23 45

D ={di.} =

=~ W N =

[S2 N e
= O 0 O
N w O

0
5 )

—
s}

0

Cluster the five items using each of the following procedures.
(a) Single linkage hierarchical procedure.

(b) Complete linkage hierarchical procedure.
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(c) Draw the dendrograms and compare the results in (a) and (b).

Exercise 8.10: Suppose we measure two variables X; and X, for each

of the four items A, B, C and D. The data are given as follows:

Item\Observations z;

A 1 1
B 2 =2
C -3 1
D 5 4
E 0 -1
F -2 0

Use the K-means clustering technique to divide the items into K=2 clus-
ters. Start with the initial groups (ABC) and (DEF).
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Chapter 9

Binary and Multinomial
Dependent Variable Models

In empirical studies, we often encounter variables which are qualitative rather
than quantitative. For example, we may be interested in whether people
participate in the labor force or not; whether people get married or not;
whether people buy a car or not, etc., all these yes-no decisions are not
quantifiable. In the case where the variable of interest belongs to one of the
two categories, we normally give it a value of 1 if it falls into one category,

and assign a value of 0 to it if it falls into another category.

9.1 Linear Probability Model

Consider a simple binary regression model

Yi = By + 8, Xi +uy.

Note very carefully that we cannot simply assume u; to be i.i.d. (0, 02), as
Y; cannot be treated as a predicted value in a regression line plus an arbitrary
residual. This is because Y; only takes either 0 or 1, so the residuals also take

only two possible values for a given value of X;. First, note that

E(Y;)=1xPr(Y;=1)+0xPr(¥;=0)=Pr(¥; =1).

219
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Further, if Y; = 1, then w; = 1-5,— 3, X;, and if Y; = 0, u; = —5,— 1 X;.

E(u) = (1=, — (X)) Pr(Y;
= (1=Bo— B Xi) Pr(Yi =
= Pr(Yi=1) -5, - 5, X:.

1) + (=B — B1.X3) Pr (Y; = 0)
1)+ (=B — 5:1X;) (1 = Pr(Y; =1))
We can still assume F (u;) = 0 in order to obtain an unbiased estimator.

This will imply

Pr(Yi=1) = fy — 51 Xi =0,

or

Pr(Y; =1) = By + 5,.X..

We call this a linear probability model, where (3, can be interpreted as
the marginal effect of X; on the probability of getting Y; = 1. To give a
concrete example, suppose we have data on two groups of people, one group
purchases sport car while the other purchases family car.

We define Y; = 1 if a family car is purchased and Y; = 0 if a sport car
is purchased. Suppose X; is the family size. Then (3, can be interpreted as:
if there is one more member in the family, by how much will the chance of
buying a family car increase?

The advantage of using the linear probability model is that it is very
simple, and the parameters are easily interpretable. We just need to run a
regression and obtain the parameters of interest. However, there are a lot of

problems associated with the linear probability model.

Heteroskedasticity

The first problem is that we cannot assume Var (u;) to be a constant in

this framework. To see why, note that
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Var (u) = E(ug)—E2(uz):E(u)

(1- Xi)*Pr(Y; =1) + (=, — £1X,)" Pr (Y; = 0)
(1- Xi)? Pr(Y; = 1) + (B, + 5, X:)* Pr (¥; = 0)
(1—Pr(Yz D) Pr(Y; =1)+Pr(Y; =1)*Pr (Y; = 0)
= Pr(Y;=07Pr(Y;=1)+Pr(¥; =1)°Pr(Y; = 0)
Pr(Y; =0)Pr(Y; = 1) [Pr(Y; = 0) + Pr(Y; = 1)]
Pr(Y; =0)Pr(Y; =1)
(1 =By — B81X:) (Bo + £1.X3)

which is not a constant and will vary with X;. Further, it may even be
negative. Thus, we have the problem of heteroskedasticity, and the estimators

will be inefficient.

Non-normality of the disturbances

Another problem is that the error distribution is not normal. This is
because given the value of X, the disturbance u; only takes 2 values, namely,
u, = 1— By — 6,X; or vy = —p, — [;X;. We cannot apply the classical
statistical tests to the estimates when the sample is small, since the tests
depend on the normality of the errors. However, as sample size increases,
it can be shown that the OLS estimators tend to be normally distributed.
Therefore, in large samples, statistical inference of the LPM can be carried

out as usual.

Low value of R?

The conventional R? tends to be low in the binary regression model.
Since all the Y values will either lie along the X axis or along the line
corresponding to 1, no linear regression line will fit the data well. As a
result, the conventional R? is likely to be much lower than 1 for such models.

In most cases, the R? ranges from 0.2 to 0.6.

—

Nonfulfillment of 0 <Pr(Y; =1)< 1.
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The other problem is on prediction. Since

Y =By + By X = Pr(/Yi\: 1)

is the predicted probability of Y; being equal to 1 given X;, which must
be bounded between 0 and 1 theoretically. However, the predicted value here
is unbounded as we do not impose any restrictions on the values of X;. An
obvious solution for this problem is to set extreme predictions equal to 1 or
0, thereby constraining predicted probabilities within the zero-one interval.

This solution is not very satisfying either, as it suggests that we might
have a predicted probability of 1 when it is entirely possible that an event
may not occur, or we might have a predicted probability 0 when an event
may actually occur. While the estimation procedure might yield unbiased

estimates, the predictions obtained from the estimation process are clearly
biased.

Example 9.1: Consider the following linear probability model:

Y, = By + B INCOME; + 8, M ARRIED:; + u;,

where

Y; = 1 if individual ¢ purchased a car in the year of the survey and Y; =0
if not.

INCOM E; =monthly income of individual i (in dollars).

MARRIED; =1 if individual 7 is married and M ARRIED; = 0 if not.

a) Show that F (Y;) =Pr(Y; =1).
b) Show that E (u;) = 0 implies

Pr(Y; = 1) = 8, + 8L INCOME; + 3,MARRIED;.
c) Show that Var(u;) = Pr(Y; =1)Pr(Y; =0).

d) Suppose we estimate the model by OLS and obtain:
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ﬁ = —.1+0.000lINCOME; +0.3MARRIED,;.

Interpret each of the above coefficient estimates.

e) Referring to the estimated model in part d), what is the chance of
purchasing a car for:

i) an individual who is married and has a monthly income of 5000 dollars.

ii) an individual who is married and has a monthly income of 10000
dollars.

ili) an individual who is not married and has a monthly income of 1000

dollars.
f) State the advantages and shortcomings of the linear probability model.

Solution:

()

E(Y;)=0xPr(Y;=0)+1xPr(Yi=1)=Pr(V;=1).

E(u)=0= E(Y;) =, + 5, INCOME; + 3, MARRIED;.
By using the result of part (a), i.e., E (Y;) = Pr(Y; = 1), we have

Pr(Y; =1) = B, + BINCOME; + B,MARRIED;.

(c) When Y; =1,

w = 1—py—pBINCOME; — ,MARRIED;
= 1-Pr(V;=1)
= Pr(¥;=0).
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When Y; =0,

w = 0—By— B INCOME, — B,MARRIED,
= —Pr(Y;=1).

Now,

Var (v;) = FE (uf) since E (u;) =0
= Pr(Y; =0 xPr(Y;=1)+(=Pr(¥; =1))* x Pr(¥; = 0)
) Pr (Y; = 0) [Pr (¥; = 0) + Pr (¥; = 1)]

B, = Marginal Effect of change in monthly income on the probability

of Y, =1.
B5 = Marginal Effect of change in marriage on the probability of ¥; = 1.
By = Effect on the probability of Y; = 1 when the other variables are zero.

Y = —0.1+ (0.0001) (5000) + (0.3) (1) = 0.7.

Y = —0.1+ (0.0001) (10000) + (0.3) (1) = 1.2.

Y = —0.1+ (0.0001) (1000) + (0.3) (0) = 0.

(f) Advantage : It is convenient to carry out. Disadvantage : 0 < 3//\; <1

may not be satisfied.
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9.2 Logistic Regression

Since a linear probability model may yield a predicted value that is outside
the [0,1] range, it is not a good model as far as prediction is concerned. To
improve the linear probability model, one can modify the dependent variable
a little bit. Suppose for each distinct value of X, we have many observations
of Y, some are equal to 1, and some are equal to zero. For example, for a
given value of X;, we have N; observations of Y;, and n; (0 < n; < N;) of
these Y; are 1, and N; —n; are 0. We let P, = % be the observed probability
of observing Y; = 1 given the value of X;. We take a transformation of and
let Z; =In 7 _i X then Z; can take any real value. We can run the following

regression:

Note that

b b
exp (Z;) = exp (ln ] ) =

Thus, we have

and

P T e Z)  Tren (= Gyt BN

Given the estimate Bo: Blfrom the Z regression , the predicted values of

the probability that event will occur is

B 1
b 1+exp (— <Bo —i—BlXi)),

which lies between 0 and 1. We call this method the Logistic regression,

o)

1
since ———— is the distribution function of a Logistic distribution.
1+exp(—Z2)
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9.3 Nonlinear Regression Approach

The linear probability model and the logistic regression model are linear
regressions, in that all the 5's in the model are linearly related. To en-
sure a realistic predicted value, an alternative approach is to re-estimate the
parameters subject to the constraint that the predicted value is bounded be-
tween zero and one. Since predicted value is the value in a regression curve,
we can find a nonlinear function Y; = ¢ (X;, 3) such that 0 < g (X;,8) < 1
for all 5 and X;. Clearly g (X;, 3) cannot be linear in either 5 or X, i.e.,
g (X, B) = By + £1X; will not work.

If we can find a function which is bounded between zero and one, then
we can solve the problem of unrealistic prediction. What kind of functions
will be bounded between zero and one? For example, the cumulative normal
distribution has an increasing, S-shaped CDF bounded between zero and

one. Another example is the logistic distribution, i.e.,

1
9(Xi, ) = 14 exp [ (B + 51 X:)]

Note that as §,X; — —o0, ¢ (X, 5) — 0, and as 5, X; — o0, g(X;,3) —

1. Since g (X;, 8) is not linear in 3, we cannot use the linear least squares

method. Instead, we should run a nonlinear regression

1
Y, = -+ u;.
1+ exp [~ (By + 51 Xi)]
. 2
i.e., we find 3, and 3, to minimize >, (Y; T 1+exp|—(8,+ 2 X)]) '
XP = (Po 1434

to have a certain dis-

Or we can assume u; = Y; —
1+ exp [~ (By + 51X:)]
tribution and apply the Maximum Likelihood method to estimate 3, and

Br-

1

= Trem ()’
find the density function f (z). Is f (x) a symmetric density?

Exercise 9.1: For the Logistic distribution function F'(x)
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9.4 Random Utility Model

Suppose you have to make a decision on two alternatives, say, whether to
buy a sport car or family car. Given the characteristics X; of individual 7 ,

for example, his/her family size, income, etc. Let

Ui =ap+ a1 X; + €1,

Uia = 7o + 71Xi + €42,

where U;; is the utility derived from a family car, and U is the utility
derived from a sport car. The individual will buy a family car if U;; > Uys, or

Uiy — Uz > 0. Subtracting the second equation from the first equation gives

Un —Uip = ag — vy + (1 — 1) Xi + i1 — €ia-

Suppose we define Y* = Uy —Uja, By = ao—"¢, 81 = 1 —71, Ui = €i1—E4o.

We can rewrite the model as

Y =By + B Xi + u,.

However, we cannot observe the exact value of Y;*, what we observe is
whether the individual buy a family car or not. That is, we only observe
whether V;* > 0 or YV* < 0. If Y;* > 0, the individual will buy a family car,

we assign a value Y; = 1 for this observation, and assign Y; = 0 otherwise.

Denote the density function and distribution function of u; by f(-) and
F () respectively, and suppose it is symmetric about zero, i.e., f(u;) =
f(—u;), and F (u;) = 1 — F (—u;). We then have:
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> 0)
Bo + £1Xi +u; > 0)

u; < By + 41Xi)

r(u; < Bo+ 51X5) since u; is symmetrically distributed about zero,

(¥
(
(—
Pr(
= F(By+5Xi),

and

Pr(V;=0)=1-Pr(Y;=1)=1—-F (5, + [, X;) .

Note that the marginal effects of an increase in X; in the probability is

nonlinear in (3's, in particular,

oPr(Y =0

% = —f (Bo + 51X3) By,
oPr(Y;

T =D G+ 01X

Consider the case where 3; > 0, since f (-) > 0, we have

0Pr(Y; =0)

0X; 0
OPr(Y;=1) 0
0X; '

9.5 Maximum Likelihood Estimation

The principle of maximum likelihood provides a mean of choosing an as-
ymptotically efficient estimator for a set of parameters. Let {y;};_, be i.i.d.
random variable with joint density f (y1, ¥a.., yn; 0), where 0 = (61,05, ...0x)".
Since the sample values have been observed and therefore fixed number, we
regard f (y;;0) as a function of 6. Let y = (y1,v2..,yn), we defined the
likelihood function as
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L(y30) = f (o, 92,93 0) = 11 (5350)

and the log-likelihood function is defined as In L (y; ) .

The maximum likelihood estimator §M 1, 18 the estimator that maximizes
the likelihood function. Since logarithmic function is a strictly monotonic

function, @M 1, also maximizes the log-likelihood function.

Ourr = argmax L (y;0) = argmax (In L (y;0)) .

If the distribution is correctly specified, then the Maximum Likelihood
estimator is unbiased and is asymptotically more efficient than any estima-
tors. If the variable is discrete, the density function can be replaced by the

probability that each discrete value will take.

Example 9.2: : Consider a random sample of 10 observations from a

Normal distribution vy, 9o, ..., y19. The density of y; is

where p and o2 are unknown mean and variance of the population re-

spectively.
(a) Find the log-likelihood function.
(b) Find the ML estimators for y and 2.

Solution:
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L(y;p.0®) = f (1,92, s Y105 i1, %)

10 )
= ILf (yip.0%).
01 (yi — )’
— I _M A
=11/ 7702 exp ( 202

_ (\/2;7) Y o (_ 23212((?;; — u)2>

- (27?02)75 exp (——Zgl (y: = ,u)2) .

202

202

InL (y;p,0°) = In [(2#02)5 exp (_M )]

2

Zzlg (yi — 1)
= —5In(27) —5In (0?) — IZT :
gML = arg max (lnL (y; 14, 02)) .

First-order condition,

10
ilnL (?J;/i, 02) _ > i Wi — )

= 0.
o o?
O 11 (e o?) — S -
W n (yMU’?O- ) - 2 + 20_4 - 0

Plug 1i,,;, = 7 into the second equation, we have

_\2
5 XA -9 _
o2 204

0 _\2
IR Y (7 ) R
1002
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0 —\2
b\_2 _ 2321 (yl - y)

Example 9.3: Consider a random sample of 10 observations from a

Poisson distribution w1, ¥s, ..., y10. The probability of each observation is

£ (o) = 2220

with

L(y’ 0) = f(y17y27'-'7y10;0)
10
= 7 (y:9).
ho 0Yi exp (—0)

=1 Yi!
ov1 +y2...+y10 exp (_ 109)

10
i=1

Y1+y2...+Y10 -1 10 10

In L (y;0) zlne meXp( 0) = (Zyl> Inf — 106 — In (I_Iyﬂ)
I ;! = .

i=1

01 = arg max (In L (y;0))

First-order condition,

9 ) Zgglyi
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21121 Yi

eML - .

10
Exercise 9.2: Consider a random sample of 10 observations from a Nor-

mal distribution yq, ys, ..., y10. The density of y; is

) b 02 1\?
Fwisn,02) = g exp (_? (-7) ) ,

where 61, 5 are unknown parameters.
(a) Find the log-likelihood function.
(b) Now let the observations be

Y1 Y2 Y3 Ys Ys Ys Y7 Ys Yo Y10
-5 4 -3 -2 -1 1 2 3 4 5

Find the values of ML estimates for 8; and 6.

Exercise 9.3: Consider the following density function of a random vari-
able X.

f(z;0) = 1 forO0<z<0+1;

=0 elsewhere.

i) Sketch the graph of f (z;1), f (x;2) and f(x;3).

Let X; and X, constitute a random sample of size 2 from the above
population.
ii) Find the joint density of X; and Xs.

iii) Find the likelihood function L (z;6) and the log-likelihood function
In L (z;0).

Exercise 9.4: Suppose the random variable y; ~ N (exp (6),1), i =
1,2,...,100, y; and y; are independent for all 7 # j. Thus,
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f(yz,H) = \/%6_ 2

a) Derive the log-likelihood function In L (y; ).

b) Derive the ML estimator 0.

Exercise 9.5: Given the data y = (y1,v2, ..., 4n) . % is an i.i.d. random

variable with density function

1
f(yi;G)ZEe_F, 0<y; < oo.

a) Find the likelihood function L (y;0) and the log-likelihood function
InL (y;0) .

b) Find the ML estimator of 6.

Exercise 9.6: Suppose the span of human life follows a uniform distri-
bution U (0, ), with # < co. Suppose we have a sample of n observations

Y1, Y2, -, Yn o0 people’s life span.

a) Find the likelihood function L (y;#) and the log-likelihood function
InL (y;0).

b) Find the ML estimator of 6 by solving the first-order condition. Does

your estimator depend on the data?

c¢) Suggest another ML estimator that uses the information of the data

and is based on the maximum of the log-likelihood function.
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9.6 Maximum Likelihood Estimation of the
Probit and Logit Models

Let L (y1,92,-..,Yn; 3) be the joint probability density of the sample obser-
vations when the true parameter is 3. This is a function of ¥, ¥s, ..., y, and
B. As a function of the sample observation it is called a joint probability
density function of y1, s, ..., yn. As a function of the parameter [ it is called
the likelihood function for 5. The MLE method is to choose a value of 3

which maximizes L (y1, Y2, ---, Yn; 5)-

Intuitively speaking, if we have several values of 3, each of which might
be the true value, we would like to find a value of § which gives the sample we
actually observe the highest probability. Suppose we have n observations of
Y and X, where Y takes the value zero or one. The probability of observing

such data is

L = Pr (Yi - yl?Yé = y2>~'~7Yn = yn)
= Pr(Yi=y)Pr(Ya=1y2) .. Pr (Y, = yn)

by the independence of w;.

Since y; only takes either zero or one, we can assign them to two groups.
The likelihood function is

L = J[Pr(vi=1) J]Pr(vi=0)

= HF (B + B1X5) H [1 = F(Bo + 1Xi)]

yi=1 y;=0
n

= TLIF By + B:X0)]" [L = F (B, + 5,X0)]

i=1
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L = m{ﬁwﬁﬁlm” [1—F<60+51Xi>11“}

i=1
_ Zln{ (Bo+ B X" [1 = F (By + B, )
S VE (G + X, +Z (=Y [L=F (5o + 51X
=1

We would like to maximize L, or equivalently, maximize In L since In (-)

is a monotonic increasing function. The first-order conditions are

L (Bo + B81Xi) - oy S B+ B8 Xa)
55, ZY PG, ax) 2T G g

OnL o FBo+BX) S~y vy S BotBiX)
R RCGT o taD DIUR OB vy e Bl

These two equations can be solved to obtain estimators for 3's. However,
as In L is a highly nonlinear function of 3's, we cannot easily obtain the
estimator of 3's by simple substitutions. We may use the grid-search method
and a computer algorithm to solve the problem.

The MLE procedure has a number of desirable properties. When the
sample size is large, all estimators are consistent and efficient if there is no
misspecification on the probability distribution. In addition, all parameters

are normally distributed when sample size is large.

If we assume u; to be normally distributed N (0,0?), i.e.,

f(ﬁo "’ﬁle‘) =
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Bo+B1Xi 1 ;2
F(By+ B, X;) = exp (——) dt,

o Qmo 202
then we have the Probit Model.

The first-order condition can be simplified to

Although the normal distribution is a commonly used distribution, its
distribution function is not a closed form function of u;. As the two first-order
conditions above involve the integration operator, the computational cost will
be tremendous. For mathematical convenience, the logistic distribution is

proposed:

exp (By + 51X)
(1+exp (By + 5,.X0))"
exp (B + 5,Xi)
1+exp (B + 51 Xs)
If we assume u; to have a logistic distribution, then we have the Logit
Model. The first-order condition can be simplified to

/ (50 + 51Xi) =

F(By+ B1X:) =

OlnL 1 1
Iy N Z 1 +exp (ﬁo + B, Xs) - Z 1+ exp (_50 — (1 Xs)

Y;=1 Y;=0

:O’
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9B, B Zl—l—exp (Bo + B1Xi) Zl +exp (=B — 51Xi) -

Yi=1 Y;=0

Exercise 9.7: True/False.
(a) A Probit model assumes that the error term has a uniform distribu-
tion.

(b)A Probit model assumes that the error term has an F distribution.

Exercise 9.8: Consider the Probit model

Y =By + B Xi + u.

Suppose we can only observe the sign of Y,*. If Y;* > 0, we assign a value
Y; = 1 for this observation, and assign Y; = 0 otherwise. Denote the density

function and distribution function of u; by f (-) and F (-) respectively, where

1 u?
F ) = = exp (—2;2> ,

Ug 1 2
F(u;) = / — exp (—2%2) dv,

Pr(Yi=1) = F (B + 0, Xi),

(a) Show that

and

Pr(Y;=0)=1-F (B, + 3 X;).

(b) Suppose we have n observations of Y and X, where Y takes the
value zero or one. Assume u; to be independent, show that the log-likelihood

function can be simplified to
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n Bo+B1X; 1 02
InL = Yl —— | d
n Z o mexp( 0) ’

n 00 1 ’U2
+ 1-Y; ln{/ —exp(——)dv}
;( ) BotBiX; V21O 20°

(c) Let w = ﬂ, show that
o

InL = Yiln/ ——exp (——> dw
i=1 - 2m 2

o0

+zn: (1-Y;)In
=1

(d) Given the data {X;,Y;}! |, suppose (BO, /Bl,/a\> = (1,2, 3) maximizes

the log-likelihood function, will (/Bm /5\17 3) = (2,4, 6) also maximize the log-
likelihood function? Discuss the identifiability of 3, and ;.

Exercise 9.9: Consider the following linear probability model:

DIVORCE; = f,+ 8,INCOME; + 8,Y EARMARRIED,; + 3,AFFAIR;
+8,CHILDREN; + u;,

where

DIVORCE; = 1 if couple ¢ got divorce in the year of the survey, and
DIVORCE; = 0 if not.

INCOM E; = family’s monthly income of couple i (in dollars).

YEARMARRIED; = years of marriage of couple 1.

AFFAIR; = 1 if the husband or the wife (or both) has an extramarital
affair, and AFFAIR; = 0 if not.

CHILDREN; = number of children of couple .

a) Show that £ (DIVORCE;) = Pr (DIVORCE; = 1).
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b) Interpret each of the above coefficients 5, ..., 5,.

c¢) Show that E (u;) = 0 implies

Pr(DIVORCE; =1) = B,+ B, INCOME; + 3,Y EARMARRIED; + 3;AFFAIR,;
+8,CHILDREN;.

d) Show that Var(u;) = Pr (DIVORCE; = 1) Pr (DIVORCE; = 0).

e) Suppose the we estimate the model by OLS and obtain:

DIVORCE; = .5— .0002INCOME; — 015Y EARMARRIED; + 9AFFAIR,
—03CHILDREN,.

What is the chance of getting divorce for:

i) a couple with 6 years of marriage, 2 children, family’s monthly income
of 1000 dollars, and no extramarital affair.

ii) a couple with 1 year of marriage, no children, family’s monthly income
of 2000 dollars, and the husband has an extramarital affair.

iii) a couple with 30 years of marriage, 3 children, family’s monthly income

of 4000 dollars, and the wife has an extramarital affair.
f) State an advantage and a shortcoming of the linear probability model.

Exercise 9.10: Consider the following linear probability model:

AFFAIR; = By+ B INCOME; + 3,SPOUSEINCOME; + 3;Y EARMARRIED,
+8,CHILDREN; + B HRTOGETHER; + B;SEX; + u;,

where
AFFAIR; =1 if individual 7 has an extramarital affair, and = 0 if not,
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INCOM E; = monthly income of individual 7 (in dollars),

SPOUSEINCOM E; = monthly income of the spouse of individual i,

YEARMARRIED; =years of marriage of individual 7,

CHILDREN; = number of children of individual i,

HRTOGETHEFER,; =number of hours per week that individual 7 spends
with his/her spouse.

SEX; =1 if individual 7 is a male, and = 0 otherwise.

(a) Interpret each of the above coefficients 3, ..., B, what are their ex-

pected signs? Explain.

(b) Show that F (u;) = 0 implies

Pr(AFFAIR; =1) = f,+ 8, INCOME; + 3,5POUSEINCOME;
+8,Y EARMARRIED; + 3,CHILDREN;,
+8sHRTOGETHER; + B,SEX;.

(c) Show that Var(u;) = Pr(AFFAIR; = 1)Pr(AFFAIR; =0).

(d) Suggest a method to fix the problem of heteroskedasticity in part (c).
What is the advantage and shortcoming of your method?

(e) Suppose the we estimate the model by OLS and obtain:

AFFAIR, = .54 .008INCOME; — .009SPOUSEINCOME;
_ 015Y EARMARRIED, — .03CHILDREN;
— 004HRTOGETHER, + 007SEX;.

What is the chance of having an extramarital affair for:

i) a man with 6 years of marriage, 2 children, monthly income of 1000

dollars, wife’s income is 800 and he spends 100 hours per week with his wife.
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ii) a woman with 1 years of marriage, 1 child, monthly income of 1000
dollars, husband’s income is 900 and she spends 56 hours per week with his
husband.

iii) a man with 30 years of marriage, 3 children, monthly income of 700

dollars, wife’s income is 500 and he spends 120 hours per week with his wife.

9.7 The Multinomial Logit Model

Suppose there are n individuals and J categories, e.g., Occupational
choice. Define Y;; = 1 if individual ¢ chooses category j, and Y;; = 0 other-
wise. Thus, Y27, Y;; = 1 for all i.

j=1
For example, let J = 3. Suppose that an individual ¢ whose utilities

associated with three alternatives are given by

Uij = leﬁj +€i]‘, j = 1,2,3.

where X and [ are vectors.
Assume that ¢;; are independent and identically distributed, each with

the extreme value distribution

F(eij) = exp (—exp (—&4))

f(gij) = exp (—¢&;;) exp (—exp (—¢&45)) -

The density is shown in the following diagram:
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The density function of an extreme value distribution

Now, if there are 3 categories, category 1, 2 and 3. The probability that

individual ¢ will choose category 2 is

Pr(Y, =1)
= Pr (U > U;; and Uy > Us)
= Pr(X[By+epn> X3, +ein and X3y + 12 > X[ 85+ €:3)
= Pr(eg <ep+ X (By— 1) and g3 < &40 + X! (B85 — 33))

= / f(e)Pr(en <ep+ X{ (By — B1) and €;3 < g2 + X{ (By — B3) |eiz) des

= /OO [ (ei2) Pren < cia + Xi (By — 1) |eia) Pr (i3 < cia + X[ (By — B3) lei2) deie

S cia+X{(B2—P1) cia+ X[ (8By2—B3)
= / / f(&'l)d&'l / f(5i3)d5i3 dr (51‘2)

o0 —00 —00
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8

exp [— exp (—&:2) exp (X (81 — B5))] exp [— exp (—eir) exp (X (B3 — B5))]| dF (<:2)

|
8

F (€i2)eXP<X1{(51*52)) F (giz)eXP(Xz{(rBS*Bz)) dF (51'2)

8

F (5i2)exp(xg(ﬁl752))+exp(xg<53—ﬁ2>) dF (£)

I
\é\g\

|
8

o0

F (51,2)1+6XP(X£(51752))+eXp(X{(B3762))
1 +exp (X] (81 — B,)) +exp (X; (B3 — 55))

1
— T+exp (X[ (B — Ba)) +exp (X[ (B3 — 55))
exp (X;B)

exp (X;B;) + exp (X;fB,) + exp (Xz,63)

Therefore, if there are J categories, the probability that individual i will

choose the j'* category will be

xp (X19)
Zg:l exp (X;By)

One problem arises here, the 3; here cannot be identified as if we change all

Pr(Y; =1) =

the 5 to f + ¢, where c is a vector of any constant, Pr (Y;; = 1) will still be

the same since

exp (X] (8, +¢)) __exp (X/c)exp (X! (B, +¢)) _ e (X785)
Y P (X[ (B +0))  exp (Xie) Tiy exp (X[ (B +0) - Ejy exp (X7By).

Therefore, for the parameter to be identified, we must impose some re-

strictions on . We can simply let 5, = 0, so that

1

Pr (Y;l = 1) = 7 ; s
L+ s exp (XiBy)
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exp (X{Bj)

1+ 21{=2 exp (X]B)
The likelihood function is

Pr(Y;=1)=

n J n J

LTI e = 1 = 111

i=1j=1 i=1j=1

Yij
exp (X{Bj) ]
1+ 35, exp (X/B;,)

By using the conditions that 5, = 0 and ijl Yi; = 1, we have

n J
B ) exp (X/3;)
InL = Z ZY;J In (1 + 22:2 exp (Xz/ﬁk)>

i=1 j—1
n J J
= Z ZY;j (Xz{ﬁj —In |1+ ZGXP (leﬁk)]>
k=2
J
S
k=2

i=1 j=1
n J J
- 3 (Dt () m
zzl ]jl 7=1 .
= Z (Z Y XiB; —In |1+ Zexp (leﬁk)] ) -
k=2

i=1 \j=2

oL & , exp (X15,) A exp (X/5,) ) ,
= Y, X - X/ | = Y — X,
9p; Z ( ’ 1+ Zg:2 exp (X;5) ) Z ( T+ 21}]:2 exp (X;53;)

i=1 =1

Exercise 9.11: Find £ (X) and Var (X) of the random variable X with

F(z) = exp (—exp (1)),

f(x) =exp (—z)exp (—exp (—z)).

9.8 Ordered Data

Some multinomial-choice variables are inherently ordered, e.g., Bond ratings,
opinion surveys, employment (unemployed, part time, or full time). Consider
the model
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Y= Bo + 51X 4w

where Y;* is unobserved. What we observe is

Vi =1 ifpy <Y <y,
= 2 ifpy <Y <,
= 3 i py <Y < ps,

= J  ifpy o, <Y7 <py,

where iy = —o0 and p; = oo. Other y's are unknown parameters to be

estimated with 3's.

Pr(Y;=j) = Pr(u_, <Yy <p)
= Pr (,ujfl < o+ 01 Xi +ui < Mj)
= Pr (Ul < ;= Bo— BlXi) —Pr (u, < iy — Bo — BlXi>
= F (Mj — By — 51X¢) - F (,Uj_1 —Bo — 51Xi) )
We can either assume that u; is normally distributed, or has a logistic
distribution.

Suppose we have n observations of Y and X, where Y takes the value

1,2, ..., J. The probability of getting such observations is

L=PrYi=y,Yo=y2, ... Vu=uyn) =Pr (Y1 =uy1) Pr (Yo =10)...Pr (Y, =

by the independence of w;.
The likelihood function is

L = [[Prvi=1)]][Pr(vi=2)..[[Pr(vi=).
— HH [F ([Lj — 60 — 61X¢) — F (:ujfl _ 60 . Ble‘)]dj

i=1j=1

Yn)
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where d; = 1if Y; = j and d; = 0 otherwise.

InL = iidy‘ In { [F (Nj — By — 51Xi) - F (qu — B — Ble‘)] } .

i=1 j=1
Example 9.3: Suppose there are only 3 ordered categories, then

Pr(Yi=1) = F(u —Bo—B5:Xi),
Pr(Yi=2) = F(py—Bo—58:X:) = F (g — Bo— 8:Xi),

Pr(Y;=3) = 1—F(uy— By~ b1 Xi)-

Consider the case where 3; > 0. For the three probabilities, the marginal

effects of changes in the regressors are

OPr(Y;=1

% —f (11 — By — 51X:) By <0,

OPr (Y, =

% [f (g — By — B1X:) — f (g — Bo — B81X4)] B1 =2,
OPr(Y;i=3

% f (g = By — B1Xi) By > 0.

Thus, in the general case, given the signs of the coefficients, only the
signs of the changes in Pr(Y; = 1) and Pr (Y; = J) are unambiguous. What

happens to the middle cell is unknown.

9.9 Truncation of data

Sometimes we cannot perfectly observe the actual value of the dependent

variable. If we only observe a subpopulation such as individuals with income
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above a certain level, then the data is said to be lower-truncated, in the sense

that we cannot observe people with income below that level in the sample.

Let Y be a random variable which takes values between —oo and oo,
with f(Y) > 0 and / f(Y)dY = 1. Suppose Y is being lower-truncated

—0o0
at Y = a, and we can only observe those Y that are bigger than a. Now
since we only observe Y > a, Pr(Y > a) f f(Y) < 1, so we have to
change the unconditional density function f(Y) into a conditional density

function f (YY" > a) such that [ f (Y|Y > a) dY = 1. Recall the definition
Pr(AnNB)

P (D) . Let A be the event

of conditional probability that Pr (A|B) =
that Y < ¢, and B be the event that Y > a.

Pr(Y<enY>a) [If(

Pr(Y <c]Y >a)=

P(Y >a) faoo
B _dPr(Y <clY >a) f(c)
fY =cY >a)= o T W)y

Example 9.4: Suppose Y is uniformly distributed in the [0, 1] interval.
Since f(Y) =1 and F(Y) =Y, it is easy to find the unconditional prob-
ability Pr (Y > 3/4) = 1/4. Suppose now we know that ¥ must be greater
than 1/2, how will this affect our prediction for Pr (Y > 3/4)7

Solution: Using the above rule

N —

Pr<Y>3 1):Pr(Y>%ﬂY>%) Pr(Y > 3)

_'Y>_ Pr(Y>1)  Pr(vy>1)

NI AN

4 2

9.9.1 Moments of Truncated Distributions

Note that E (Y) is a weighted average of £ (Y|Y < a) and E (Y |Y > a) since
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E(Y) = /OO Yf(Y)dY

—00

_ / Yf(Y)dY+/aooYf(Y)dY

—0o0

“ fY) ., [)
_ /ooYdePr(Y < a) +/a Ve P > a)

— / Yf(Y|Y<a)dYPr(Y<a)+/ooYf(Y|Y>a)dYPr(Y>a)

= EYY<a)Pr(Y<a)+EXY|Y >a)Pr(Y >a).

This implies

min{E (Y)Y <a), EYY >a)} <E(Y) <max{E(Y|Y <a), EY|Y >a)}.

Since E (Y|Y <a) < E(Y|Y > a), we have

E(Y|Y >a) = /OOYf(Y|Y2a)dY2E(Y),

E(Y[]Y <a) = / YF(Y]Y < a)dY < E(Y).

If the truncation is from below, the mean of the truncated variable is
greater than the mean of the original one. If the truncation is from above,
the mean of the truncated variable is smaller than the mean of the original

one.

Example 9.5: Find F (u|u > 1) and Var (uju > 1) if f (u) = exp (—u),

u > 0, and compare them to their unconditional mean and variance.

Solution:
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Eulu>1) = /1 uf (u]u>1)du

1 o0
= 1——]7(1)/1 uf (u)du
= % 1 uexp (—u) du
= % {[—u exp (—u)]io + /loo exp (—u) du}
el 1-F(1)
P F (1)
= 2>F(u)=1

Var(u|u>1) = E(u?|u>1)—[E(u|u>1)

= /mu2f(u|u>1)du—4
1

1 = o
= 1—F(1)/1 uf (u) du — 4

= e/ u?f (u) du — 4
1

= e/ u? exp (—u) du — 4
1

= {[—uzexp(—u)ﬁo—|—2/100uexp(—u) du} 4
= 6[671+2X2671}—4
— 1=Var(u).m

9.9.2 Maximum Likelihood Estimation of the Trun-
cated Model

Consider the simple model

K=50+51X¢+ui>a.



Pr(Y; >a) =

The Likelihood function is

Pr (8, + 51X +w; > a)

=Pr(u; > a—p,

— b

Xz) =1-F (CL — ﬁO
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- B5:X:).

L = fM=y,Yo=v,..Yo=uy|Y1>0aYs>a,..,Y,>a)
= [y —Bo— B XaY1>a) f(y2 — By — 51 Xa|Yo > a) ...f (Yn — By — 51 Xn|Yn > a)
The Log-likelihood function is
InL = In[f(y1 = By — B XaY1 > a) f(y2 = By — 51X2|Y2 >a)..f (Yn — Bo — B1Xn|Ya >«
= Y sy By HXIYi > a) = Zl Y>f)1 X)
i=1
= Zlnf(y— Zlnl— (a — By — B1X0)] -
i=1
First order conditions:
alnL:_zn:f,(yz‘_ﬁo —~  fla—Bo—B: X)) —0
9By —1 f (i = By —~1- F(a—=By—5:X;) ’
GlnL:_nX'f/(yi—ﬁo - — B1X;) —0
9B, , Zf(yz‘—ﬁo 11— a—ﬁo 81X;) '

=1

Exercise 9.12: Consider the truncated model

K=50+51Xi+ui>a,

where u; are i.i.d. with density function and distribution function

and

[ (ui) = exp (—u;)
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F(u;) =1 — exp (—uy)

respectively.

(a) Show that Pr(Y; > a) = exp (8, + 5, X; — a) .
(b) Suppose we have n observations of Y and X, find the log-likelihood

function. SInL SInL
(c) Find D% and £ Discuss the identifiability of 5, and j,.

9By 9B,

Exercise 9.13: Find E (u|u > 1) and Var (ulu > 1) if u ~ N (0,1), and

compare them to their unconditional mean and variance.

9.10 Maximum Likelihood Estimation of the
Tobit Model

Sometimes data are censored rather than truncated. When the dependent
variable is censored, values in a certain range are all reported as a single value.
Suppose we are interested in the accommodation demand for a certain hotel.
If the demand is higher than the hotel’s capacity, we will never know the
value of actual demand, and the over-demand values are reported as the
maximum capacity of this hotel. We may also observe people either work for
a certain hour or not work at all. If people do not work at all, their optimal
working hour may be negative. However, we will never observe a negative
working hour, we observe zero working hour instead. Suppose the data is

lower-censored at zero.

Y5 = Bo+ 61X+,
— 0 ifYr<o,
— v Y, " >0

SO

Y* is not observable, we can only observe Y; and X;. To fully utilize
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the information, if the observation is not censored, we calculate the density
value at that point of observation f (Y; — 8, — ,X;). If the observation is
censored, we use the probability of observing a censored value Pr(Y; = 0).
Note that:

Pr(Y;=0) = Pr(6,+ 5, X;i+u <0)
= Pr(w < —By—68:Xi)
= 1=F(By+ 5, X).

The likelihood function is

L= HfY Bo — 51X; HPT

Y;>0

The log-likelihood function is

InL = In Hfm—ﬁo—ﬁlxi)HPr(Y:

Y;>0

= Y W f(Yi— B 5 X)) Zlnl— (Bo + B1Xi)] -

Y;>0

First-order condition:

alnL Y= By — (Bo+B:1Xi)
TR Dy e Zl— F(Bot X))

OlmL S =By =B Xe) [ (Bo+ 51 X5) _
9 2T A BK) 2T F (B )

Ifu; ~ N (0,0?%), and let ¢ (-) and @ (-) denote the density and distribution

functions of an N (0, 1) respectively.

1 Y, — By — B1X,)° 1 (Y= By — B X,
e e R C

f(Yz' — Bo —BlXi> =
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fl (Y; _50 _51Xz) — ¢ (Y 60 ﬁle) .

o

F (o + B1Xs) = cb(

F (o 01X =0 (AR

Then the log-likelihood can be rewritten as

InL = Zl <Y bo = ) Zln[ (%)1

Example 9.6: Consider the model Y; = 3,4+ 3, X, +u;. If the dependent

variable is upper-truncated at ¢; and lower-censored at ¢y, for any 2 constants

)

g

co < ¢1 < o0. Derive the log-likelihood function of such a model.

Solution: The likelihood function is given by

L = J[ri=sy=gXi|Yi<a) [[ Pr(Vi=e|Yi<a)

Y, >co Yi=co

H f Y 50 5y 1) w
r(Y; <) vile, Pr(Y; <c)

Y, >co

where

Pr(Yi=c) = Pr(By+ 51 Xi+u <c2)
= Pr(u; <co—pBy— 51Xi)
= Fler— By~ B X)
and Pr(Y; <c¢1) = Pr(By+ 51 Xi+uw <c)
= F(a—By—B5Xi).



254CHAPTER 9. BINARY AND MULTINOMIAL DEPENDENT VARIABLE MODELS

The log-likelihood function is given by

nL = Zl Y Fo — 51 Zln—EY’_C2>

Yoo Y < Cl Ve Y; < Cl)
Y 50 F(co — By — 1Xi)
g In —|— E In .l
Y;>co Y, (Cl 51Xz)

Exercise 9.14: True/False. Let X be a random variable, and ¢ be a
constant, then

(a) Var (X) > Var (X|X = ¢).

(b) Var(X|X < ¢) < Var(X).

Exercise 9.15: True/False/Uncertain.

(a) If we only observe a subpopulation such as individuals with income
above a certain level, then the data is said to be lower-truncated.

(b) If we only observe a subpopulation, such as individuals with income
above a certain level, then the data are said to be lower-censored.

(c) When the dependent variable is censored, values in a certain range
are all reported as single value.

(d) When the dependent variable is truncated, values in a certain range
are all reported as a single value.

(e) If X is a random variable which has an extreme value distribution
with density f(x) = exp(—z)exp(—exp(—z)) for —oc0o < = < oco. Let
Y =exp(—X), then £ (Y) = 1.

(f). An extreme value distribution has the distribution function F' (z) =
1 —exp (—exp(—z)) for —oo < z < 0.

(g). For a random variable X, we can have £ (X|X < 0) > 0.



