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Survey Expectations Meet Option Prices:

New Insights from the FX Markets

Abstract

This paper challenges the prevailing notion that investors’ preferences remain indepen-

dent of their investment horizon by uncovering a term structure of risk preferences.

Theoretically, we extract a utility-free measure of risk preferences without temporal or

horizon restrictions. Empirically, we estimate this measure using professional forecasts

and expected risk premia derived from FX option prices. Our analysis of G30 curren-

cies from 1996 to 2020 reveals that the fear of high-order risk is more pronounced in the

shorter term, indicating a downward-sloping term structure of investor risk preferences.

Moreover, we find that this negative slope becomes more pronounced during adverse

times but shifts to an upward slope during favorable periods. These insights offer valu-

able guidance for enriching existing asset pricing models with horizon-dependent risk

preferences, shedding new light on the dynamics of risk premia across different time

horizons.
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1 Introduction

The asset pricing literature has documented that large and time-varying risk premia are

pervasive across asset classes, including the FX market. It is now well accepted that variation

in risk premia helps explain the uncovered interest parity (UIP) failure, starting with Hansen

and Hodrick (1980) and Fama (1984), the cross-section in currency excess returns (e.g.,

Lustig, Roussanov, and Verdelhan, 2011), the performance of global investment strategies

such as the carry trade (e.g., Menkhoff, Sarno, Schmeling, and Schrimpf, 2012), or contribute

to exchange rate predictability (e.g., Della Corte, Ramadorai, and Sarno, 2016; Kremens and

Martin, 2019; Della Corte, Jeanneret, and Patelli, 2021).

A fundamental question is obviously: What drives such risk premia? In the asset pricing

literature, investor risk preferences can be time-invariant (e.g., models with long-run risk and

recursive preferences) or time-varying (e.g., models with habit preferences). In either case,

risk preferences have a flat term structure, that is the preferences of agents are independent

of their forecast horizon. This is a strong assumption that ought to be challenged.1 For

example, shall we expect FX investors to perceive the risk of a currency crash similarly if

their investment horizon is one month vs. one year? Probably not. How should the term

structure of such perceived risk look like? It remains unclear to date. As these questions

illustrate, one reason we still have a poor understanding of risk premia in the FX market is

because we have limited knowledge of the term structure of risk preferences and, in particular,

how this term structure varies over time.

In this paper, we uncover a set of new facts on the term structure of risk preferences. We first

show with theory that we can extract a utility-free measure of risk aversion for FX market

1Such assumption may also appear at odds with the empirical evidence that the term structure of risk
premia varies over the business cycle, as we observe in the equity market for example (Gormsen, 2021).
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participants, without imposing any temporal or horizon restrictions. We empirically estimate

this measure by comparing expected exchange rate returns from professional forecasters

with exchange rate premia computed from option prices, through the lens of no-arbitrage

conditions in the FX market using forecasts over different horizons. We can then explore

the term structure of risk aversion and shed light on how it varies across economic/financial

conditions.

Our main results are as follows. First, we find that investor preferences reflect a strong risk

aversion and sensitivity to high-order risk, thus departing from the log utility benchmark con-

sidered in the recent predictability literature (e.g., Kremens and Martin, 2019; Della Corte,

Jeanneret, and Patelli, 2021). Second, the unconditional term structure of risk preferences

is downward-sloping, that is FX risk premia reflect a greater compensation for risk in the

short term than in the long term. Third, a conditional analysis reveals that the negative

term structure slope strengthens in bad times, but becomes upward-sloping in good times.

Hence, risk aversion is greater in the shorter term during bad times, but greater in the longer

term during good times. Our findings thus provide novel insights on the term structure of

risk preferences, both unconditionally and conditionally.

We propose a conceptual framework to measure FX risk premia that is utility-free with one

free parameter that could be motivated as risk preferences, or ambiguity aversion. Specifi-

cally, our theoretical framework exploits an equivalent version of the no-arbitrage condition

in asset pricing —existence of the so-called growth optimal portfolio, which implies the fol-

lowing risk-neutral expression of the expected excess exchange rate return (or risk premium),

for currency i:

Et

[
Si,T

Si,t

]
− Rf,t

Ri
f,t

=
1

Rf,t

Cov∗
t

(
Rg,T ,

Si,T

Si,t

)
. (1)
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The risk-neutral covariance term Cov∗
t

(
Rg,T ,

Si,T

Si,t

)
captures the conditional risk-neutral co-

variance between the gross return of the growth optimal portfolio (Rg,T ) and the gross

exchange rate return (
Si,T

Si,t
) over the horizon T − t.

An important aspect of our framework is to choose to use the power of market return to

estimate the theoretical object Rg,T .2 We provide detailed motivation and examples in

appendix to justify this choice. Under our assumption that the return of the optimal growth

portfolio is a power function of the market return

Rg,T = Rϕ
m,T ,

the risk-neutral covariance measures the comovements between currency return and ϕ-th

moment of market return. A larger value of ϕ implies that higher-order market return risk

are priced in the FX market, such as co-skewness (ϕ = 2), co-kurtosis (ϕ = 3), and so on.3

Our approach, therefore, links the risk premium with a directly-interpretable measure of

risk preferences, given by ϕ, which we call ’risk aversion’ for convenience. It is important to

stress that our measure of risk preferences is general and, as a result, nests various versions

studied in the literature. For example, ϕ can be interpreted as the constant risk aversion of

an unconstrained representative investor with CRRA utility whose entire wealth is invested

in the market. We show in the appendix that ϕ can be endogenously time varying in a model

with heterogeneous agents (Chan and Kogan, 2002), thereby rationalizing a variation in risk

preferences over the business cycle. Our approach thus addresses the critique of Bekaert,

Engstrom, and Xu (2021) that most studies estimate time-varying risk aversion measures

motivated by models that essentially assume a constant risk aversion coefficient and hence

2The growth optimal portfolio has been early considered in Kelly (1956), Roll (1973), Fama and MacBeth
(1974), Markowitz (1976), Long (1990), and more recently in Alvarez and Jermann (2005), Martin (2012),
Martin and Wagner (2019) in the context of the equity market.

3Backus, Chernov, and Martin (2011) show that, when departing from the special case of lognormal
distributions, investors are more sensitive to high-order cumulants when their risk aversion increases.
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are inherently inconsistent.

To estimate ϕ empirically, we try to integrate information from survey based consensus

forecasts and option prices. First, following our theory, we compute a currency-level measure

of risk premium as the risk-neutral covariance in (1), using 1-month to 24-month options

on the S&P 500 and exchange rates. We then identify, in a panel, the value of ϕ such that

our theoretically-implied risk premium best matches observable expected excess exchange

rate returns, using 1-month-ahead to 24-month-ahead professional forecasts. Our estimation

exploits a cross-section of G30 currencies against the USD over the sample spanning the

1996 to 2020 period. Unconditionally, we obtain a risk aversion estimate of ϕ = 4.25 that is

statistically significantly different from one, which also means that FX investors are highly

sensitive to high-order risk.

Our approach allows us to explore the term structure of risk preferences, which we obtain by

estimating ϕ using options of different maturities and forecasts of different horizons (between

one month and two years). We find that risk aversion decreases from 4.5 at the one-month

horizon to 1.75 at the three-month horizon, and to 1.6 at the two-year horizon. That is,

investors care less about (higher-order) risk as their forecast horizon increases. One expla-

nation is that the risk of a currency crash matters less to investors over a longer horizon,

as a currency has more time to recover following a severe depreciation.4 At the one-month

horizon, however, a currency would not have time to recover following a crash, which trans-

lates into severe losses. Investors are then more fearful towards such tail risk events when

their horizon is shorter, which is expressed by a higher ϕ.

It is noteworthy that such downward-sloping term structure in risk preferences is in line

4Examples of recent currency crashes include the severe depreciation in the Australian and Canadian
dollar in Fall 2008 (Great Financial Crisis) and in Spring 2020 (Covid-19 crisis), the fall in British pound in
Winter 2016 (Brexit), and the fall in the Russian Ruble in February 2022 (Russian-Ukrainian war). Most of
these currencies have fully recovered within a few months.
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with existing evidence that the price of higher-order risk is concentrated in the very short

term. For example, Dew-Becker, Giglio, Le, and Rodriguez (2017) show that, while the spot

variance risk premium in the S&P500 index market is large, forward premia are insignificant

at maturities in excess of a month or two.5 Della Corte, Kozhan, and Neuberger (2021) obtain

a similar result in the FX market, which indicates that equity and currency investors display

similar pattern in terms of aversion to high-order risk. In addition, Lustig, Stathopoulos,

and Verdelhan (2019) show that the profitability of the carry trade declines to zero as the

maturity of the bonds increases, which implies a term structure of carry trade risk premia

that is also downward-sloping.

We then turn to a conditional analysis of the term structure in risk preferences. To do so,

we split our sample according to the degree of financial conditions prevailing in the market

and estimate ϕ on each subsample separately for different horizons. Specifically, we consider

periods of high vs. low level of CBOE equity-option implied volatility index (VIX) and,

alternatively, use the level of the option-implied volatility for a basket of G7 currencies

(VXY). We show that the term structure of risk risk aversion has a steep negative slope in

times of market stress (high volatility), which turns positive during more favourable times

(low volatility).6 Interestingly, it is the level of risk aversion in the short end that largely

drives the fluctuations in the term structure slope. The level of ϕ at a one-month horizon

switches from a high level (high risk aversion and attention to high-order risk) during adverse

times to a negative level (strong risk tolerance and laxity towards high-order risk) during

favorable periods, creating the sign change of the term structure slope.

This paper provides new insights into the term structure of risk preferences, both uncon-

5This pattern is consistent with the downward-sloping term structure of risk premia in equity markets,
documented in Binsbergen, Brandt, and Koijen (2012), Weber (2018), Gonçalves (2021), Gormsen (2021),
among others.

6Our finding can help explain Bansal, Miller, Song, and Yaron (2021)’s finding that, in the equity market,
the term structure of expected dividend strip returns is downward sloping in bad times and upward sloping
in good times.
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ditionally and conditionally. Moreover, our approach contributes to the literature in four

ways. First, we consider a utility-free environment to extract a measure of risk preferences,

which jointly encompasses risk aversion and attention to high-order risk. While the relation

between the optimal growth portfolio and the power of market return is consistent with

various model classes, as we show in the paper, our approach is not tied to specific model

assumptions. In this regard, our framework generalizes the assumptions made in Kremens

and Martin (2019) so we have one more degree of freedom. Second, using an empirical repre-

sentation of identity (1), we can estimate ϕ by simple OLS regressions. The simplicity of this

approach is in contrast to existing methods to extract preferences from macroeconomic data

and financial asset prices (e.g., Bekaert, Engstrom, and Xu, 2021; Or lowski, Sokolovski, and

Sverdrup, 2021). Third, we use observable expected exchange rate returns to measure the

left-hand side of (1). While the literature has typically considered past or ex post realized

returns, we instead exploit survey data from professional forecasters. Our approach allows

us, therefore, to compare the risk premium computed from forward-looking option prices and

the consensus-based expected excess return at the daily frequency and for a cross-section of

currencies. In particular, given that forecasts and options are available for different horizons,

we can explore how ϕ varies in the short term vs. the more distant future.

Abundant anecdotal evidence supports the notion that individuals tend to exhibit a greater

aversion to risks that are proximate in time, as opposed to those that are distant.7 For exam-

ple when planning for distant or future travel, a person may be inclined to take risks, explore

unfamiliar destinations, and engage in thrilling adventures. However, as the departure date

approaches, her behavior tends to shift toward greater risk aversion, particularly with re-

7The finding that risk aversion decreases with the temporal horizon is also consistent with various field
and laboratory experiments. See, for example, Holt and Laury (2002), Coble and Lusk (2010), Abdellaoui,
Diecidue, and Öncüler (2011), Eisenbach and Schmalz (2016) for a review on horizon-dependent risk aversion.
Building on these insights, Eisenbach and Schmalz (2016) and Andries, Eisenbach, and Schmalz (2019)
develop models that account for investors being more risk averse for shorter horizons. The authors show
that allowing for horizon-dependent risk aversion helps resolve various asset pricing puzzles.
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gard to immediate travel hazards such as extreme sports or potentially dangerous activities.

Likewise, when it comes to immediate health and safety concerns, people frequently adopt

a more risk-averse stance, exercising caution in engaging in activities that pose a high risk

of injury or illness. Conversely, when confronted with long-term health risks associated with

lifestyle choices, such as the development of chronic illnesses due to smoking, individuals

may display a higher tolerance for risk. Our contribution is to quantify how risk preferences

vary with the investors’ horizon and to show a strongly downward-sloping term structure.

Regarding the conditional variation in the term structure slope, our paper relates to a grow-

ing literature on extracting time-varying preferences from surveys, experiments, or asset

prices. Specifically, our result that risk aversion for short horizons varies countercyclically

with economic conditions is consistent with evidence observed in other markets. For example,

Guiso, Sapienza, and Zingales (2018) show that investors’ risk aversion increases after the

2008 crisis, by comparing the risk premium investors would pay to eliminate a simple gamble.

Baker and Wurgler (2006) estimate a time-varying measure of sentiment for stock investors.

Cohn, Engelmann, Fehr, and Maréchal (2015) show, in a lab experiment, that investors’ fear

increases as the financial environment becomes riskier. Pflueger, Siriwardane, and Sunderam

(2020) extract a measure of perceived risk from stock investors and show that it varies over

the business cycle. Finally, Bekaert, Engstrom, and Xu (2021) and Or lowski, Sokolovski,

and Sverdrup (2021) use macro data and financial asset prices to extract a measure of time-

varying aggregate risk aversion and the stochastic discount factor, respectively. Consistent

with these studies, our measure ϕ increases during recessions and periods of heightened un-

certainty, suggesting that FX market participants are more risk averse as economic/financial

conditions worsen. A fundamental difference between our paper and this literature, however,

is that we can provide new valuable insights on how the term structure of risk preferences

varies over time.
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The remainder of the paper is organized as follows. Section 2 illustrates our conceptual

framework of risk premium in the foreign exchange (FX) market.. Section 3 describes the

construction of the main variables and presents our framework to estimate the term structure

of risk preferences. Section 4 reports and discusses the results. We conclude in Section 5.

The Internet Appendix contains technical details and presents additional results not included

in the main body of the paper.

2 Theory

Consider a currency strategy that converts a dollar into foreign currency at time t, lends at

the foreign riskless rate between times t and T , and then exchanges the proceeds denominated

in foreign currency for dollars at time T . Using the euro as foreign currency to ease the

notation, this strategy’s gross return is equivalent to

RT =
ST

St

RACf,t ,

where St is the spot exchange rate at time t defined as units of dollars per unit of euro such

that an increase in St reflects an appreciation of the euro, and RACf,t denotes the euro gross

riskless rate observed at time t with maturity T − t.

The fundamental asset pricing equation states

Et[MTRT ] = 1 ,
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and it implies the following expression of currency excess return

Et

[
ST

St

]
−

R$
f,t

RACf,t
= Covt

( −MT

Et[MT ]
,
ST

St

)
, (2)

where Et and Covt are the real-world expectation and covariance operators, respectively,

conditional on all information available at time t, R$
f,t denotes the dollar gross riskless rate

observed at time t with maturity T − t, and MT refers to a stochastic discount factor (SDF)

that prices assets denominated in dollars at time T with Et[MT ] = 1/R$
f,t.

8

The identity presented in Equation (2) states that FX investors demand a time-varying risk

premium that depends on the conditional covariance between the SDF and the gross exchange

rate return. Note that if the SDF were constant conditional on information available at

time t (or the physical measure is close to the risk-neutral one), the covariance term would

disappear and the expected excess return would be zero — it corresponds to the Uncovered

Interest Parity. Two aspects of Equation (2) are worth stressing. First, the risk-adjustment

component is important to understand currency excess returns and, therefore, cannot be

empirically neglected (e.g., Fama, 1984; Lustig, Roussanov, and Verdelhan, 2011). Second,

the SDF is unobservable ex-ante and likely to change over time, thus making it difficult to

determine how investor preferences exactly shape this risk compensation.

2.1 A risk-neutral representation

We specify the general conceptual framework of equation (1) with a free parameter by

assuming the gross return on the growth optimal portfolio9 is a power function of the gross

8We do not need to assume complete markets, which means there may exist alternative SDFs that price
assets denominated in dollars. However, all these SDFs must agree with MT on the prices of future dollar
payoffs we focus on.

9The optimal growth portfolio can also be seen as a levered market portfolio, with Rg,T = Rϕ
m,T and ϕ

measuring the degree of leverage (e.g., Long, 1990; Martin, 2017).
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return on the market portfolio

Rg,T = Rϕ
m,T .

Proposition 1. Starting from the existence of a growth optimal portfolio, i.e. MTRg,T = 1,

and the assumption Rg,T = Rϕ
m,T , we can rewrite Equation (2) as follows:

Et

[
ST

St

]
−

R$
f,t

RACf,t
= Cov⋆

t

(
Rϕ

m,T

E⋆
t [R

ϕ
m,T ]

,
ST

St

)
︸ ︷︷ ︸

ERPϕ
t

, (3)

where E⋆
t and Cov⋆t are the risk-neutral expectation and covariance operators, respectively,

conditional on all information available at time t, and E⋆
t [R

ϕ
m,T ] = R$

f,t.

Proof. See online appendix B.1, Della Corte, Gao, and Alexandre (2023).

We hereafter refer to the above risk-neutral covariance term as the expected risk premium

or simply ERPϕ
t .

We could show that this specification is consistent with various theoretical models. For

example, in the case of an unconstrained CRRA agent who invests in the market, the solu-

tion of the static portfolio choice problem implies that Rg,T = Rϕ
m,T is the growth optimal

portfolio return (Martin, 2017), confirming that the return of the optimal growth portfolio

is proportional to a power function of the market return. A similar result can be obtained in

a setting with ambiguity aversion (Hansen, 2007). In addition, it is easy to show that ϕ can

be endogenously time varying in a model with heterogeneous agents, as in Chan and Kogan

(2002) and Longstaff and Wang (2012), which will later motivate our conditional analysis of

risk preferences. Our online appendix (section A) Della Corte, Gao, and Alexandre (2023)

provides details for each of these model classes.
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We could derive the following explicit expression for the expected risk premium ERPϕ
t .

Proposition 2. The expected risk premium, for a given level of ϕ, can be expressed as

follows:

ERPϕ
t = ϕERPt +

ϕ(ϕ− 1)

2R$
f,t

Cov⋆
t

(
ξϕ−2
T (Rm,T − 1)2,

ST

St

)
, (4)

where

ERP1
t =

1

R$
f,t

Cov⋆
t

(
Rm,T ,

ST

St

)
, (5)

is the expected risk premium when ϕ = 1.

Proof. See online appendix B.2.

Proposition 2 shows that ERPϕ
t is equivalent to ϕ times ERPt plus a non-linear term that

increases with ϕ. This non-linear term can be positive or negative depending on the char-

acteristics of the currency (being a safe haven or rather speculative, for example). Fan,

Londono, and Xiao (2022) shows the equity tail risk is priced in the currency market.

Note that, in the special case of ϕ = 1, the expected risk premium corresponds to the quanto

risk premium of Kremens and Martin (2019). Another simple special case is when ϕ = 2,

and we could simplify the right-hand side of (4) as

ERP2
t = 2 ERPt +

1

R$
f,t

Cov⋆
t

(
(Rm,T − 1)2,

ST

St

)
, (6)
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where the first one amounts to twice ERPt, and the second one captures a non-linear term

reflecting how the currency comoves with market variance. The latter could be synthetically

priced as a quanto contract on the payoff of a variance swap written on the market return,

and interpreted as the co-skewness between exchange rate returns and the market implied

variance (e.g., the squared of the VIX index).

We now provide an interpretation of ϕ as a measure of investors’ risk preferences. A key

aspect of our framework is that we do not need to impose any utility function. However, it can

be convenient to think of the power utility case with lognormal shocks for the interpretation

of the results. In this case, the measure of risk preferences, ϕ, corresponds to the level of

risk aversion. So the higher the risk aversion, the higher the expected risk premium, as

one would expect. However, we find that the risk premium does not linearly increase with

risk aversion, as it would be the case with the lognormal model. We indeed allow for any

distribution of market returns and exchange rates, which implies that investors also care

more about high-order risk when their risk aversion increases (see Backus, Chernov, and

Martin, 2011). For convenience, we hereafter use the term ’risk aversion’ when referring to

ϕ, although it can also encompass attention to high-order risk such as co-skewness (ϕ = 2),

co-kurtosis (ϕ = 3), and so on. We discuss the role of these high-order moments in online

appendix (see section B.3 in Della Corte, Gao, and Alexandre (2023)).

In sum, we have used the properties of the growth optimal portfolio to derive a currency’s

expected risk premium in function of a utility-free measure of risk preferences, ϕ. The level

of ϕ reflects the degree of risk aversion, as well as the attention to high-order risk when

one departs from the lognormal case. Our objective in the rest of the paper is to extract a

T -dependent estimate of ϕ from the data and to shed new light on the term structure of risk

preferences in the FX market.
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3 Empirical Methodology

In this section, we present our approach to empirically estimate ϕ, based on the framework

developed in Section 2. We then describe the construction of the main variables, using

professional forecasts to measure expected currency excess returns and option data to esti-

mate the expected currency risk premium. Finally, we discuss the main contributions of our

empirical approach, before presenting the results in Section 4.

3.1 Approaches to empirically estimate ϕ

We can write an empirical representation of Equation (3) as follows

Et

[
Si,T

Si,t

]
−

R$
f,t

Ri
f,t︸ ︷︷ ︸

ERXi,t,T

= αϕ + βϕCov∗
t

(
Rϕ

m,T

E∗
t [R

ϕ
m,T ]

,
Si,T

Si,t

)
︸ ︷︷ ︸

ERPϕ
i,t,T

, (7)

where ERXi,t,T denotes the expected excess return and ERPϕ
i,t,T is the expected risk premium

for a given ϕ, both measured at time t over the horizon T − t for currency i relative to the

US dollar.

The expected risk premium we derive in Section 2 implies that αϕ = 0 and βϕ = 1 in the

empirical representation (7). We can thus exploit this condition in our empirical analysis

to estimate the coefficient ϕ. Specifically, we propose to estimate specification (7) by OLS

for different values of ϕ, using a panel of currencies, and then select the regression slope

coefficient βϕ that is closest to one.10

10We do not use the condition αϕ = 0 because αϕ is expected to vary across currencies, capturing trading
frictions or transaction costs that typically differ across currency pairs.
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Our theory also suggests a complementary approach for inferring ϕ from the data. If the

non-linear term in Equation (4) is negligible, we have ERXϕ
t ≈ ϕERP

(1)
t and we can then

use a simplified version of the specification (7):

ERXi,t,T = α + β ERP
(1)
i,t,T , (8)

where ERP
(1)
i,t,T represents the expected risk premium for currency i in the case of ϕ = 1. In

this case, we can infer ϕ from the estimate of β directly. If, however, the non-linear term

becomes non-negligible, e.g., in periods of financial market stress, the estimate of β would

not provide a good approximation of ϕ. We can easily compare the ϕ estimated obtained

using both approaches and, thus, assess the importance of the non-linear term in Equation

(4).

We now describe how we construct, for each currency pair, the dependent variable (the

expected excess return) and the independent variable (the expected risk premium) used to

estimate specifications (7) and (8).

3.2 Measuring expected currency excess returns

For each currency i, we measure expected currency excess return as follows

ERXi,t,T =
Et [Si,T ]

Si,t

−
R$

f,t

Ri
f,t

, (9)

where Et [Si,T ] is the exchange rate forecast at time t over the horizon T − t and Si,t is the

spot exchange rate at time t. For the former, we collect monthly forecasts with a horizon

of 1, 3, 12, and 24 months from the Foreign Exchange Consensus Forecasts Database, a

comprehensive monthly survey compiled by Consensus Economics; we then use a linear
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extrapolation method to retrieve daily forecasts. For the latter, we use WM/Refinitiv Spot

Rates from Datastream. The last term in Equation (9) is the ratio of gross interest rates

observed at time t with maturity T − t for currency i (Ri
f,t) and the US dollar (R$

f,t). For

the construction of these components, we rely on daily zero-coupon rates bootstrapped from

money market rates and interest rate swaps obtained from Bloomberg. Ultimately, we match

the maturity of interest rates to that of exchange rate forecasts.

3.3 Measuring the expected currency risk premium

We now describe the construction of the expected risk premium, which is given by

ERPϕ
i,t,T = Cov∗

t

(
Rϕ

m,T

E∗
t [R

ϕ
m,T ]

,
Si,T

Si,t

)
. (10)

The above risk-neutral covariance is not directly observable from market prices, except for

the case of ϕ = 1, which is discussed in Kremens and Martin (2019). To overcome this

challenge, we decompose the risk-neutral covariance into its three distinct components:

Cov∗
t

(
Rϕ

m,T

E∗
t [R

ϕ
m,T ]

,
Si,T

Si,t

)
= ρ∗ϕ,i,t

√√√√var∗t

(
Rϕ

m,T

E∗
t [R

ϕ
m,T ]

)√
var∗t

(
Si,T

Si,t

)
, (11)

where ρ∗ϕ,i,t captures the risk-neutral correlation between Rϕ
m,T and Si,T/Si,t, while the two

var∗t terms denote the risk-neutral variance of the stock market return (for different levels of

ϕ) and that of exchange rate returns, respectively. These quantities are measured at time t

over the same horizon T − t. While the risk-neutral variances can be constructed using the

Breeden-Litzenberger method applied to equity index and currency options (see Appendix

C.2), the risk-neutral correlations for different level of ϕ are not directly observable. We

instead use the backward-looking realized correlation between Rϕ
m,T and Si,T/Si,t between
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times t − T and t as a proxy. For example, if ρ∗ϕ,i,t is the 1-year risk-neutral correlation at

time t, our proxy is the 1-year realized correlation measured over the previous year.11

Equity index option prices are based on the daily implied volatility surface of SPX Eu-

ropean options, as provided by OptionMetrics. We use observations from January 1996 to

December 2020. We also take the yield curve term structure from OptionMetrics. We revert

the implied volatility back to option prices to compute the risk-neutral moments of the S&P

500 index returns with maturities of 1, 3, 12 and 24 months.

FX option prices are converted from implied volatility data collected over-the-counter

(OTC) currency options from JP Morgan and Bloomberg. The quoted implied volatili-

ties, in terms of Garman and Kohlhagen (1983), are on baskets of constant maturity plain

vanilla options for fixed deltas (δ). From these data, we recover the implied volatility smile

ranging from a 10δ put to a 10δ call option. To convert deltas into strike prices and im-

plied volatilities into option prices, we employ exchange rates and zero-yield rates obtained

by bootstrapping money market rates and interest rate swap data from Datastream and

Bloomberg.

Using the realized correlation and the risk-neutral variances, we can finally compute the

daily expected risk premium ERPϕ
i,t,T for each of the 30 currency pairs and different levels

of ϕ between 1 and 24 months.

11We show in Appendix C.1 that the risk-neutral correlation, implied from the Quanto contracts used
in Kremens and Martin (2019), is close to the realized correlation between the market and exchange rate
returns. So we can conclude that the realized correlation is a reasonable proxy for the risk-neutral correlation.
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3.4 Advantages of our methodology

Our methodology contributes to the literature in four major ways. First, we consider a model-

free environment to extract risk preferences. While the relation between the optimal growth

portfolio and the power of market return is consistent with various model classes, as discussed

in Appendix A, our approach is not tied to specific model assumptions. In this regard, our

framework generalizes Kremens and Martin (2019), which builds on investors having log

utility. Second, using the two empirical representations provided in Section 3.1, we can

estimate ϕ by comparing the simple OLS regressions with ERPϕ
i,t,T when the non-linear term

is negligible. The simplicity of this approach is in contrast to existing methods to extract

preferences from macroeconomic data and financial asset prices, as in Bekaert, Engstrom,

and Xu (2021) or Or lowski, Sokolovski, and Sverdrup (2021) for example. Third, we use

observable expected exchange rate return to measure the left-hand side of Equations (7)

and (8), i.e., ERXi,t,T . While the literature has typically considered past or ex post realized

returns, we instead exploit survey data from professional forecasters. Our approach allows

us, therefore, to compare the expected risk premium (ERPϕ
i,t,T ) computed from forward-

looking option prices and the consensus-based expected excess return (ERXi,t,T ) at the daily

frequency and for a cross-section of currencies. Last but not least, given that forecasts and

options are available for different horizons, we can shed light on the term structure of our

risk aversion measure ϕ.

4 Empirical Results

In this section, we estimate ϕ using the two approaches presented in Section 3.1, both

unconditionally and conditionally, as well as for different horizons. Our analysis allows us to
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quantify the aversion of FX market participants to high-order risk, explore how such aversion

varies over time, and shed light on the term structure of risk preferences.

4.1 Unconditional analysis

We start our empirical analysis by estimating the unconditional level of ϕ. We do so by first

pooling together expected excess returns and expected risk premia across all maturities and

then running panel regressions based on the following specification:

ERXi,t,T = αi + αℓ + αt + βϕ ERPϕ
i,t,T +εi,t,T , (12)

where ERXi,t,T is the expected currency excess return observed at time t over the horizon

T − t for currency i and ERPϕ
i,t,T is the expected currency risk premium computed at time t

for the same currency pair/maturity. We complement our specification with currency fixed

effects (αi) that control for time-invariant differences in exchange rate forecasts, maturity

fixed effects (αℓ) to control for average variation in forecasts across different horizons, and

time fixed effects (αt) that control for unobservable time-variant global factors driving ex-

change rate forecasts. We use daily observations and report our results in Table 1 for a large

cross-section of 30 currency pairs (Panel A) as well as for a subset of 20 developed and most

liquid emerging market currency pairs (Panel B).

In Column (1), we first run the specification (12) for different values of ϕ, using a fine grid

between 0 and 6, and then report the value of ϕ associated with an estimate of βϕ that is

closest to 1. This corresponds to our first approach. We find an estimate of ϕ equal to 4.25

and 4.55 in Panels A and B, respectively. Both estimates are highly statistically significant

from ϕ = 0 (case of risk-neutrality) and ϕ = 1 (log utility). For completeness, the remaining

columns present estimates of βϕ for selected values of ϕ ranging between 1 and 6. We can
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clearly see that βϕ is about 1 for values ϕ between 4 and 5, but quite different from 1 outside

this range. This analysis provides confidence to the point estimates of ϕ we obtain in Column

(1).

Table 1 about here

Alternatively, we can exploit our second approach for estimating ϕ. Recall that if the risk-

neutral co-skewness between exchange rate returns and the stock market variance is not too

large, we can also infer ϕ from the slope coefficient βϕ in the case of ϕ = 1, which corresponds

to regressing ERXi,t,T on ERP1
i,t,T . Based on this method, Column (2) of Table 1 shows that

the estimate of ϕ is 3.87 in Panel A and 4.17 in Panel B. The results imply that this simple

alternative approach is a good approximation to the baseline approach, which requires a grid

search over hundreds of panel regressions. In addition, the explanatory power (R2) is quite

high and remarkably similar across both approaches (e.g., 18% and 18.2% in Columns 1 and

2, respectively).

Overall, both cases imply a level of ϕ around 4, which means that FX market participants

are strongly averse to higher-order risk. Recall from Section ?? that the higher the ϕ, the

more investors put weights to (risk-neutral) higher-order moments when computing currency

risk premia. Specifically, when ϕ = 4, FX participants require a positive (negative) currency

premium that largely reflects the negative (positive) comovement between the currency and

market variance. Such risk preferences imply a significant departure from the log utility case

(i.e., ϕ = 1) considered in the recent exchange rate predictability literature (e.g., Kremens

and Martin, 2019; Della Corte, Jeanneret, and Patelli, 2021).
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4.2 Time variation in risk preferences

We now investigate how the risk preferences of FX investors vary over time. A recent strand

of empirical studies suggests that risk aversion increases in “bad times”. For example, surveys

indicate that investors are willing to pay a higher risk premium to eliminate a simple gamble

after (compared to before) the 2008 crisis (Guiso, Sapienza, and Zingales, 2018). Also,

investors’ fear appears to increase as financial conditions become riskier, as reported in

a lab experiment by Cohn, Engelmann, Fehr, and Maréchal (2015). Investors’ perceived

risk, as measured by comparing the valuation of stocks with different volatility, decreases as

economic conditions improve (Pflueger, Siriwardane, and Sunderam, 2020). Stock investors

are also found to have higher risk aversion in times of greater market uncertainty (Bekaert,

Engstrom, and Xu, 2021). Surprisingly, however, we thus far have limited knowledge of how

the aversion to higher-order risk changes over different market conditions. We thus turn our

attention to how ϕ varies over time.

Figure 1 displays the one-year rolling estimate of ϕ, based on the second approach (i.e.,

using ERP1
i,t,T as the independent variable in specification (12)). We can see that ϕ varies

substantially over time and appears to be elevated in multiple instances of FX market stress,

including NBER recessions. In particular, we observe a strong increase in the aversion

to higher-order risk during the Russian debt crisis in 1998, during the severe carry trade

reversal in 2008, during the European debt crisis in 2011-2012, when the Fed started a

monetary tightening phase in 2015, or at the peak of the Covid-19 crisis in 2020, when

major commodity currencies have depreciated strongly against the US dollar. We can thus

conclude that FX participants’ aversion to higher-order risk tends to peak at times currencies

experience large movements and are thus more subject to crashes.

Figure 1 about here
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4.3 The term structure of risk preferences

A key advantage of our methodology is that we can construct expected excess returns

(ERXi,t,T ) and the expected risk premium (ERPϕ
i,t,T ) over different horizons. We are thus

able to explore the term structure of risk preferences, as given by estimated values of ϕ for

each forecast horizon. For this analysis, we run one panel regression by forecast horizon

using the following specification:

ERXi,t,T = αi,τ + αt,τ + βϕ,τ ERPϕ
i,t,T +εi,t,T , (13)

where αi,tau and αt,tau are respectively currency and time fixed effects for a given horizon

τ = T −t. Table A.4 reports estimates based on four forecast horizons, i.e., 1 month in Panel

A, 3 months in Panel B, 1 year in Panel C, and 2 years in Panel D. Two results are worth

mentioning at this stage. First, all estimates of ϕ are highly statistically significant. Second,

the explanatory power increases significantly when estimating ϕ for a specific maturity,

compared to a pooled analysis: the R2 in Column (1) of Table A.4 ranges between 32.6%

and 53.5% vs. about 18% in Table 1. These findings confirm the importance of considering

maturity-based estimates of ϕ.

Table A.4 about here

When comparing Panel A and Panel D, we can see that the term structure is unconditionally

downward-sloping. In particular, Column (1) indicates that ϕ decreases from 4.80 at the one-

month horizon to 1.72 at the two-year horizon. This finding suggests that investors care less

about higher-order risk as their forecast horizon increases. One explanation is that the risk

of a currency crash becomes less relevant over a longer horizon, as a currency has more time
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to recover following a severe depreciation. At the one-month horizon, however, a currency

would not have time to recover following a crash, which translates into severe losses to FX

market participants. Over the short term, investors are then more averse to such tail risk

events, which is expressed by a higher level of ϕ.

4.3.1 Robustness analysis

We now summarize a set of robustness analyses that corroborate our previous findings.

First, we show that the term structure of ϕ remains qualitatively similar when adding a set

of control variables Xi,t to our panel specification, i.e., we run panel regressions based on

ERXi,t,T = αt,τ + αi,τ + βϕ,τ ERPϕ
i,t,T +δτ

′Xi,t + εi,t,T , (14)

where Xi,t includes the interest rate differential between the US and country i at time t,

the dollar basis constructed at time t using the one-month US dollar interest rate, and the

year-on-year inflation differential between the US and country i at time t. We also control

for the realized covariance of exchange rate changes with the negative reciprocal of the S&P

500 return, observable at time t and computed between times t−T and t, as in Kremens and

Martin (2019). We report the estimates in Table 3 and show in Column (1) that ϕ decreases

from 4.43 at the one-month horizon to 3.30 at the two-year horizon.

Table 3 about here

In Table 4, we employ expected exchange return (as opposed to currency expected excess

returns) as the dependent variable, adding the corresponding interest rate differential as an
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explanatory variable, in our panel regressions:

EFXi,t,T = αt,τ + αi,τ + βϕ,τ ERPϕ
i,t,T +γτ IRDi,t,T +εi,t,T , (15)

where EFXi,t,T = Et [Si,T ] /Si,t is the expected exchange rate return based on consensus

forecasts observed at time t and IRDi,t,T = R$
f,T/R

i
f,T − 1 is the interest rate differential at

time t. We find that estimates of ϕ remain remarkably close to those reported in Table A.4.

For example, Column (1) shows that ϕ decreases from 4.95 at the one-month horizon to 1.68

at the two-year horizon. These results confirm that FX participants are more (less) averse

to tail risk events when their investment horizon is shorter (longer).

Tables 4 about here

4.3.2 Conditional term structure

We then explore how the term structure of risk preferences varies across economic and

financial conditions. To do so, we split our sample according to NBER-dated recessions

and expansions, estimate the specification (13) on each subsample separately, and then

plot the estimates of ϕ in the top-left Panel of Figure 2. Consistent with the preliminary

evidence of Figure 1, we find that ϕ increases during recessions, suggesting that FX market

participants are indeed more averse to higher-order risk as economic conditions worsen. More

interestingly, the term structure has a steep negative slope in recessions, while it becomes

much flatter (and also upward-sloping) during expansions.

We find similar results when we analyze risk preferences across different measures of finan-

cial conditions. The top-right Panel, for example, shows the results when we separate the

sample by high and low levels of CBOE equity-option implied volatility index (VIX), based
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on the sample mean. The bottom panels replace the VIX index with the option-implied

volatility for a basket of G7 currencies (VXY) and the implied volatility on one-month U.S.

Treasury options (MOVE), respectively. In all cases, the term structure of risk preferences

is countercyclical with respect to aggregate economic/financial conditions.

Figure 2 about here

Overall, our paper contributes to the literature by providing new insights into how the

aversion to higher-order risk varies over different horizons as well as into the dynamics of its

term structure. In particular, we find that fear of high-order risk is greater in the shorter

term during bad times, but becomes greater in the longer term during good times.

5 Concluding Remarks

This paper sheds light on the FX risk premium and the term structure of risk preferences.

We first show theoretically that we can extract a utility-free measure of risk preferences for

FX market participants. We then estimate this measure by comparing expected exchange

rate returns from professional forecasters with exchange rate premia computed from option

prices, through the lens of no-arbitrage condition in the FX market. We can then explore

how the term structure of risk preferences varies across economic/financial conditions.

The main results are as follows. Investor preferences reflect a strong aversion to high-order

risk, thus departing from the log utility considered recently (e.g., Kremens and Martin,

2019; Della Corte, Jeanneret, and Patelli, 2021). Unconditionally, the term structure of risk

preferences is downward-sloping, that is FX risk premia provide a greater compensation for

high-order risk as the forecast horizon decreases. Conditionally, this negative term structure
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slope strengthens in bad times, but becomes upward-sloping in good times. Hence, fear of

high-order risk is greater in the shorter term during bad times, but greater in the longer term

during good times. We therefore provide novel insights on the conditional term structure of

risk preferences.
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ferent time periods: An experimental investigation, Management Science 57, 975–987.

Alvarez, Fernando, and Urban J. Jermann, 2005, Using asset prices to measure the persis-

tence of the marginal utility of wealth, Econometrica 73, 1977–2016.

Andries, Marianne, Thomas M Eisenbach, and Martin C Schmalz, 2019, Horizon-dependent

risk aversion and the timing and pricing of uncertainty, FRB of New York Staff Report.

Backus, David, Mikhail Chernov, and Ian Martin, 2011, Disasters implied by equity index

options, Journal of Finance 66, 1969–2012.

Baker, Malcolm, and Jeffrey Wurgler, 2006, Investor sentiment and the cross-section of stock

returns, Journal of Finance 61, 1645–1680.

Bakshi, Gurdip, and Dilip Madan, 2000, Spanning and derivative-security valuation, Journal

of Financial Economics 55, 205–238.

Bansal, Ravi, Shane Miller, Dongho Song, and Amir Yaron, 2021, The term structure of

equity risk premia, Journal of Financial Economics 142, 1209–1228.

Bekaert, Geert, Eric C. Engstrom, and Nancy R. Xu, 2021, The time variation in risk appetite

and uncertainty, Management Science.

Binsbergen, Jules van, Michael Brandt, and Ralph Koijen, 2012, On the timing and pricing

of dividends, American Economic Review 102, 1596–1618.

Britten-Jones, M., and Anthony Neuberger, 2000, Option prices, implied price processes,

and stochastic volatility, Journal of Finance 55, 839–866.

26



Chan, Yeung Lewis, and Leonid Kogan, 2002, Catching up with the joneses: Heterogeneous

preferences and the dynamics of asset prices, Journal of Political Economy 110, 1255–1285.

Coble, Keith H, and Jayson L Lusk, 2010, At the nexus of risk and time preferences: An

experimental investigation, Journal of Risk and Uncertainty 41, 67–79.

Cohn, Alain, Jan Engelmann, Ernst Fehr, and Michel André Maréchal, 2015, Evidence
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Figure 1. Time-varying measure of risk preferences, ϕ

This figure displays the time variation in the risk preferences of FX participants. The series reflects one-year rolling estimates of ϕ
implied from the following specification

ERXi,t,T = αi + αℓ + αt + β1 ERP
1
i,t,T +εi,t,T ,

where the slope coefficient β1 is the proxy for ϕ, as described in Section 3.1, while αi, αℓ, and αt denote currency, maturity, and time
fixed effects, respectively. ERXi,t,T is the expected currency excess return observed at time t over the horizon T − t for currency i,
calculated using exchange rate consensus forecasts net of interest rate differentials (see Section 3.2). ERP1

i,t,T is the expected currency
risk premium computed at time t, for the same currency pair/maturity, in the case of ϕ = 1 based on S&P 500 index and currency
options with maturities ranging between one month and two years (see Section 3.3). The sample runs at the daily frequency between
January 1996 and December 2020 for a cross-section of 30 currency pairs relative to the US dollar. We use linear extrapolation to
retrieve daily forecasts from monthly forecasts. Shaded areas denote NBER-dated recessions. Data are from Bloomberg, FRED, JP
Morgan, and OptionMetrics.
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Figure 2. Term structure of risk preferences ϕ by market conditions

This figure displays the conditional term structure of risk preferences, based on panel estimates of ϕ across different market conditions.
The estimated specification is Equation (13) for maturities equal to 1 month, 2 months, 1 year, and 2 years. The top-left panel
reports results during NBER recession and expansion periods. The top-right panel relates to low and high CBOE equity-option
implied volatility index (VIX) periods, the bottom-right panel to low and high option-implied volatility for a basket of G7 currencies
(VXY) periods, and the bottom-left panel to low and high implied volatility on one-month U.S. Treasury options (MOVE) periods,
all three defined relative to the sample average. The sample runs at the daily frequency between January 1996 and December 2020.
Data are from Bloomberg, FRED, JP Morgan, and OptionMetrics.
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Table 1. Panel regression estimates of the risk preferences ϕ

This table presents estimates of the risk preferences ϕ from a panel regression of expected currency excess
returns on expected currency risk premium. The results are obtained from the following specification

ERXi,t,T = αi + αℓ + αt + βϕ ERP
ϕ
i,t,T +εi,t,T ,

where ERXi,t,T is the expected currency excess return observed at time t over the horizon T − t for currency i
and ERPϕ

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity.
αi, αℓ, and αt denote currency, maturity, and time fixed effects (FE), respectively. ERXi,t,T is calculated
using exchange rate consensus forecasts net of interest rate differentials, whereas ERPϕ

i,t,T is based on S&P
500 index and currency options for different levels of ϕ and maturities ranging between one month and two
years. In Column (1), we first run the above specification for different values of ϕ and then report the value
of ϕ associated with βϕ = 1. In Column (2), we estimate ϕ from the slope coefficient βϕ in the case of ϕ = 1.
The remaining columns present estimates of βϕ for selected values of ϕ ranging between 2 and 6. Standard
errors, reported in parenthesis, are clustered by currency and time. Statistical significance at the 10%, 5%,
and 1% levels is denoted by *, **, and ***, respectively. The sample runs at the daily frequency between
January 1996 and December 2020 for a cross-section of 30 (20) currency pairs relative to the US dollar in
Panel A (B). We use linear extrapolation to retrieve daily forecasts from monthly forecasts. Data are from
Bloomberg, FRED, JP Morgan, and OptionMetrics.

Panel A: All Currencies

Grid Results for different ϕ

βϕ = 1 ϕ = 1 ϕ = 2 ϕ = 3 ϕ = 4 ϕ = 5 ϕ = 6
(1) (2) (3) (4) (5) (6) (7)

ϕ 4.25***
(0.85)

ERPϕ 3.87*** 2.01*** 1.38*** 1.06*** 0.86*** 0.73***
(0.71) (0.38) (0.27) (0.21) (0.18) (0.15)

R2 (%) 18.0 18.2 18.1 18.0 18.0 17.9 17.9

N 604,802 604,802 604,802 604,802 604,802 604,802 604,802

Panel B: Most Liquid Currencies

ϕ 4.55***
(0.96)

ERPϕ 4.17*** 2.16*** 1.48*** 1.13*** 0.92*** 0.77***
(0.80) (0.42) (0.30) (0.23) (0.19) (0.17)

R2 (%) 19.4 19.7 19.6 19.5 19.5 19.4 19.3

N 436,492 436,492 436,492 436,492 436,492 436,492 436,492

Currency FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Maturity FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Table 2. Term structure of risk preferences ϕ

This table presents estimates of the risk preferences ϕ from a panel regression of expected currency excess
returns on expected currency risk premium for different horizons. The results are obtained from the following
specification

ERXi,t,T = αt + αi + βϕ ERP
ϕ
i,t,T +εi,t,T ,

where ERXi,t,T is the expected currency excess return observed at time t over the horizon T − t for currency i
and ERPϕ

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity.
αi and αt denote currency and time fixed effects (FE), respectively. ERXi,t,T is calculated using exchange
rate consensus forecasts for a given horizon net of interest rate differentials, whereas ERPϕ

i,t,T is based on
S&P 500 index and currency options for different levels of ϕ and a corresponding maturity. In Panel A,
we first run the above specification for different values of ϕ and then report the value of ϕ associated with
βϕ = 1. In Panel B, we estimate ϕ from the slope coefficient βϕ in the case of ϕ = 1. Standard errors,
reported in parenthesis, are clustered by currency and time. Statistical significance at the 10%, 5%, and 1%
levels is denoted by *, **, and ***, respectively. The sample runs at the daily frequency between January
1996 and December 2020 for a cross-section of 30 currency pairs relative to the US dollar. We use linear
extrapolation to retrieve daily forecasts from monthly forecasts. Data are from Bloomberg, FRED, JP
Morgan, and OptionMetrics.

Panel A: First Approach (Grid search for βϕ = 1)

Forecast horizon

1 month 3 months 12 months 24 months
(1) (2) (3) (4)

ϕ 4.54*** 1.75*** 1.74*** 1.56***
(0.82) (0.54) (0.43) (0.47)

R2 (%) 32.6 32.7 45.3 53.5

N 153,975 155,714 155,540 139,573

Panel B: Second Approach (Slope when ϕ = 1)

ERP1 4.80*** 1.78*** 1.74*** 1.72***
(0.96) (0.57) (0.43) (0.53)

R2 (%) 32.6 32.7 45.3 53.5

N 153,975 155,714 155,540 139,573

Currency FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
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Table 3. Term structure of risk preferences ϕ – with controls

This table presents panel regression estimates based on the following specification

ERXi,t,T = αt + αi + βϕ ERP
ϕ
i,t,T +δ′Xt + εi,t,T ,

where ERXi,t,T is the expected currency excess return observed at time t for currency i and maturity T − t
and ERPϕ

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity,
with αt and αi denoting time and currency fixed effects, respectively. Xt refers to control variables, i.e.,
the interest rate differential between the US and country i, the year-on-year inflation differential between
the US and country i at time t, and the realized covariance of exchange rate changes with the negative
reciprocal of the S&P 500 return observable at time t and computed between times t− T and t. ERXi,t,T is
calculated using exchange rate consensus forecasts and interest rate differentials whereas ERPϕ

i,t,T is based
on S&P 500 and currency options for different levels of ϕ and maturities ranging between one month and
two years. Standard errors, reported in parenthesis, are clustered by currency and time (calendar days)
dimension. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.
The sample runs at the daily frequency between January 1996 and December 2020 for a cross-section of 30
currency pairs relative to the US dollar. We use linear interpolation to retrieve daily forecasts from monthly
forecasts. Data are from Bloomberg, FRED, JP Morgan, and OptionMetrics.

Panel A: 1-month Maturity

βϕ

1 different levels of ϕ

(grid) (1) (2) (3) (4) (5) (6)

ERP 4.43** 5.56*** 2.64*** 1.65*** 1.15*** 0.85** 0.65**
(1.60) (1.38) (0.73) (0.51) (0.40) (0.33) (0.28)

R2 (%) 32.9 33.1 33.0 33.0 32.9 32.9 32.8

N 153,975 153,975 153,975 153,975 153,975 153,975 153,975

Panel B: 3-month Maturity

ERP 4.77*** 4.97*** 2.48*** 1.63*** 1.21*** 0.95*** 0.78***
(1.16) (0.94) (0.50) (0.36) (0.28) (0.23) (0.20)

R2 (%) 33.0 33.4 33.3 33.2 33.1 33.0 32.9

N 155,714 155,714 155,714 155,714 155,714 155,714 155,714

Panel C: 1-year Maturity

ERP 2.65*** 2.31*** 1.26*** 0.91*** 0.72*** 0.61*** 0.53***
(0.83) (0.68) (0.39) (0.29) (0.24) (0.21) (0.19)

R2 (%) 46.4 46.5 46.5 46.4 46.4 46.4 46.3

N 155,540 155,540 155,540 155,540 155,540 155,540 155,540

Panel D: 2-year Maturity

ERP 3.30*** 2.47*** 1.42*** 1.07*** 0.88*** 0.77*** 0.69***
(0.89) (0.64) (0.38) (0.29) (0.24) (0.21) (0.19)

R2 (%) 56.7 56.8 56.8 56.8 56.7 56.7 56.7

N 139,573 139,573 139,573 139,573 139,573 139,573 139,573

controls ✗ ✗ ✗ ✗ ✗ ✗ ✗

currency fe ✓ ✓ ✓ ✓ ✓ ✓ ✓
time fe ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Table 4. Term structure of risk preferences ϕ – using expected FX
returns

This table presents panel regression estimates based on the following specification

EFXi,t,T = αt + αi + βϕ ERP
ϕ
i,t,T +γ IRDi,t,T +εi,t,T ,

where EFXi,t,T is the expected exchange rate return observed at time t over the horizon T − t for currency
i, ERPϕ

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity,
and IRDi,t,T is the interest rate differential between the US and country i at time t for the same currency
pair/maturity. αi and αt denote currency and time (calendar date) fixed effects, respectively. EFXi,t,T is
calculated using exchange rate consensus forecasts whereas ERPϕ

i,t,T is based on S&P 500 index and currency
options for different levels of ϕ and maturities ranging between one month and two years. Standard errors,
reported in parenthesis, are clustered by currency and time (calendar date) dimension. Statistical significance
at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The sample runs at the daily
frequency between January 1996 and December 2020 for a cross-section of 30 currency pairs relative to the
US dollar. We use linear extrapolation to retrieve daily forecasts from monthly forecasts. Data are from
Bloomberg, FRED, JP Morgan, and OptionMetrics.

Panel A: 1-month Maturity

βϕ

1 different levels of ϕ

(grid) (1) (2) (3) (4) (5) (6)

ERP 4.95*** 4.67*** 2.38*** 1.61*** 1.23*** 0.99*** 0.83***
(1.01) (0.86) (0.45) (0.31) (0.25) (0.20) (0.18)

R2 (%) 33.4 33.6 33.5 33.5 33.4 33.4 33.3

N 153,975 153,975 153,975 153,975 153,975 153,975 153,975

Panel B: 3-month Maturity

ERP 1.82*** 1.77*** 0.91*** 0.62*** 0.48*** 0.39*** 0.33**
(0.59) (0.56) (0.30) (0.21) (0.17) (0.14) (0.12)

R2 (%) 33.1 33.2 33.1 33.1 33.1 33.0 33.0

N 155,714 155,714 155,714 155,714 155,714 155,714 155,714

Panel C: 1-year Maturity

ERP 1.70*** 1.58*** 0.87*** 0.63*** 0.51*** 0.44*** 0.39***
(0.46) (0.42) (0.24) (0.18) (0.14) (0.13) (0.11)

R2 (%) 37.2 37.2 37.2 37.2 37.1 37.1 37.1

N 155,540 155,540 155,540 155,540 155,540 155,540 155,540

Panel D: 2-year Maturity

ERP 1.68*** 1.53*** 0.87*** 0.66*** 0.54*** 0.48*** 0.43***
(0.49) (0.46) (0.26) (0.20) (0.16) (0.14) (0.13)

R2 (%) 35.7 35.7 35.7 35.6 35.6 35.6 35.6

N 139,573 139,573 139,573 139,573 139,573 139,573 139,573

IRD ✗ ✗ ✗ ✗ ✗ ✗ ✗

currency fe ✓ ✓ ✓ ✓ ✓ ✓ ✓
time fe ✓ ✓ ✓ ✓ ✓ ✓ ✓
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A Understanding the optimal growth portfolio

This appendix shows that our specification, whereby the return of the optimal growth port-

folio is proportional to a power function of the market return, is consistent with various

theoretical models.

A.1 Rationalizing the leveraged market return

We start with a simple static portfolio choice problem of an unconstrained CRRA agent who

invests in the market.12 The maximization problem can be written as follows:

max
w

Et
(
∑

i wiRi,T )1−ϕ

1 − ϕ
, s.t.

∑
i

wi = 1 .

Taking the first order condition for each weight wi, we have λ = Et

[
Ri,T (

∑
i w

⋆
iRi,T )−ϕ

]
,

where λ is the Lagrangian multiplier, and w⋆
i is the optimal weight of an asset with gross

return Ri,T in the representative agent’s portfolio. Note that the quantity (
∑

i w
⋆
iRi,T )−ϕ =

R−ϕ
m,T is proportional to the SDF, which proves that Rg,T = Rϕ

m,T is the growth optimal

portfolio return.

A similar result can be obtained in a setting with ambiguity aversion. The following example

builds on the results in Hansen (2007). We consider a robust portfolio optimization prob-

lem for an unconstrained representative agent with log utility, who penalizes his modeling

mistake, i.e. the distance (relative entropy) between his subjective belief and the rational

12This portfolio choice problem builds on Martin (2017). See Result 8 of its Online Appendix.
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expectation (through the change of measure ξT )

max
w

min
ξT>0,ξT= dH

dP

Et

[
ξT log

(∑
i

wiRi,T

)]
− θ KL(H|P)︸ ︷︷ ︸

penalty of choosing H

,
∑
i

wi = 1.

Hansen and Sargent (2011) shows the optimal distortion for the minimization problem (as-

sume the portfolio weights are given) should be the exponential tilting (also called the Ess-

cher transform), ξT = R
− 1

θ
m,T/Et

[
R

− 1
θ

m,T

]
. This would reduce the robust agent’s problem into

a CRRA agent’s portfolio choice problem under rational expectation

max
w

−Et θ

(∑
i

wiRi,T

)− 1
θ

,
∑
i

wi = 1.

As shown in Section A, the growth optimal portfolio is Rg,T = Rθ−1+1
m,T . The value of ϕ =

1 + θ−1 captures a log agent’s ambiguity aversion, i.e. the higher ϕ, the lower the ambiguity

aversion of the log agent.

Consider now, as an extension, that the representative agent holds only part of her portfolio

in the market. This agent has a portfolio weight ω ∈ (0, 1] in the market portfolio and

(1 − ω) in the risk-free asset. This would imply the growth optimal portfolio being Rg,T =

(ωRm,T + (1 − ω)Rf,t)
ϕ. Under some reasonable conditions, the above binomial function can

be expanded as a Maclaurin series

Rg,T = (1 − ω)ϕRϕ
f,t

(
1 + ϕ

ω

1 − ω

Rm,T

Rf,t

+
ϕ(ϕ− 1)

2!

(
ω

1 − ω

Rm,T

Rf,t

)2

+ ...

)
,

which is essentially a sum of integer powers of the market return with constant coefficients.

The value of ϕ should be a rational number, which is a sensible choice here since the set of

rational number is dense in the set of real number. Also, the random variable has compact
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support Rm,T/Rf,t ∈ [0, 2(ω−1 − 1)].

A.2 A case of time-varying ϕ

We now show that ϕ can be endogenously time varying in a model with heterogeneous agents.

Intuitively, variation in ϕ arises from the change in the distribution of wealth among agents

with different preferences as in Chan and Kogan (2002) and Longstaff and Wang (2012).

Consider a two-period model with complete markets and two agents from country 1 and

country 2 with homogeneous beliefs and power utility, but with differing coefficients of risk

aversion, γ2 > γ1 ≥ 1.13 Agent i’s problem is as follows:

max
W 1−γi

i,t

1 − γi
+ β Et

W 1−γi
i,T

1 − γi
.

As markets are complete and beliefs are homogeneous, the SDF is unique, so that

β

(
W1,T

W1,t

)−γ1

= β

(
eTW2,T

etW2,t

)−γ2

,

where et is the exchange rate of one unit currency in country 2 valued in the currency of

country 1.

Assuming that γ1 = γ and γ2 = 2γ to ensure a closed form solution, as in Longstaff and

Wang (2012), we have

W1,T

W1,t

=

(
eTW2,T

etW2,t

)2

.

Writing Wt = W1,t + etW2,t for aggregate wealth measured in currency 1 implies that

W1,T = 2
a

(√
1 + aWT − 1

)2
and eTW2,T = 2

a

(√
1 + aWT − 1

)
, where the constant a =

13This example builds on Longstaff and Wang (2012), where each agent faces a portfolio choice problem.
We extend to a two-country environment and, at the same time, simplify the initial model as far as possible.
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4W1,t/(etW2,t)
2 reflects the relative wealth of the two agents. Although agents 1 and 2

are not representative—neither invests only in the market—they have the same beliefs and

SDF as a representative agent. Such representative agent has a wealth WT (measured in

currency 1) and marginal utility v′(WT ) that is proportional to eTW
−2γ
2,T . Integrating across

agents, this representative agent’s utility function at time T is

v(WT ) =

(√
1 + aWT − 1

)2(1−γ)

2(1 − γ)
+

(√
1 + aWT − 1

)1−2γ

1 − 2γ
,

such that her relative risk aversion, denoted by ϕ(WT ), can be written as:

ϕ(WT ) = −WTv
′′(WT )

v′(WT )
= γ +

γ√
1 + aWT

with the limits limWT→∞ ϕ = γ and limWT→0 = 2γ. The coefficient ϕ therefore varies over

time, as the relative wealth of the agents changes, in a range given by γ and 2γ. We could

represent marginal utility of the representative agent as, v′(WT ) = a
(√

1 + aWT − 1
)−2γ

=

κ(WT )W
−ϕ(WT )
T , where κ(WT ) is a state dependent constant, and it implies the growth

optimal portfolio return can be written as

Rg,T ∝ 1

κ(WT )
R

ϕ(WT )
m,T .

The time varying constant is κ(WT ) = a

(
aW

1−ϕ(WT )

γ

T + 2W
−ϕ(WT )

γ

T − 2γW
1−ϕ(WT )

γ
T

ϕ(WT )−γ

)−γ

. Since

ϕ(WT )/γ is between [1, 2], the expression κ(WT ) is a polynomial that in terms powers of WT

between [0, 2γ].
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B Theory

B.1 Proof of Proposition 1

Derivation of Equation (3). Using the property that MTRg,T = 1, we start from the

following identity

Et

[
ST

St

]
= Et

[
MTRg,T

ST

St

]
, (A.1)

=
1

R$
f,t

E∗
t

[
Rg,T

ST

St

]
, (A.2)

and then decompose the above risk-neutral expectation as

E⋆
t

[
Rg,T

ST

ST

]
= E⋆

t [Rg,T ]E⋆
t

[
ST

St

]
+ Cov⋆

t

(
Rg,T ,

ST

St

)
(A.3)

= R$
f,t ×

R$
f,t

RACf,t
+ Cov⋆

t

(
Rg,T ,

ST

St

)
(A.4)

where E∗
t [Rg,T ] = R$

f,t follows from the relation between the risk-neutral probability and the

SDF valuation and E∗
t [ST/St] = R$

f,t/R
AC
f,t from the Uncovered Interest Rate Parity (UIP)

condition. Finally, by combining and rearranging the above equations, we obtain

Et

[
ST

St

]
−

R$
f,t

RACf,t
=

1

R$
f,t

Cov⋆
t

(
Rg,T ,

ST

St

)
. (A.5)

or equivalently

Et

[
ST

St

]
−

R$
f,t

RACf,t
= Cov⋆

t

(
Rg,T

E⋆[Rg,T ]
,
ST

St

)
. (A.6)
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B.2 Proposition 2

Proof. We here provide the derivation of Equation (4). Recall that f(x) = f(c) + f ′(c)(x−
c)+ 1

2
f”(ξ)(x−c)2 for ξ ∈ [1, x] (or [x, 1]). Here we used f(x) = xϕ, c = 1, and x = Rm,T . This

allows us to express Rϕ
m,T = 1+ϕ(Rm,T−1)+ ϕ(ϕ−1)

2
ξϕ−2
T (Rm,T−1)2. Take covariance between

Rϕ
m,T and ST/St would eliminate the constants: Cov⋆(Rϕ

m,T , ST/St) = ϕCov⋆(Rm,T , ST/St)+

ϕ(ϕ−1)
2

Cov⋆(ξϕ−2
T (Rm,T − 1)2, ST/St). Note that ϕ does not need to be an integer.

B.3 Interpretation of ϕ and higher-order moments

An elegant way of exploring how higher-order risk drives the expected risk premium is to

expand the risk-neutral covariance in Equation (3) as follows

Et

[
Si,T

Si,t

]
− Rf,t

Ri
f,t

= θϕT
(
eϕ − 1

) ∞∑
n=1

w⋆
ϕ,nCov⋆

t

(
rnm,T ,

Si,T

Si,t

− 1

)
, (A.7)

where rm,T ≈ Rm,T − 1 is the continuously compounded stock market return, and w⋆
ϕ,n =(

eϕ − 1
)−1

ϕn/n! denote weights that sum up to one. Each weight is a bell-shaped function

of n with its maximum value around ϕ. The higher ϕ, the higher the factor eϕ − 1 in front

of the infinite sum and more weights are shifted to the (risk-neutral) higher-order terms, as

illustrated by the left panel of Figure A.2. So the level of ϕ is intrinsically related to an

aversion towards higher-order risk.14

14This is done by expanding the exponential function in the covariance Cov⋆t
(
Rϕ

m,T ,
Si,T

Si,t

)
=

Cov⋆t
(
eϕrm,T ,

Si,T

Si,t

)
using power series, i.e., ex = 1 + x+ 1

2!x
2 + ....

A–6



Figure A.2 about here

Alternatively, we can write the analogous version of (A.7) under the real-world measure by

simply replacing MT = 1/Rg,T = λ−1R−ϕ
m,T in (2). We then obtain:

Et

[
Si,T

Si,t

]
− Rf,t

Ri
f,t

=
1

Rf,t

(
1 − e−ϕ

) ∞∑
n=1

wϕ,nCovt

(
rnm,T ,

Si,T

Si,t

− 1

)
, (A.8)

where the weights wϕ,n =
(
e−ϕ − 1

)−1 (−ϕ)n

n!
sum to one. Note that the weights switch

signs between the odd and even market return moments, as investors require a positive risk

premium when the covariance between exchange rate returns and odd (even) market return

moments is positive (negative). As an example, a currency that comoves positively with

market return (or skewness) is a risky currency that should offer a positive risk premium. In

contrast, a currency that comoves positively with market variance (or kurtosis) is a hedge

currency that should offer a negative risk premium. The right-hand side panel of Figure A.2

shows the change in signs between odd (even) market return moments and how the weights

vary with ϕ.

C Ingredients of ERPϕ
i,t

C.1 Estimating the risk-neutral correlation ρ∗ϕ,i,t

We measure ρϕ,i,t using a backward-looking sample correlation over a window that matches

the maturity of the options. Suppose that on day t, for example, we compute var∗[ · ] and

E∗[ · ] using options between t and T . We then calculate ρi,ϕ using daily returns between

t− T and t.
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Since risk-neutral correlations are not observable, we used the realized empirical correlations

instead. This choice is backed by three observations. First, we compare Quanto implied

risk-neutral correlation (thanks to authors of Kremens and Martin (2019) for sharing the

data) and realised correlation, which is the case when ϕ = 1, we find those two are similar in

terms of variation (see Figure A.1 for an example with EURUSD pair). Second, we find the

realised correlations are similar across different value of ϕ. Third, we run similar regressions

as Kremens and Martin (2019) by using the ERP1
i,t,T that we constructed using the realized

correlations and match the same sample period.

Figure A.1. The correlation ρϕ=1,i,t for i = EURUSDt
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C.2 Risk Neutral Moments

We explain how we compute the two risk neutral variances in details.
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Risk Neutral Moments of Equity Index Returns. To compute the risk neutral vari-

ance of
Rϕ

m,T

E∗
t [R

ϕ
i,T ]

, we recall the formula

var∗t

 Rϕ
m,T

E∗
t

[
Rϕ

m,T

]
 =

E∗
t

[
R2ϕ

m,T

]
E∗

t

[
Rϕ

m,T

]2 − 1 ,

where we could compute the risk neutral momements using the following formula

E∗
t [R

θ
m,T ] = Rθ

f,t + Rf,t

∫ Ft,T

0

θ(θ − 1)

Eθ
t

(EtRf,t − Ft,T + K)θ−2Pt,T (K)dK

+Rf,t

∫ ∞

Ft,T

θ(θ − 1)

Eθ
t

(EtRf,t − Ft,T + K)θ−2Ct,T (K)dK , (A.9)

where Rf,t is the risk free rate from yield curve with maturity T , K is the strike of option,

Et is the current level of equity index, and Ωt,T (K) is the out-of-money option prices with

strike K and maturity T . The formula’s proof could be found in the online appendix (result

9) of Martin (2017).

We take the assumption EtRf,t = Ft,T in our computation to ignore the dividend payment,

i.e. we assume the payment of dividends are not reinvested. The formula simplifies to

E∗
t [R

θ
m,T ] = Rθ

f,t + Rf,t

∫ Ft,T

0

θ(θ − 1)

Eθ
t

Kθ−2Pt,T (K)dK + Rf,t

∫ ∞

Ft,T

θ(θ − 1)

Eθ
t

Kθ−2Ct,T (K)dK .

(A.10)

Risk Neutral Variances of FX returns. The risk-neutral variance of the gross exchange

rate return between two dates t and T

var∗t

(
ST

St

)
= E∗

t

(
ST

St

)2

−
(
E∗

t

ST

St

)2

, (A.11)
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is computed by integrating over an infinite range of the strike prices from European call and

put options expiring on these dates as

var∗t

(
ST

St

)
=

2

Bt,TS2
t

(∫ Ft,T

0

Pt,T (K)dK +

∫ ∞

Ft,T

Ct,T (K)dK

)
, (A.12)

where Pt,T (K) and Ct,T (K) are put and call option prices at time t with strike price K and

maturity date T , respectively. Bt,T is the price of a domestic bond at time t with maturity

date T . The above equation builds on Bakshi and Madan (2000) and Britten-Jones and

Neuberger (2000) and is based on no-arbitrage conditions that require no specific option

pricing model. In our implementation, we follow Jiang and Tian (2005) and use a cubic

spline around the available implied volatility points. This interpolation method is standard

in the literature and has the advantage that the implied volatility smile is smooth between

the maximum and minimum available strikes. We compute the option values using the

Garman and Kohlhagen (1983) valuation formula and solve the integral in Equation (A.12)

via trapezoidal integration.

D More Robustness Concerns

We consider some robustness issues that we omitted in the paper that we think might distract

the readers from our main discussions.

D.1 Risk-neutral Correlation

[put comparison to Quanto theory paper]
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D.2 Consensus v.s. Rational Expectation

One might think the consensus forecast is not exactly the physical measure. To reflect this

view, we use Ẽ[·] to represent the subjective measure (consensus forecasts), which differs

from E[·]. We now decompose the risk premium forecasts, i.e. the ex-ante expected excess

return of exchange rate under subjective measure, into two parts

Ẽt

[
ST

St

]
− Rf,T

Ri
f,T︸ ︷︷ ︸

forecast risk premium

= Et

[
ST

St

]
− Rf,T

Ri
f,T︸ ︷︷ ︸

UIP premium

+ Ẽt

[
ST

St

]
− Et

[
ST

St

]
︸ ︷︷ ︸

none risk premium component

, (A.13)

where the first part is the expected risk premium under physical measure and the second

part reflects the difference between the subjective and physical measures. Empirically, the

left side of (A.13) is directly observable from the data of surveys. Comparing the above to

(A.16), we could view the subjective expected risk premium as

Ẽt

[
ST

St

]
− Rf,T

Ri
f,T

= ERP
(ϕ)
i,t +ξi,t , (A.14)

where the residual has two parts

ξi,t = −
Rf,TCovt

(
MTR

ϕ
m,T ,

ST

St

)
E∗

t [R
ϕ
m,T ]︸ ︷︷ ︸

ξ
(1)
i,t

+ Ẽt

[
ST

St

]
− Et

[
ST

St

]
︸ ︷︷ ︸

ξ
(2)
i,t

. (A.15)

The optimal choice of ϕ that minimize the residual ξi,t could be seen as a joint test that the

two components are both zero.
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D.3 Residual Term for ERP
(ϕ)
i,T

A potential misspecification of Rg,T would generate an error term in (??). We could explicitly

compute this term in the following result, which is an extension of result 1 in Kremens and

Martin (2019).

Result 1. Under no-arbitrage, for any random quantity XT , we have the following decom-

position of expected return of FX

Et

[
ST

St

]
− Rf,t

Ri
f,t

=
Cov∗t

(
XT ,

ST

St

)
E∗

t [XT ]
−

Rf,TCovt
(
MTXT ,

ST

St

)
E∗

t [XT ]
, (A.16)

where MT is the SDF, Rei,T is the return of FX and E∗[·] stands for the risk-neutral measured

expectation.

Given the choice of Rg,T = Rϕ
m,T , which value of ϕ would minimize the residual term in

(A.16) is an empirical question.
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Risk-neutral covariance Real-world covariance

1

Figure A.2. Higher-order risk and the expected risk premium

This figure displays the contribution of higher-order risk to the expected risk premium for different degrees of risk preferences, ϕ.
The left panel expands the risk-neutral covariance in Equation (3) using Equation (A.7), while the right panel is based on Equation
(A.8). Panels (A) and (B) plot the risk-neutral weight w⋆

ϕ,n and the real-world weight wϕ,n in function of the market return moment
n. The weights are respectively associated with the risk-neutral and real-world covariances between rnm,T , where rm,T is the market

return for horizon T , and the exchange rate return
Si,T

Si,t
. The risk-neutral weight takes its maximum value around ϕ. The real-world

weight switches signs between the odd and even market return moments because FX investors require a positive risk premium when
the covariance between exchange rate returns and odd (even) market return moments is positive (negative).
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Table A.1. Panel regression estimates of the risk preferences ϕ –
with interpolated forecasts

This table presents panel regression estimates based on the following specification

ERXi,t,T = αi + αℓ + αt + βϕ ERP
ϕ
i,t,T +εi,t,T ,

where ERXi,t,T is the expected currency excess return observed at time t over the horizon T − t for currency i
and ERPϕ

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity.
αi, αℓ, and αt denote currency, maturity, and time (calendar date) fixed effects, respectively. ERXi,t,T is
calculated using exchange rate consensus forecasts and interest rate differentials whereas ERPϕ

i,t,T is based
on S&P 500 index and currency options for different levels of ϕ and maturities ranging between one month
and two years. Standard errors, reported in parenthesis, are clustered by currency and time (calendar date)
dimension. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.
The sample runs at the daily frequency between January 1996 and December 2020 for a cross-section of 30
(20) currency pairs relative to the US dollar in Panel A (B). We use linear interpolation to retrieve daily
forecasts from monthly forecasts. Data are from Bloomberg, FRED, JP Morgan, and OptionMetrics.

Panel A: All Currencies

βϕ

1 different levels of ϕ

(grid) (1) (2) (3) (4) (5) (6)

ERP 4.15*** 3.71*** 1.94*** 1.34*** 1.03*** 0.84*** 0.72***
(0.75) (0.61) (0.33) (0.23) (0.18) (0.15) (0.13)

R2 (%) 20.1 20.4 20.3 20.2 20.1 20.0 19.9

N 604,897 604,897 604,897 604,897 604,897 604,897 604,897

Panel B: Most Liquid Currencies

ERP 4.30*** 3.89*** 2.03*** 1.39*** 1.07*** 0.88*** 0.74***
(0.77) (0.65) (0.35) (0.25) (0.19) (0.16) (0.14)

R2 (%) 21.1 21.4 21.3 21.2 21.1 21.0 20.9

N 436,568 436,568 436,568 436,568 436,568 436,568 436,568

currency fe ✓ ✓ ✓ ✓ ✓ ✓ ✓
maturity fe ✓ ✓ ✓ ✓ ✓ ✓ ✓
time fe ✓ ✓ ✓ ✓ ✓ ✓ ✓



Table A.2. Expected Excess Returns and Risk Premia

This table presents panel regression estimates based on the following specification

ERXi,t,T = αt + αi + βϕ ERP
ϕ
i,t,T +εi,t,T ,

where ERXi,t,T is the expected currency excess return observed at time t over the horizon T − t for currency i
and ERPϕ

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity.
αi and αt denote currency and time (calendar date) fixed effects, respectively. ERXi,t,T is calculated using
exchange rate consensus forecasts and interest rate differentials whereas ERPϕ

i,t,T is based on S&P 500 index
and currency options for different levels of ϕ and maturities ranging between one month and two years.
Standard errors, reported in parenthesis, are clustered by currency and time (calendar date) dimension.
Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The sample
runs at the daily frequency between January 1996 and December 2020 for a cross-section of 30 currency
pairs relative to the US dollar. We use linear interpolation to retrieve daily forecasts from monthly forecasts.
Data are from Bloomberg, FRED, JP Morgan, and OptionMetrics.

Panel A: 1-month Maturity

βϕ

1 different levels of ϕ

(grid) (1) (2) (3) (4) (5) (6)

ERP 4.80*** 4.46*** 2.28*** 1.55*** 1.19*** 0.97*** 0.82***
(0.82) (0.69) (0.36) (0.25) (0.20) (0.17) (0.14)

R2 (%) 31.1 31.3 31.3 31.2 31.1 31.0 31.0

N 154,013 154,013 154,013 154,013 154,013 154,013 154,013

Panel B: 3-month Maturity

ERP 2.08*** 1.99*** 1.03*** 0.71*** 0.55*** 0.45*** 0.38***
(0.54) (0.50) (0.27) (0.19) (0.15) (0.13) (0.11)

R2 (%) 32.5 32.6 32.5 32.4 32.4 32.3 32.3

N 155,733 155,733 155,733 155,733 155,733 155,733 155,733

Panel C: 1-year Maturity

ERP 1.80*** 1.66*** 0.91*** 0.67*** 0.54*** 0.46*** 0.41***
(0.43) (0.40) (0.22) (0.17) (0.14) (0.12) (0.11)

R2 (%) 48.4 48.5 48.4 48.4 48.4 48.3 48.3

N 155,559 155,559 155,559 155,559 155,559 155,559 155,559

Panel D: 2-year Maturity

ERP 1.74*** 1.58*** 0.90*** 0.68*** 0.56*** 0.49*** 0.44***
(0.53) (0.47) (0.27) (0.21) (0.17) (0.15) (0.14)

R2 (%) 56.5 56.5 56.5 56.5 56.5 56.5 56.5

N 139,592 139,592 139,592 139,592 139,592 139,592 139,592

currency fe ✓ ✓ ✓ ✓ ✓ ✓ ✓
time fe ✓ ✓ ✓ ✓ ✓ ✓ ✓



Table A.3. Expected FX Returns and Risk Premia

This table presents panel regression estimates based on the following specification

EFXi,t,T = αt + αi + βϕ ERP
ϕ
i,t,T +γ IRDi,t,T +εi,t,T ,

where EFXi,t,T is the expected exchange rate return observed at time t over the horizon T − t for currency
i, ERPϕ

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity,
and IRDi,t,T is the interest rate differential between the US and country i at time t for the same currency
pair/maturity. αi and αt denote currency and time (calendar date) fixed effects, respectively. EFXi,t,T is
calculated using exchange rate consensus forecasts whereas ERPϕ

i,t,T is based on S&P 500 index and currency
options for different levels of ϕ and maturities ranging between one month and two years. Standard errors,
reported in parenthesis, are clustered by currency and time (calendar date) dimension. Statistical significance
at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The sample runs at the daily
frequency between January 1996 and December 2020 for a cross-section of 30 currency pairs relative to the
US dollar. We use linear interpolation to retrieve daily forecasts from monthly forecasts. Data are from
Bloomberg, FRED, JP Morgan, and OptionMetrics.

Panel A: 1-month Maturity

βϕ

1 different levels of ϕ

(grid) (1) (2) (3) (4) (5) (6)

ERP 4.95*** 4.56*** 2.34*** 1.59*** 1.22*** 0.99*** 0.84***
(0.89) (0.73) (0.38) (0.27) (0.21) (0.18) (0.15)

R2 (%) 32.3 32.6 32.5 32.4 32.4 32.3 32.2

N 154,013 154,013 154,013 154,013 154,013 154,013 154,013

Panel B: 3-month Maturity

ERP 2.10*** 2.01*** 1.04*** 0.72*** 0.56*** 0.46*** 0.39***
(0.55) (0.52) (0.28) (0.20) (0.16) (0.13) (0.11)

R2 (%) 32.8 32.9 32.8 32.7 32.7 32.6 32.6

N 155,733 155,733 155,733 155,733 155,733 155,733 155,733

Panel C: 1-year Maturity

ERP 1.74*** 1.62*** 0.89*** 0.65*** 0.53*** 0.45*** 0.40***
(0.46) (0.42) (0.24) (0.18) (0.15) (0.13) (0.11)

R2 (%) 39.1 39.2 39.1 39.1 39.0 39.0 39.0

N 155,559 155,559 155,559 155,559 155,559 155,559 155,559

Panel D: 2-year Maturity

ERP 1.70*** 1.54*** 0.88*** 0.66*** 0.55*** 0.48*** 0.44***
(0.49) (0.45) (0.26) (0.20) (0.16) (0.14) (0.13)

R2 (%) 38.1 38.1 38.0 38.0 38.0 38.0 38.0

N 139,592 139,592 139,592 139,592 139,592 139,592 139,592

currency fe ✓ ✓ ✓ ✓ ✓ ✓ ✓
time fe ✓ ✓ ✓ ✓ ✓ ✓ ✓



Table A.4. Term structure of risk preferences ϕ – more details

This table presents estimates of the risk preferences ϕ from a panel regression of expected currency excess
returns on expected currency risk premium for different horizons. The results are obtained from the following
specification

ERXi,t,T = αt + αi + βϕ ERP
ϕ
i,t,T +εi,t,T ,

where ERXi,t,T is the expected currency excess return observed at time t over the horizon T − t for currency i
and ERPϕ

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity.
αi and αt denote currency and time fixed effects (FE), respectively. ERXi,t,T is calculated using exchange
rate consensus forecasts for a given horizon net of interest rate differentials, whereas ERPϕ

i,t,T is based on S&P
500 index and currency options for different levels of ϕ and a corresponding maturity. Each column presents
estimates of βϕ for selected values of ϕ ranging between 1 and 6. Standard errors, reported in parenthesis,
are clustered by currency and time. Statistical significance at the 10%, 5%, and 1% levels is denoted by *,
**, and ***, respectively. The sample runs at the daily frequency between January 1996 and December 2020
for a cross-section of 30 currency pairs relative to the US dollar. We use linear extrapolation to retrieve
daily forecasts from monthly forecasts. Data are from Bloomberg, FRED, JP Morgan, and OptionMetrics.

Panel A: 1-month Horizon

Results for different ϕ

ϕ = 1 ϕ = 2 ϕ = 3 ϕ = 4 ϕ = 5 ϕ = 6
(1) (2) (3) (4) (5) (6)

ERPϕ 4.54*** 2.31*** 1.57*** 1.19*** 0.96*** 0.81***
(0.82) (0.43) (0.30) (0.24) (0.20) (0.17)

R2 (%) 32.8 32.7 32.7 32.6 32.6 32.5

N 153,975 153,975 153,975 153,975 153,975 153,975

Panel B: 3-month Horizon

ERPϕ 1.75*** 0.90*** 0.61*** 0.47*** 0.38*** 0.32**
(0.54) (0.29) (0.20) (0.16) (0.14) (0.12)

R2 (%) 32.7 32.7 32.6 32.6 32.6 32.6

N 155,714 155,714 155,714 155,714 155,714 155,714

Panel C: 1-year Horizon

ERPϕ 1.62*** 0.89*** 0.65*** 0.53*** 0.45*** 0.40***
(0.40) (0.22) (0.17) (0.14) (0.12) (0.11)

R2 (%) 45.3 45.3 45.3 45.2 45.2 45.2

N 155,540 155,540 155,540 155,540 155,540 155,540

Panel D: 2-year Horizon

ERPϕ 1.56*** 0.89*** 0.67*** 0.56*** 0.49*** 0.44***
(0.47) (0.27) (0.21) (0.17) (0.15) (0.14)

R2 (%) 53.5 53.5 53.5 53.5 53.4 53.4

N 139,573 139,573 139,573 139,573 139,573 139,573

Currency FE ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓
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