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1. Introduction

Option prices reflect state-price valuation of underlying risky streams (Cox and Ross, 1976),*
implying that index options may naturally contain information about various contributors to
the market risk premium. Empirical market-return predictors derived from index options
include the variance-risk premium (Bollerslev, Tauchen, and Zhou, 2009; Carr and Wu, 2009),
tail-risk premia (Bollerslev and Todorov, 2011), and equity premium bounds (Martin, 2017;
Chabi-Yo and Loudis, 2019). Other equity-return predictors such as short-interest (Rapach,
Rosenberg, and Zhou, 2016) relate most naturally to speculative demand, but from the logic of

the law-of-one-price can also impact option prices.

International equity and option markets are further connected by global risks and cross-
country risk sharing and information aggregation. Events such as the 2007-2008 financial crisis
and Covid-19 pandemic have shown global events to be increasingly important. Integration of
international equity markets has long been hypothesized and tested (Solnik, 1983; Harvey,
1991; Bekaert and Harvey, 1995). More recently, an emerging literature uses international
option markets to better understand local and global equity risk premia (Bollerslev, Marrone,

Xu, and Zhou, 2014; Andersen, Fusari, and Todorov, 2020).

We contribute to these efforts by combining information from the index options of
twenty countries and regions to construct a single global implied volatility surface. Our
procedure reveals a powerful and encompassing in- and out-of-sample equity-premium
predictor, global-surface convexity. Implied volatilities of index options display two prominent
empirical features.? The first, known as volatility smirk, captures that low-strike implied

volatilities typically exceed high-strike implied volatilities. We measure smirk steepness with

! See also Debreu (1959), Arrow (1964), Breeden and Litzenberger (1978), Ross (1978), and Ross (2015).
2 See for example Bates (1991, 2000, 2022), Bakshi, Cao, and Chen (1997), Das and Sundaram (1999), Pan
(2002), and Liu, Pan, and Wang (2005).



a slope factor. The second feature, known as volatility smile, captures that controlling for smirk,
implied volatilities of options with low and high strikes typically exceed the implied volatilities
of options with medium strikes. We measure the curvature of the volatility smile by a convexity
factor. In addition to slope and convexity, we also measure the level of the global volatility
surface. The global-surface level, slope, and convexity effectively produce a low-dimensional

representation of the global implied volatility surface.

Global-surface convexity is by far the most powerful option-based return predictor. It
strongly forecasts equity premia around the world, in- and out-of-sample. When the global
surface is more convex, it predicts higher market returns. In the US, global convexity predicts
S&P 500 index returns one-month ahead with an R? of 3.7%, and six-months ahead with an R?
of 14.4%, from 1996 to 2021. Predictability does not deteriorate out-of-sample, and in fact the
one- and six-month ahead out-of-sample R? in the U.S. are larger, 4.1% and 20.8%
respectively.® Internationally, global convexity significantly predicts the semi-annual return in
19 of 20 countries and regions, with average R? of 8.8%. Out-of-sample R? are all positive and
average 11.4%. The predictability is also economically important. An investor using global
convexity to time the market would have on average increased the Sharpe ratio by more than

60% from a buy-and-hold strategy across the twenty indexes in our sample.

Global convexity encompasses the predictability of other important option-based
predictors and is highly robust to alternative specifications. For US returns, global convexity
subsumes the predictive power of the global level and slope, the VIX index, SVIX, the variance
risk premium, and left-tail volatility. We measure convexity using strikes of all maturities, but

predictability changes little using only short (<=6 month) or long (>6 month) maturities.

3 We measure OOS R? according to Welsh and Goyal (2007). It can be higher than in-sample R? because it
compares MSE from our predictor to a historical-mean model. The higher OOS R? also reflects the fact that the
predictability of our predictor becomes stronger in the later sample.
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Excluding or including the U.S. from the global surface has little impact on its predictive power.
The measure is also robust to using calls-only or puts-only, in-the-money or out-of-the-money
options, excluding highest and lowest strikes, and averaging across broad ranges of strikes to
produce a robust measure of convexity. Global convexity captures important fundamental

information from the option surface and is not sensitive to variations in measurement.

Why does global convexity predict market returns so strongly? We investigate the
economic source of return predictability. First, global convexity aggregates information from
countries around the world. The global economy is increasingly interconnected, and shocks in
one area can spread and affect other countries. A prominent example is the Covid-19 pandemic.
During early 2020, global convexity responds more quickly to the spread of the virus than US
convexity and leads the US by one month. This provides an important counter-example to the
typical finding that the US leads the world informationally (e.g., Rapach, Strauss, and Zhou,
2013). In the case of the Covid-19 pandemic, the first signs of deteriorating fundamentals

appeared in option markets outside the U.S.

Global convexity also effectively combines information from both the right and left
tails of the risk-neutral distribution of returns. The left tail has been widely studied in prior
literature (e.g., Andersen, Fusari, and Todorov, 2015; Bollerslev, Todorov, and Xu, 2015), and
is appropriately associated with fears of negative jumps or market crashes. High prices in the
left tail are commonly interpreted as demand for crash insurance through out-of-the-money
puts and correspondingly large risk premia. The right-tail contribution to convexity, while
smaller, is also economically important. Controlling for the left tail, high prices in the right tail
positively predict returns, which has the natural interpretation of speculative demand for out-
of-the-money calls. Consistent with this interpretation, the right-contribution to convexity is
strongly negatively associated with short-interest and with funding conditions measured

through the TED spread.



These contributions to global convexity from the left- and right-sides of the risk-neutral
distribution have natural interpretations as the presumptive twin driving forces of financial
markets — fear and greed. It is already well-known that low price in the left tail, or lack of fear,
forecasts low future returns. New to the literature and controlling for the left tail, a low right-
tail price signaling lack of speculative interest also forecasts low returns. Thus, fear and greed
from the left and right tails of the risk-neutral density, while negatively correlated, are not
opposites. The global convexity measure which combines both sources of information is

required to optimize equity-premium predictability from the global option surface.

Our paper contributes to three strands of literature. The first is the literature on
recovering the equity premium from option data. VVarious measures constructed based on index
options have been proposed in this literature: for example, variance risk premium (Bollerslev,
Tauchen, and Zhou, 2009; Carr and Wu, 2009), skew risk premium (Kozhan, Neuberger, and
Schneider, 2013), left-tail volatility (Andersen, Fusari, and Todorov, 2015; Bollerslev,
Todorov, and Xu, 2015), and equity premium bounds (Martin, 2017; Chabi-Yo and Loudis,
2019; Bakshi et al, 2019; Jensen, Lando, Pedersen, 2019; Liu et al, 2022; Back, Crotty and
Kazempour, 2022). This literature has shown that, both in theory and empirics, options data
contain information about the short-to-medium-term equity premium. We contribute to this
literature by discovering a new option-based predictor, namely, global convexity. This measure
encompasses the return predictability of several previously documented indicators due to its
strong ability to aggregate information. Convexity is also more symmetric and has smaller

kurtosis than existing predictors, which contributes to its empirical success.

We contribute to the general debate on whether equity premium is predictable,
especially out-of-sample. Since as early as Shiller (1981), a vast literature documents that the
US equity premium is predictable, particularly at long horizons. Welch and Goyal (2007) cast
doubt on whether the US equity premium is predictable out-of-sample (OOS). They show that
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the OOS R? of many predictors are negative. Campbell and Thompson (2008) show that
imposing weak economic restrictions on predictors improves the OOS performance. We
document a powerful short-term return predictor whose performance is robust out-of-the

sample and in many countries around the world.

Lastly, we contribute to the study on the integration of the international financial market
and international equity premium prediction. Henkel, Martin, and Nardari (2011) find that in
the G7 countries, short-term return predictability exists only during economic contractions.
Rapach, Strauss, and Zhou (2013) show that US stock return leads the stock return in other
countries. Bollerslev, Marrone, and Zhou (2014) document that international variance risk
premia predict stock returns in developed economies and Qiao et al. (2019) provide similar
evidence for emerging markets. Miranda-Agrippino and Rey (2020) provide evidence on the
co-movement in risky asset prices around the world, a phenomenon known as the Global
Financial Cycle. Our study reinforces that the international options and equity market are
closely tied. A single measure from international options markets significantly predicts equity
returns in 19 of 20 countries and regions, with similar coefficients, providing strong evidence

of market integration and a common global risk premium.

2. Data

Our main data source for index options is OptionMetrics, which contains daily options
data for major indices around the world. We select 20 indices from 20 different countries or
regions where OptionMetrics has sufficient data coverage on corresponding index options.
Table 1 lists the stock indexes in our sample and the availability of options data for each. The
earliest options data in our sample is for the S&P 500 index, starting from January 4, 1996.

Other index options are gradually included in the sample after 2002. The latest options data to



be included is the OMXS 30 index option in Sweden, starting from May 14, 2007. Figure 1
plots the number of countries or regions with available index options in our sample from 1996
to 2021. Our 26-year sample period is long enough to span several episodes of market crisis
around the world, such as the Asian debt crisis, the burst of the dot-com bubble, the subprime

mortgage crisis, the European debt crisis, and the Covid-19 pandemic.

For each individual index, there are hundreds of options listed on option exchanges
every day. Options differ based on their strike and maturity. The number of available strikes
and maturities are symmetric for calls and puts. Different indexes have different number of
available strikes and maturities. Table 1 shows the average number of options per day,
including both calls and puts, for each index in our dataset, after we apply standard filters.*
Indexes such as the S&P 500 or STOXX 50 have over one thousand different options
outstanding on a typical day, whereas indexes such as the BEL 20 or TAIEX have only around

200 options per day.

To facilitate comparison across markets, OptionMetrics provides an implied volatility
surface on a standardized delta-maturity grid for all indexes. For each underlying index, the
surface specifies the implied volatility of a hypothetical option with a particular delta and
maturity. There is a separate surface for call options and for put options, although, if properly
aligned, the two surfaces are close to each other due to put-call parity. To construct this surface,
OptionMetrics applies a kernel function to compute the weighted average of all implied
volatilities from options traded on each day. The kernel function puts a greater weight on
options that are closer to a particular grid point. Intuitively, the implied volatility on each grid

point is the interpolated implied volatility of options with deltas and maturities that are near

4 We drop options with non-positive implied volatility or with implied volatility above 200%. We drop options
with fewer than 7 days to maturity or with longer than three years to maturity. We also drop options with non-
positive bid or ask prices. If bid or ask prices are missing, we drop options with non-positive exchange
settlement price.



the grid point. Appendix A provides details on the procedure to construct the standardized
implied volatility surface. This standardized implied volatility surface makes it easy to analyze
all markets without adjusting for the availability of strikes and maturities in each market. Our
main empirical analysis is based on the standardized implied volatility surface provided by
OptionMetrics. In the robustness section, we also construct our measures using the underlying

individual options.

To conduct return predictability tests, we obtain monthly returns of the 20 selected
indexes from FactSet. For 19 out of 20 indexes, we have return series from 1996 to 2022. For
the MIB index in Italy, the return series starts from 1998. Table A1 provides summary statistics
on the excess returns of each index. In our empirical tests, we convert all local-currency returns

to US-dollar returns and subtract the US risk-free rate to compute excess returns.

2.1 Standardized implied volatility surface

This section discusses the characteristics of the implied volatility surface of the 20
indexes in our sample. Before we proceed, we take several steps to clean the data. First, we
drop all grid points with a maturity of 10 days, because implied volatility data at this maturity
are missing for most indexes. We also drop all grid points with a maturity of 730 days, because
many indexes do not have options with a maturity longer than two years. The implied volatility
at this maturity point is largely based on the extrapolated values, which could be biased. The
standard set of maturities that we consider are 30, 60, 91, 122, 152, 182, 273, 365, and 547

days.

The OptionMetrics data for the Canadian S&P/TSX 60 index contain many missing
values from Dec 27, 2019 to Mar 1, 2021. To fix this issue, we replace this part of the sample
period for Canada with the implied volatility surface of MSCI Canada ETF, which does not

have missing values. Also, available delta grid points for indexes in the Asian Pacific region



(i.e., Australia, Japan, Taiwan, Hong Kong, and Korea) are slightly different from the US and
European indexes. The available delta grid points for these Asian Pacific indexes are from 0.2
to 0.8 at 0.05 increment for call options and are from -0.2 to -0.8 at -0.05 increment for put
options. The delta grid points for other indexes are from 0.1 to 0.9 at 0.05 increment for call
options and are from -0.1 to -0.9 at -0.05 increment for put options. Following OptionMetrics’
methodology, we extend the implied volatility surface of indexes in the Asian Pacific region to
be the same as other indexes. In the robustness check, we only keep implied volatilities with a

delta from 0.2 to 0.8 for calls (or -0.2 to -0.8 for puts) to construct our measures.

The next step we take is to change the labelling of delta grid points to align the call
option surface with put option surface. Specifically, we multiply the delta of put options by -1.
We multiply the delta of all call options by -1 and then add 1. After applying this one-to-one
transformation, both call option surface and put option surface have the same set of delta grid
points. Another convenience brought by this transformation is that the transformed deltas align
with strike prices, e.g., lower values of the transformed delta corresponds to lower strike prices.
Lastly, we winsorize all implied volatilities such that they have a minimum of 1% and a
maximum of 200%.°> Table A2 reports the summary statistics of the cleaned implied volatility
surfaces. Most indexes have their average implied volatilities around 20%. The index with the
highest average implied volatility, at 26.65%, is the MSCI Emerging Market index. Implied
volatilities have positive skewness and heavy tail, reflecting the fact that they tend to spike

during a short period of time.

Table 2 Panel A shows unconditional global implied volatility surface averaged across
all indexes and across both call and put options. To construct this surface, we first take the

average implied volatility for a given grid point across all indexes on each day and then average

5 Note that all implied volatilities are quoted on an annualized basis.
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across all sample days. We pool together both call option surfaces and put option surfaces,
because their average values are similar to each other at a given grid point. Table 2 Panel A
shows that the average implied volatilities monotonically decrease with the transformed delta.
In other words, average implied volatilities monotonically decrease with the level of the strike
price. This pattern is commonly known as the volatility smirk. On the other hand, variation in
the average implied volatilities across maturities is small, displaying an unconditional flat term-
structure. Table 2 Panel B shows the unconditional implied volatility surface of the S&P500
index. Its implied volatilities also decrease with the transformed delta (i.e., strike), but they

display a slightly increasing term structure.

2.2 Level and slope of the standardized implied volatility surface

The implied volatility surface is a high-dimensional object. To reduce its
dimensionality, we construct three measures to capture the shape of the implied volatility
surface in each time period, namely, the level, slope, and convexity of the surface. Alternative
methods to reduce the dimensionality of the volatility surface include estimating a quadratic
function (Dumas, Fleming, Whaley, 1998) or using principal component analysis (Cont,
Fonseca, Durrleman, 2002). These methods are closely related to each other. We choose to use
the level, slope, and convexity measures to summarize the surface because of their ease of
interpretation. To measure the level of the standardized implied volatility surface of each index,
we take the simple average of all implied volatilities on the surface, including both calls and
puts, on each day. To smooth out the daily variations, we aggregate the daily level measure
into a monthly measure by taking the simple average of available trading days in each month.
This gives us twenty monthly time series, one corresponding to each index. When constructing
the monthly measure, we drop the last trading day of each month in each country to avoid any

overlap in time between the construction of the index in the current month and the measurement



of index return in the next month.® We further aggregate the information from twenty countries
and regions into a single global level index by taking the simple average of all available
country-level measures in each month. Before 2002, the only country in our sample with
available options data is the US, so this global level index coincides with the US level index.
After 2002, as we include additional countries in the sample, the global level index begins to

diverge from the US level index.

Figure 2 Panel A plots both the global level and the US level index on a monthly
frequency. We observe the two series co-move strongly with each other. The correlation
between the two is above 95% in the entire sample. This is also true in the later sample period
when we have 20 different countries or regions to construct the global level index. This strong
co-movement indicates that the option markets across these countries are integrated and they
experience similar shocks over time. Table 3 Panel A shows that the global level index has
positive skewness and high kurtosis, which means that it tends to have large jumps during
turbulent times, for example, during the global financial crisis and the Covid-19 pandemic

period.

We also construct a slope index based on the standardized implied volatility surface.
We measure the slope of the implied volatility surface with respect to the transformed deltas.
We only focus on the slope on deltas because the variation of implied volatilities across
maturities is relatively small. Specifically, on each day, we regress all the implied volatilities
of a surface on the transformed deltas and estimate the coefficient on the delta.” This gives us
a daily slope measure for each country. We then aggregate them into a monthly measure by

taking the simple average across available trading days, except the last trading day. Similar to

b Different index options are traded in different time zones. To avoid potential look-ahead bias for future month
returns beginning in different time zones, we drop the last trading day of each month from the option surface
calculations.

7' We ignore the information on maturities or the type of the option (call or put) when estimating the slope.
Controlling for maturity and the type of the option does not affect the estimated slope on deltas.
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the level index, we construct a global slope index by averaging all available slope measures
from each country. Figure 2 Panel B plots the global slope and the US slope index. Across the
entire sample period, the slope is negative, indicating that options with lower strike prices have
higher implied volatilities, displaying a volatility smirk. The US slope index co-moves with
the global slope index. The US slope index is more negative than the global slope index on
average, which suggests that the volatility smirk is steeper in the US. The slope index has a
strong negative correlation with the level index. As shown in Table 3 Panel B, the correlation
between the global slope index and the global level index is -82%. This is because during
periods of market crisis, all implied volatilities increase and the implied volatilities of options
with low strike prices increase more than the average, causing the volatility surface to have a

higher level and a more negative slope.

2.3 Measuring the convexity of the global implied volatility surface

Our third measure is the convexity of implied volatility surface. A prominent feature of
the implied-volatility curve is the presence of volatility smile in addition to volatility smirk.
Volatility smile refers to the phenomenon that both low-strike and high-strike options have
higher than average implied volatilities, making the implied-volatility curve a convex function.
We propose a measure to capture the convexity of the standardized implied-volatility surface.
Specifically, let IV (A, 7) denote the function that represents the implied volatility surface, i.e.
IV(A,7) is the implied volatility of options with a delta A and maturity 7. For any fixed

maturity t, we define the convexity of the implied volatility curve as

CV(t)=E

V(A7) + IV (45,7) A, + 4,
2 - IV( 2 ’T)

(1)
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In other words, we define the convexity of the implied volatility curve as the expected
difference between the average implied volatility at two different delta points and the implied

volatility at the point that equals to the average of the two previous deltas.

On the standardized implied volatility surface, we have 17 fixed delta grid points from
0.1 to 0.9 at 0.05 increments. A numerical approximation of the convexity of the implied

volatility curve at any maturity 7 is

1 @, +1(4;,7)
CV(T)=6—42 e ()
(i k)
(2)

Ai+A;
’; i There are 64

where A;, Aj, and A, are three different delta points with A; < A; and Ay, =

different sets of these delta-triples based on the availability of delta points. The above equation

can be translated in the following equation:

1
CV = 2[4 X IV(0.1) + 2.5 X IV(0.15) + 2 X IV(02) + 0.5 X IV(0.25) = 1.5 X IV(0.35)

— 2 xIV(0.4) — 3.5 X IV(0.45) — 4 X IV (0.5) — 3.5 X [V(0.55) — 2 X [V(0.6)
— 1.5 % IV(0.65) + 0.5 x IV(0.75) + 2 x IV(0.8) + 2.5 X IV (0.85) + 4 X IV (0.9)]

(3)

The above equation shows that the numerical approximation of our proposed convexity
measures is the weighted average implied volatilities at different delta points, where the
weights add up to 0. The weights are more positive at the tails and are more negative in the

center.

We measure the convexity of the implied volatility curve at each maturity on the
standardized surface. Table A3 in the appendix presents summary statistics of the convexity
measures by maturity. Table A3 shows that the convexity of the volatility curve decreases with
maturity. Short-term convexities are also more positively skewed and display fatter tail than
the convexity at longer maturities. To construct the convexity index, we take the average

convexity measure across all maturities on each day. This gives us a daily measure of convexity
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for each index. Similar to the slope and level indexes, we aggregate daily convexity measures
into a monthly measure by taking the average value across all available days in a month, except

the last trading day.

We construct the global convexity index by averaging monthly convexity measures
from all available countries in our sample. Figure 2 Panel C shows the global convexity as well
as the US convexity from 1996 to 2021.% Both the global and US convexity are positive
throughout the sample period and co-move together. The correlation between the two is 82%,
smaller than the correlation between the global and US level indexes. The figure also shows
that the global convexity is less peaked than the global level index. In other words, the kurtosis
of the global convexity is much smaller than the kurtosis of the global level index, which is

shown in Table 3 Panel A.

Table 3 presents the summary statistics of the global level, slope, and convexity indexes
and the US convexity index. In addition, we obtain data on other option-based return predictors,
including the VIX index, the SVIX index proposed by Martin (2017), the left-tail volatility
(LTV) index constructed by Bollerslev, Todorov and Xu (2015), and the US variance risk
premium (VRP) introduced by Bollerslev, Tauchen and Zhou (2009). Details about these
variables and their sources are in Appendix B. Notably, Table 3 Panel A shows that except the
convexity indexes, other variables all display fat tail with kurtosis above 4 and strong degree
of asymmetry with absolute skewness above 1. For comparison, the skewness and kurtosis of
the S&P 500 monthly returns are -0.57 and 3.82, respectively. The closer match in skewness
and kurtosis between the convexity index and the stock return contributes to the superior

predictability of convexity indexes relative to other option-based predictors.

8 We notice a slight trend in the global convexity from 1996 to 2021. In the robustness checks, we use de-
trended global convexity or annual change in global convexity to run predictive regressions and the
predictability remains strong.
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Table 3 Panel B shows the pairwise correlation among these variables. We observe
significant correlations among some pairs of variables. For example, the global level index has
a correlation of 93% with the VIX index and a correlation of 95% with the SVIX index. The
global slope index has a correlation of -82% with the global level index, -80% with the VIX
index, -85% with the SVIX index, and -72% with the left-tail volatility (LTV). The global
convexity index has a correlation of -68% with the global slope index and a correlation of 68%

with LTV. Variance risk premium (VRP) is least correlated with other variables.

3. Equity premium predictability from the global convexity index
This section documents and compares the return predictability of several option-based

measures in the US and in the international setting.

3.1 US evidence

We test whether the option-based measures constructed in the previous section and
from the existing literature predict the S&P 500 index returns during our sample from 1996 to
2021. Table 4 regresses the semi-annual cumulative excess return of the S&P 500 index on
these variables. We use Newey-West standard errors with 6 lags of autocorrelation to calculate
t-statistics. Table 4 Panel A shows that five of the eight option-based variables significantly
predict the semi-annual S&P 500 returns from 1996 to 2021. The global convexity predicts the
semi-annual S&P 500 returns with a t-statistic of 3.69 and an R? of 14.4%, making it the best
univariate predictor in this group. The US convexity also significantly predicts the US return
with a t-statistic of 2.35 and a 9.1% R?, making it the second-best predictor in terms of R?. The
next best predictor is the left-tail volatility (LTV). It predicts the S&P 500 return with a t-
statistic of 2.74 and an R? of 7.2%. The global slope index and the SVIX index significantly

predict the S&P 500 return with an R? of 5.4% and 4.3%, respectively. The global level index,
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the VIX index, and the variance risk premium do not significantly predict the semi-annual

return of S&P 500 during this sample period.

Table 4 Panel B runs multivariate predictive regressions with the global convexity as
the first predictor and other additional predictors. The global convexity subsumes all predictive
power of the other variables in multivariate regressions. The t-statistic on the global convexity
remains high throughout all eight columns. The magnitude of the estimated coefficient on the
global convexity is stable across all eight columns, centering around 0.3, which is similar to
the estimated coefficient in the univariate regression. Comparing the R? in panel B with the
univariate regression, the gain in R? from including other variables is small. Column 8 includes
all eight variables in the predictive regression and the R? slightly improves from 14.4% in the
univariate regression to 16.5%. This table shows the superior predictive power of the global
convexity in predicting semi-annual S&P 500 returns. It subsumes the predictive power of

several other option-based predictors and is not affected when controlling other predictors.

Table 4 tests the predictive relation using overlapping semi-annual returns. We verify
the predictability of the global convexity using non-overlapping returns to avoid potential bias
associated with overlapping returns (Stambaugh, 1999; Boudoukh, Israel, Richardson, 2022).
We run predictive regressions on monthly non-overlapping S&P 500 returns in Table 5. Each
column regresses the return from month t+k, with k=1,2,...,12, on the global convexity
measured in month t. Table 5 shows that the global convexity significantly predicts monthly
stock returns up to month t+7. Both the R? and t-statistic are the strongest when predicting the
return in the immediate month. Then, the predictability declines as the lag time increases. After
month t+7, the coefficient on the global convexity becomes insignificant, although the signs of
the coefficients remain mostly positive throughout. The magnitude of the coefficient on the

global convexity diminishes gradually from column 1 to column 12, consistent with the idea
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that the information content of a predictor decays over time. This decay in coefficient also

suggests that the market risk premium reverts back to its mean.

Both Table 4 and 5 present strong evidence on the ability of the global convexity in
predicting the S&P 500 returns. The next section evaluates the predictability of the global

convexity in predicting other index returns in our sample.

3.2 International evidence

This section evaluates the ability of the global convexity in predicting the return of
other indexes in our sample. We present the results in Table 6. Table 6 regresses the semi-
annual excess index return on the global convexity index. It shows that the global convexity
significantly predicts 19 out of the 20 index returns in our sample. Table 6 Column 1 reproduces
the predictive regression on the S&P 500 returns. The average coefficient across all 20 columns
is 0.34, which is very close to that in the US. The average t-statistic of the coefficients is 2.63
and the average R? is 8.8%. The top 4 indexes with the highest R? are the S&P 500 in the US
(14.4%), the Nikkei 225 in Japan (13.8%), the MSCI EAFE covering Europe, Australasia, and
Middle East (13%), and the KOSPI 200 in Korea (12.8%). The bottom 4 indexes with the
lowest R? are the IBEX 35 in Spain (1.7%), the Hang Seng index in Hong Kong (4.6%), the
DAX index in Germany (4.7%), and the BEL 20 index in Belgium (4.9%). Overall, this table
shows that the global convexity index has a robust predictive power of market returns in many
countries. One interpretation of this result is that the global convexity index reveals a
significant amount of information on the global risk premium, which drives the market return

around the world.

3.3 Alternative measures of the global convexity index
Having demonstrated the strong predictability of the baseline global convexity index,

we change the construction of this index and report the performance of the index under
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alternative construction methods. This exercise sheds light on the source and the robustness of

the index’s predictive power.

We consider several variations in how we construct the global convexity by selecting
only a subset of the data. Firstly, we only select call options or put options to measure the
surface convexity. This exercise examines whether call or put options provide a stronger signal
in predicting stock returns. We also separately examine the construction of the index using in-
the-money options and out-of-the-money options. We investigate whether maturity plays a role
in the predictability of the global convexity index. We use only part of the implied volatility
surface with a maturity of less than 6 months or with a maturity of more than 6 months to
construct the index. This test evaluates whether short-term options contribute more to the
predictability than long-term options. Finally, we consider changing the set of countries in the
construction of the index. In one specification, we only use the S&P500 options. In another
specification, we drop all S&P500 options after 2002 (when we have available option data from
other indexes). This test examines whether the US or the collection of other countries contribute

more to the predictability.

Table 7 reports the R? of predictive regressions using different versions of global
convexity. The results of the baseline measure are reported in column 1. The average R? in all
20 predictive regressions in the baseline is 8.8%. Column 2 uses only call options to construct
the index and reports a 4.6% average R2. This shows that using only call options reduces the
performance of the predictor. Column 3 uses only put options and produces a 10.2% average
R2. This is the best performance among all specifications in Table 7, which suggests that put
options contain the most relevant information for predicting market returns. Column 4 uses
only in-the-money options and column 5 uses only out-of-the-money options to measure global
convexity. We define in-the-money or out-of-the-money options based on the transformed
deltas. For call options, if the transformed delta is smaller than 0.5 (i.e., having low strike
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prices), we classify them as in-the-money; otherwise, out-of-the-money. We use the opposite
definition to classify in-the-money or out-of-the-money put options. Columns 4 and 5 show
that both in-the-money and out-of-the-money options contribute similarly to the predictability
of the global convexity index with an R? of 7.8% and 7.9%, respectively. Columns 6 and 7 use
short-term and long-term options only. The results are similar to the baseline. Column 9 uses
only S&P 500 options. The average R? is 4.1%, the worst performance among all 9
specifications. This shows that focusing on the US options alone ignores a large amount of
return relevant information. Column 9 excludes S&P 500 options after 2002. The performance
of column 9 is very similar to the baseline performance. This shows that even without the US
data, the global convexity index can still significantly predict equity returns around the world.
The main benefit of having the US data is to extend our sample period from 2002 to 1996.
Overall, this table shows that there is a significant amount of information that is relevant to

market risk premium from index options outside of the US and from put options.

4. Dissecting the return predictability of global convexity

Having documented the strong predictability of the global convexity index, we provide
additional analysis on the economic source of its predictability. We first analyze the additional
information content of the convexity index from non-US countries. We also decompose the
global convexity into a convexity left and convexity right index to show that both tails of risk-

neutral distribution reveal important information about the global risk premium.
4.1 International vs. US convexity

Table 7 shows that the convexity index measured from non-US countries contributes
more than the US convexity to the predictability of equity premium. This is surprising given

that the US has the biggest option market and the prior literature, e.g., Rapach, Strauss, and
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Zhou (2013), shows that the US stock return leads other countries. However, if traders that
trade non-US index options incorporate information from around the world more efficiently or
they are more sensitive to changes in the global risk premium, we could observe that the
convexity measured from non-US countries reveals more information than the US convexity.
One indication of this hypothesis, as shown in Figure 2 Panel C, is that during the early spread
of the coronavirus, the global convexity leads the US convexity by about 1 month. This is
consistent with the spread of the pandemic. The severe effects of the virus first appeared in

Asian countries, then in European countries, and later in the US.

To test the information content of the international convexity against the US convexity,
we run lead-lag regressions in Table 8. Columns 1 to 3 show the autocorrelation coefficient of
the US convexity, non-US convexity, and the global convexity index is around 0.9.° Columns
4 and 5 regress the US convexity on the lagged non-US and lagged global convexity in addition
to the lagged US convexity. The estimated coefficients on the lagged non-US and global
convexity are 0.17 and 0.15, respectively, and are both statistically significant at the 1 percent
level. This indicates that the non-US convexity contains information about the next period US
convexity, which suggests that the shocks on the risk premium around the world transmit to
the US with some lag. Columns 6 and 7 regress the non-US and global convexity index on the
lagged US convexity index, controlling their own lagged values. The coefficient on the US
convexity is around 0 and insignificant, which indicates that shocks to the US risk premium is
quickly reflected in the international market. This lead-lag relationship between the US and
non-US convexity indexes explains why the global convexity contains much more information

about the US risk premium than the US convexity.

® The non-US convexity is the average convexity of the remaining 19 countries and regions, which is available
since 2002.
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4.2 Left tail vs. right tail

To further understand the source of return predictability of the global convexity index,
we decompose it into two orthogonal components: the convexity left and the convexity right
index. We take two steps to accomplish this. In the first step, we decompose the global
convexity index into the contribution from the left-half and the right-half section of the implied

volatility surface by splitting equation (3) in the middle:

1
LH = — [4 % 1V(0.1) + 2.5 X IV(0.15) + 2 x IV(0.2) + 0.5 x [V(0.25) — 1.5 x IV(0.35)
—2x1v(0.4) — 3.5 x [V(0.45) — 2 x [V(0.5)]

(4)

1
RH = — [—2 x IV(0.5) — 3.5 x IV(0.55) — 2 x IV(0.6) — 1.5 X IV(0.65) + 0.5 x [V(0.75)
+2x1V(0.8) + 2.5 x IV(0.85) + 4 x [V(0.9)]

(5)

Hence, the convexity index is just the sum of contribution from the left-half and right-half of
volatility surface. The left-half of the volatility surface consists of implied volatilities with a
corresponding transformed delta below 0.5, while the right-half of the surface is based on the
implied volatilities with a corresponding transformed delta above 0.5. In the next step, we
orthogonalize the two components by regressing the right-half contribution on the left-half

contribution and extracting the residual as the convexity right index:
RH, = by + b;LH, + ¢,
We define convexity right index as
CR; = by + €

and the convexity left index as
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CL, = LC,(1+ by)

These two components are orthogonal to each other, and their sum equals to the global
convexity index. The convexity left index is driven by the behavior of the left-tail of the risk-
neutral distribution, while the convexity right index is driven by the behavior of the right-tail
of neutral distribution that is independent from the left tail. Figure 3 plots the time series these

two indexes.

We test the return predictability of these two variables. Table 9 reports the R? of
predictive regressions using the convexity left or convexity right as the predictor. It shows that
both indexes predict stock returns around the world. The R? of predicting the S&P 500 semi-
annual return based on the left index is 9.2% and based on the right index is 5.4%. On average,
the convexity left has a stronger return predictability. Its average R? in predicting the twenty
index returns is 6.4%. The average R? of using the convexity right to predict returns is 3.2%.
There are some cross-sectional variations in the strength of return predictability between the
two. In some countries, mainly in Europe, the right index possesses a stronger return

predictability than the left index.

What explains the variation in the convexity left and right? Table 10 regresses the left
and right index on different state variables. Table 10 Panel A shows that the global slope index
and the left-tail volatility (LTV) index explain the convexity left index. The global slope index
explains the convexity left index with an R? of 91.6%. The steeper the implied-volatility slope,
the higher the convexity left index. The steepening of the implied-volatility slope is a sign that
investors have strong demand for downside protection through out-of-the-money put options,
which tends to happen when investors’ fear towards market crash is elevated. The left-tail

volatility index, another proxy of market fear, also explains the convexity left index with an R?
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above 50%. Therefore, we conclude that the convexity left captures investors’ fear towards

market crash and through this fear channel, it predicts the equity premium.

Table 10 Panel B shows that the global slope and the left-tail volatility index have little
explanatory power of the convexity right index, but the TED spread and aggregate short-
interest index in the US explain a sizable variation of the convexity right index. The TED
spread measures the funding cost of financial intermediaries. Column 3 shows that the higher
the TED spread, the lower the convexity right index, which predicts lower returns. One
interpretation of this result is that when the funding condition of intermediaries tightens, they
tend to sell risky assets, which generates downward pressure on equity returns. Column 4
shows that the aggregate short-interest index, introduced by Rapach, Ringgenberg, and Zhou
(2016), is also negatively associated with the convexity right index. As shown by Rapach,
Ringgenberg, and Zhou (2016), when the aggregate volume of short-interest increases, the
market tends to decline in the future, suggesting that short-sellers have superior information
about the market. Table 10 Panel B shows that the convexity right index reveals demand-
relevant information about financial intermediaries and short sellers. It is through this informed

demand channel that the convexity right index predicts stock returns.

Overall, this table shows that both the left-tail and the right-tail of the implied volatility
surface contain important information about equity premium. The left tail mainly contains
information about the fear of market crash, while the right tail reveals the demand for equity
from financial intermediaries and short sellers. The global convexity effectively combines the
information from both the left tail and right tail, which is why it possesses superior return

predictability.
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5. Out-of sample analysis and robustness checks
This section reports the out-of-sample (OOS) analysis and additional robustness checks

on the predictability of the global convexity index.
5.1 Out-of-sample analysis

We report the OOS R? of using the global convexity index to predict market return.

Following Goyal and Welch (2007), we define OOS R? as

MSE,
MSEy

R%os =1-

where MSE, is the mean squared error from the global convexity predictive model and MSE),
is the mean squared error from the historical mean model. For each market index, we start with
10 years of in-sample data to train both the predictive model and the historical mean model.
Then, we apply the predictive model and the historical mean model on a rolling basis to predict
index return. MSE, and MSE, are computed during the out-of-sample period, i.e. after the
initial 10 years. Table 11 shows the OOS R? of the global convexity index in predicting returns
with different horizons in the twenty countries or regions in our sample. The OOS R? in
predicting the 1-, 3-, 6-, 9-, and 12-month S&P 500 returns are 4.1%, 12.6%, 20.8%, 18.1%,
and 17.7%, respectively. The average OOS R? in predicting the 1-, 3-, 6-, 9-, and 12-month in
all countries are 2.2%, 6.2%, 11.4%, 8.3%, and 5.9%, respectively. The OOS R? peaks at the
6-month horizon, consistent with Table 5 that shows the predictability is significant up to

month t+7.

Campbell and Thompson (2008) argue that an OOS R? of 1% in a predictive regression
translates to an economically large gain for risk-averse investors. We compute the out-of-
sample gain from the market timing strategy based on the global convexity in each country in

Table A4. Table A4 column 1 shows the Sharpe ratio of a buy-and-hold strategy in each country
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during the out-of-sample testing period. The buy-and-hold Sharpe ratio in the US is 0.705 and
the average Sharpe ratio across the twenty indexes is 0.384. Column 2 estimates an optimal
market timing strategy assuming the equity weight is a linear function of the global convexity

index x,, i.e.
w=a+ bx,

Column 2 estimates parameters a and b using the entire testing data, which is an in-sample
approach. Column 3 estimates the parameters a and b on a rolling basis, which is an out-of-
sample approach. Both columns 2 and 3 show significant improvement in Sharpe ratio. The
Sharpe ratio of market timing in the US is 1.085, if optimal a and b are known ex ante, or 1.011
if a and b are estimated on a rolling basis. The average Sharpe ratio across all countries almost
doubles from 0.384 in column 1 to 0.743 in column 2 and 0.634 in column 3. This table
indicates the convexity index creates significant utility gain to risk-averse investors when they

use this variable to time the market.

5.2 Additional robustness checks

We run several robustness checks by using alternative specifications to measure the
global convexity. The predictability of these alternative measures is qualitatively similar to our
baseline result. In our first robustness check, we drop the part of the volatility surface associated
with delta equal to 0.1, 0.15, 0.85, and 0.9. Effectively, we construct the global convexity index
based on a reduced standardized implied volatility surface. Column 1 of Table 12 shows the
R? of using this alternative global convexity index to predict stock returns. The average R? from

all countries is 8.4%, similar to the baseline average of 8.8%.
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We also consider only using index options from a smaller set of indexes to define the
global convexity index. This is motivated by the fact that in some countries, the quality of index
options data provided by OptionMetrics is poor. This could be due to illiquidity or limited
availability. The indexes that we choose are from the US, Switzerland, Germany, Spain, France,
the United Kingdom, Italy, Euro Stoxx 50, Australia, and Hong Kong. We choose this set of
indexes because Gandhi, Gormsen, and Lazarus (2023) show that the index options from these
countries and regions have better quality. Column 2 of Table 12 shows the predictive
performance of this alternative global convexity index. The average performance improves

relative to the baseline result .

We also consider a more robust way to measure the global convexity index. Specifically,
we split the implied volatility surface into three sections based on the transformed delta: the
left tail, the middle section, and the right tail. The cut-off point for the left tail is 0.2. We set
the cut-off point for the right tail to be 0.8. Any grid point with a transformed delta between
0.25 and 0.75 is defined as the middle section of the surface. On each day, for each index, we
compute the average implied volatility in the three sections. We take the average across all
maturities. We measure the robust convexity as the average of the left and right tail volatility
minus the implied volatility in the middle section. This robust convexity measure puts the same
weight on implied volatilities in each section of the volatility surface. Column 3 shows the
return predictability of this robust convexity measure. The average R? of this index in

predicting stock returns is 8.8%, which is the same as our baseline result.

Moreover, we do not use the implied volatility surface data. Instead, we directly use
option level implied volatilities to construct the convexity index. To do so, we first classify all
options into five equal-length bins based on their transformed delta and take the average value
of the implied volatilities in each bin. We then apply the same procedure from equation (1) to
compute the volatility convexity. The predictive performance of the index based on individual
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option-level implied volatility is shown in column 4 of Table 12. The average R? is 7.1%, which
is slightly lower than the baseline average. This demonstrates that initially standardizing the

surface improves the empirical measure of the convexity index.

Our last set of robustness checks are to use detrended global convexity in column 5 and
annual change in global convexity in column 6 as the return predictor. This is motivated by the
observation that the global convexity increases over time during the sample period. We
estimated the detrended global convexity by estimating a linear trend using the entire sample
and use the residual as the return predictor. We also measure the change in global convexity
over a 12-month period as the return predictor. As shown in the table, the average R? of using

these measures to predict market returns are greater than our baseline result.

6. Conclusion

We document that the convexity measured from the global implied volatility surface robustly
predicts the stock market index return in the US and many other countries around the world.
Our convexity index measures the degree of curvature of the implied-volatility curve. The
convexity index is higher if the implied volatilities of options with both high and low strike
prices are greater than the implied volatilities of options with medium strike prices. When this
happens, the expected stock market return is higher. Empirically, the global convexity predicts
the semi-annual S&P 500 returns with an in-sample and OOS R? of 14.4% and 20.8%,
respectively. The average R? of using this index to predict all 20 index returns in our sample is
8.8% in-sample and 11.4% out-of-sample. The global convexity subsumes the predictability of
several existing option-based predictors, including the VIX index, SVIX index, variance risk
premium, and left-tail volatility. Through various alternative specifications, we find the

predictability of global convexity to be extremely robust.
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The predictive power of the global convexity index comes from its ability to aggregate
information from across the globe and combine information from both the left and right tail of
the risk-neutral return distribution. Information contained in the left tail reveals investors’ fear
of market crash, while information contained in the right tail is associated with the funding cost
of financial intermediaries and the amount of aggregate short interest, which reveal the

speculative equity demand from financial intermediaries and short sellers.

Lastly, the fact that the global level, slope, and convexity index co-move strongly with
their country-level counterparts indicates that the global options market are closely connected.
It is plausible that the same group of marginal investors operate in all these markets. The fact
that the information extracted from the global options market predicts stock returns around
world also indicates that the marginal investors in the options market play a significant role in
the pricing of the equity around the world. Understanding how information or preference is
revealed and transmitted across different markets through these marginal investors is an

interesting future research question.
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Appendix A: construction of the standardized implied volatility surface

This section details how OptionMetrics constructs the standardized implied volatility
surface. OptionMetrics first computes Black-Scholes implied volatility for options with

available data. For European-style options, the Black-Scholes model:
C = Se_qTN(dl) - Ke_rTN(dz)
P = Ke_rTN(_dz) - Se_qTN(_dl)

where

b= o) o2
1—0_\/7 nK r q 20-
dzzdl_aﬁ

C (P) is the midpoint of the best closing bid price and best closing offer price for the call (put)
option, S is the current underlying security price, K is the strike price, T is the time in years
remaining to option maturity, r is the continuously-compounded interest rate, g is the

continuously compounded dividend yield, and o is the implied volatility.

Then, OptionMetrics organizes the data by the log of days to maturity and by “call-
equivalend delta” (i.e., delta for a call option, one plus delta for a put option). Then, at each
grid point j on the volatility surface, the standardized implied volatility 6; is calculated as a
weighted sum of option implied volatilities:

4 — Y Vioy®(xij, vij, zij)
g ZiVio'icD(xij'yij'Zij)

where i is indexed over all available options on each day, V; is the vega of the option, o; is the

implied volatility, and @(+) is the kernel function:
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The inputs to the kernel function, x;;, y;;, and z;; measures the “distance” between an actual

option i and the grid point j:

T;
xij = In F]

Yij =8 — 4
Zij = I{CPi=CPj}

where T; and T; are measured in days; A; and 4; are call-equivalent detlas of option i and grid-
point j; and z;; is an indicator function, which equals to one if both the option and the surface
have the same call or put type. The kernel bandwidth parameters are set at h; = 0.05, h, =
0.005, and h; = 0.001. Options with fewer than 11 days to maturity are excluded from the

sample.

Appendix B: definitions of variables and variable constructions

Global level index: we take the average implied volatility of the standardized volatility surface
in each country on each day. We drop the last trading day of each month to avoid overlapping
with the next month. We then aggregate the daily average to a monthly average level index for
each country. We average the level measures from all countries in our sample to obtain the

global level index.

Global slope index: on each day, we regresses the implied volatilities of the standardized
volatility surface on their transformed deltas and obtain the coefficient. We drop the last trading

day of each month to avoid overlapping with the next month. We then aggregate the daily
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coefficient to a monthly average coefficient as the slope for each country. We average the slope

measures from all countries in our sample to obtain the global slope index.

Global convexity index: we first measure the convexity of the implied volatility curve at any

maturity  as the following

1 I, ) +1(4A;,t
CV(T)=aZ 5 (& )—I(Ak.r)
(L.j.k)
Ai+Aj
2

where A;, A;, and A are three different delta points with A; < A; and Ay, = . There are 64

different sets of these delta-triples based on the availability of delta points. The above equation

can be translated in the following equation:

1
Convexity = —[4x IV(0.1) + 2.5 X IV(0.15) + 2 X IV(0.2) + 05 X IV(0.25) — 1.5 x IV(0.35)
—2x1V(0.4) — 3.5 X IV(0.45) — 4 X [V(0.5) — 3.5 X [V(0.55) — 2 X [V(0.6)

— 1.5 x IV (0.65) + 0.5 x IV(0.75) + 2 x IV (0.8) + 2.5 x IV (0.85) + 4 x IV (0.9)]
To construct the convexity index, we then take the average convexity measure across all
maturities on each day. This gives us a daily measure of convexity for each index. We aggregate
daily convexity measures into a monthly measure by taking the average value across all
available days in a month, except the last trading day. We construct the global convexity index

by averaging monthly convexity index from all available countries in our sample.

VIX index: the implied-volatility index provided by the CBOE. We download the daily

measure of the VIX index and aggregate it to a monthly measure by taking average.

SVIX index: Martin (2017) introduces the SVIX index to measure the lower bound of US

equity premium based on option prices. We download the six-month SVIX index from lan
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Martin’s website.! We extend the data to the end of 2021 based on the procedure in Martin

(2017).

Left-tail volatility (LTV): LTV measures the return volatility generated by the left tail of the
one-week risk-neutral return distribution introduced by Bollershlev, Todorov, and Xu (2015).

We download the data from Viktor Todorov’s website and extend it to the end of 2021.11

Variance risk premium (VRP): variance risk premium measures the difference between the
squared VIX index and the realized variance of the market index. Bollershlev, Tauchen and
Zhou (2009) document that VVRP predicts US return from 1990 to 2007. We download the data

on VRP from Hao Zhou’s website, which updates the data to 2021.

TED spread: measures the difference between the three-month LIBOR rate and the three-
month yield on Treasury bills. We download daily TED spread from the Federal Reserve

database and aggregate it to a monthly measure by taking simple average.

Short-interest index: this is the detrended aggregate short-selling interest in the US. The
measure is constructed by Rapach, Ringgenberg, and Zhou (2016). We download the data from

Guofu Zhou’s website.*®

10 https://personal.lse.ac.uk/martiniw/

11 https://tailindex.com/volatilityindex.html

12 https://sites.google.com/site/haozhouspersonalhomepage/
13 http://apps.olin.wustl.edu/faculty/zhou/
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Figure 1: availability of index options

This figure plots the number of countries or regions in our sample for which we have available
options data.

o
N

15

10

o

T T T T T T T
1996 2000 2004 2008 2012 2016 2020

36



Figure 2: level, slope, and convexity of the implied volatility surface

The figure plots the global and US average of the standardized volatility surface, i.e., the level index,
in Panel A, the slope of these surfaces in Panel B, and the convexity of these surfaces in Panel C. The
sample period is from 1996m1 to 2021m12.
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Panel C: global and US convexity index
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Figure 3: global convexity left and global convexity right indexes

This figure plots global convexity left index in Panel A and global convexity right index in Panel B.
Detailed definition of the measures are in the text and Appendix.
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Table 1: list of index options in our sample

This table lists the availability of index options from each country or region in our sample. This table also lists the underlying market index in each region and

the exchanges from which option quotes are obtained. The last column shows the average number of available options in each region per day.

Country / region Short name  Market index Exchange Start Finish Num. obs./day
Australia AUS S&P/ASX 200 Australia Futures and Options 1/2/2004 12/31/2021 959
Belgium BEL BEL 20 Euronext Brussels 1/2/2002 12/31/2021 165

Canada CAN S&P/TSX 60  Montreal Exchange 3/26/2007  12/31/2021 356
Switzerland CHE SMI EUREX, Frankfurt 1/2/2002 12/30/2021 927
Germany DEU DAX EUREX, Frankfurt 1/2/2002 12/30/2021 1234
Europe, Australasia, and the Middle East EAFE MSCI EAFE  National Best BidOffer 9/25/2002 12/31/2021 493
Emerging market EEM MSCI EM National Best BidOffer 3/9/2006 12/31/2021 669
Spain ESP IBEX 35 Mercado Espanol de Futuros 10/11/2006  12/30/2021 1212
Europe EUR STOXX50  EUREX, Frankfurt 1/2/2002 12/30/2021 1339
Finland FIN HELSINKI 25 EUREX, Frankfurt 1/2/2002 12/30/2021 275
France FRA CAC 40 Euronext Monep 4/14/2003  12/31/2021 565
United Kingdom GBR FTSE 100 Euronext Liffe, London 1/2/2002 12/31/2021 1257
Hong Kong HKG HANG SENG Hong Kong Futures Exchange 1/3/2006 12/31/2021 1070
Italy ITA MIB Mercato dei Derivati, Milano 10/10/2006  12/30/2021 574
Japan JPN NIKKEI 225 Osaka Day Session 5/6/2004 12/30/2021 1016
Korea KOR KOSPI1200  Korea Futures Market 5/3/2004 12/30/2021 377
Netherlands NLD AEX Euronext Amsterdam Options 7/1/2005 12/31/2021 338
Sweden SWE OMXS30 Stockholmborsen Options Market ~ 5/14/2007  12/30/2021 448
Taiwan TWN TAIEX Taiwan Futures Exchange 1/2/2004 12/30/2021 242
United States USA S&P 500 Index National Best BidOffer 1/4/1996 12/31/2021 1378
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Table 2: average implied volatility surface

This table reports the average implied volatility at each delta-maturity grid point. Panel A shows the
global average implied volatility surface. Specifically, we first take the average implied volatility at
each grid point across all indexes, including both call and put options, on each day and then average
across all sample period. Panel B reports the average implied volatility surface of the S&P 500 index.

Panel A: global average

maturity (days)
delta 30 60 91 122 152 182 273 365 547  Average
0.10 28.11 2761 27.65 27.69 2756 2743 2719 27.09 26.82 27.46
0.15 26.15 26.01 26.10 26.19 26.14 26.07 2592 2588 2575 @ 26.02
0.20 2452 2462 2475 2486 2486 2483 2476 2475 2471 2474
0.25 23.31 2349 2364 2376 23.78 2378 23.75 2376 23.77  23.67
0.30 2240 2260 2273 2284 2288 2290 2289 2291 2295 2279
0.35 2168 2186 21.98 22.07 2211 2213 2215 2217 2223 22.04
0.40 21.07 2122 2132 2140 2144 2146 2148 2151 2158 2139
0.45 20.55 20.67 20.75 20.81 20.84 20.86 20.88 20.92 2099 2081
0.50 20.08 20.17 20.23 20.27 20.30 20.31 20.34 20.38 2046 20.28
0.55 19.67 19.72 19.77 19.79 19.80 19.82 1986 19.90 19.98 19.81
0.60 19.29 1931 1934 1935 1936 19.37 1941 1946 19,57 19.38
0.65 1896 1894 1895 1895 1895 1896 19.01 19.06 19.19  19.00
0.70 18.67 1860 1859 1858 1857 1858 18.64 18.70 18.86 18.64
0.75 18.45 1831 18.28 1825 1824 1825 1831 1839 1855 1834
0.80 18.33 18.09 18.03 17.98 1797 1797 18.04 1813 1830 18.09
0.85 1835 1798 1788 17.81 17.78 1778 1785 17.93 1810 1794
0.90 1853 1798 1784 17.74 1769 1767 1772 1781 17.95 17.88
Average 21.07 2101 21.05 21.08 21.07 21.07 21.07 2110 21.16
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Panel B: S&P500 implied volatility surface

maturity (days)
delta 30 60 91 122 152 182 273 365 547  Average
0.10 26.76 27.00 27.27 2743 2749 2753 2755 2751 2737 2732
0.15 2454 2507 2540 25.62 2575 2585 2599 26.03 26.01 2558
0.20 22.75 2342 23777 24.03 2421 2434 2456 2464 2471 @ 24.05
0.25 2143 2211 2247 2273 2293 2307 2332 2343 2355 2278
0.30 2046 21.08 2142 2167 2186 2201 2227 2238 2253 21.74
0.35 19.67 20.22 2053 20.77 2095 2109 2135 2147 2164 20.85
0.40 19.00 19.48 19.77 1998 20.15 20.28 20.52 20.64 20.83 20.07
0.45 18.41 18.83 19.09 19.28 19.43 1955 19.77 19.89 20.09  19.37
0.50 17.88 1825 1847 18.64 18.78 18.89 19.09 19.20 1940 18.74
0.55 1739 1771 1791 18.06 18.18 1828 1846 1857 18.78 18.15
0.60 16.94 1721 1739 1751 1763 1771 1788 17.98 1820 1761
0.65 16.52 16.74 16.89 17.00 17.10 17.18 1733 1744 17.67 17.10
0.70 16.14 16.30 16.43 16.52 16.60 16.67 16.82 16.93 17.17 16.62
0.75 1581 1590 16.00 16.07 16.14 16.21 16.35 1645 16.71 16.18
0.80 1559 1557 1564 1569 1575 1580 1593 16.02 16.29 1581
0.85 1558 1538 1540 1542 1546 1549 1558 15.67 1592 1554
0.90 1582 1537 1532 1531 1531 1531 1533 1540 15.63 1542
Average 18.86 19.16 19.36 1951 19.63 19.72 19.89 19.98 20.15
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Table 3: convexity of implied volatility surface

This table shows the summary statistics of various option-based measures in Panel A and their pairwise correlation in Panel B. The sample period is from
1996m1 to 2021m12. Appendix and the main text contains detailed description of each variable.

Panel A: summary statistics

mean sd min p5 p25 p50 p75 p95 max skewness  kurtosis
Global vol. surf. convexity 0.49 0.14 0.22 0.30 0.39 0.47 0.59 0.75 0.95 0.76 3.33
US vol. surf. convexity 0.54 0.15 0.20 0.29 0.43 0.53 0.62 0.83 0.99 0.45 3.20
Global vol. surf. level 21.08 5.95 12.28 14.30 16.78 20.04 23.67 32.34 51.15 161 7.08
Global vol. surf. slope -11.31 3.99 -27.07 -19.18 -13.39 -10.57 -8.34 -6.09 -5.24 -1.12 4.42
VIX index 20.30 8.02 10.13 11.53 14.47 19.00 23.84 35.03 62.67 1.95 9.06
SVIX index 4.29 2.66 1.50 1.75 2.46 3.64 5.22 8.50 20.63 2.46 12.15
Left-tail volatility (LTV) 7.92 3.16 2.39 4.62 5.87 7.07 8.89 13.91 25.65 181 7.88
Variance risk premium (VRP)  14.82 32.48 -403.40 -3.36 6.71 13.11 24.02 49.10 115.85 -71.75 98.15
Panel B: correlation matrix
Global convex US convex Global level  Global slope VIX SVIX LTV VRP
Global vol. surf. convexity 100% 82% 43% -68% 43% 51% 68% 10%
US vol. surf. convexity 82% 100% 27% -51% 26% 34% 67% 11%
Global vol. surf. level 43% 27% 100% -82% 93% 95% 65% -3%
Global vol. surf. slope -68% -51% -82% 100% -80% -85% -12% -4%
VIX index 43% 26% 93% -80% 100% 96% 73% -13%
SVIX index 51% 34% 95% -85% 96% 100% 75% -4%
Left-tail volatility (LTV) 68% 67% 65% -12% 73% 75% 100% -13%
Variance risk premium (VRP) 10% 11% -3% -4% -13% -4% -13% 100%
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Table 4: predicting semi-annual US equity premium (overlapping periods)

We regress the 6-month excess return of S&P500 index on different set of option-based predictors. Panel A reports the result of univariate return prediction.
Panel B reports the result of multivariate return prediction. The sample period of predictors is from 1996m1 to 2021m12. Standard errors are Newy-West
standard errors with 6 lags. The t-statistics are reported in parentheses. Superscripts ***, ** * correspond to statistical significance at the 1, 5, and 10 percent
levels, respectively.

Panel A: univariate return prediction

1 () ©) (4) (5) (6) () (8)

VARIABLES Semi-annual S&P 500 excess return
Global convexity 0.3002***

(3.69)
US convexity 0.2232**

(2.35)
Global level 0.0027
(1.34)
Global slope -0.0066***
(-3.09)
VIX 0.0023
(1.61)
SVIX 0.0088**
(2.12)
LTV 0.0096***
(2.74)
VRP 0.0003
(0.59)

Constant -0.1051** -0.0774 -0.0146 -0.0316 -0.0048 0.0051 -0.0333 0.0381**

(-2.25) (-1.35) (-0.39) (-1.23) (-0.19) (0.30) (-1.04) (2.36)
Observations 312 312 312 312 312 312 312 312
R-squared 0.144 0.091 0.021 0.054 0.028 0.043 0.072 0.008
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Panel B: multivariate return prediction

1) (2) 3) 4) ®) (6) ) 8
VARIABLES Semi-annual S&P 500 excess return
Global convexity 0.3212*** 0.3078*** 0.3273** 0.2997*** 0.2924*** 0.2908*** 0.2959*** 0.3346***
(3.92) (2.95) (2.53) (2.88) (2.66) (2.91) (3.60) (3.46)
US convexity -0.0239 -0.0428
(-0.20) (-0.33)
Global level -0.0004 -0.0055
(-0.18) (-0.79)
Global slope 0.0014 0.0042
(0.38) (0.71)
VIX 0.0000 -0.0006
(0.01) (-0.10)
SVIX 0.0008 0.0182
(0.15) (1.30)
LTV 0.0006 0.0010
(0.15) (0.15)
VRP 0.0002 0.0002
(0.53) (0.64)
Constant -0.1026* -0.0998** -0.1023** -0.1053** -0.1049** -0.1055** -0.1059** -0.0153
(-1.82) (-2.30) (-2.36) (-2.51) (-2.20) (-2.25) (-2.27) (-0.20)
Observations 312 312 312 312 312 312 312 312
R-squared 0.145 0.145 0.146 0.144 0.145 0.145 0.147 0.165

45



Table 5: predicting monthly US equity premium (non-overlapping periods)

We regress the 1-month excess return of S&P500 index in month t+1 up to t+12 on the global convexity index in month t. The sample period of the global

convexity index is from 1996m1 to 2021m12. Standard errors are heteroscedasticity robust standard errors. The t-statistics are reported in parentheses.
Superscripts ***, ** * correspond to statistical significance at the 1, 5, and 10 percent levels, respectively.

(1) (2 (3) 4) ®) (6) (7 (8) ) (10) (11) (12)
1 month S&P 500 excess return
VARIABLES t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12
Global convexity 0.0587*** (0.0523*** (0.0530*** 0.0530*** 0.0425** 0.0370** 0.0335* 0.0124 -0.0037 0.0247 0.0235 0.0081
(3.24) (3.02) (3.05) (3.11) (2.47) (2.11) (1.85) (0.68) (-0.20) (1.38) (1.32) (0.46)
Constant -0.0217** -0.0187** -0.0190** -0.0193**  -0.0142 -0.0117 -0.0095 0.0007 0.0081 -0.0057 -0.0051 0.0023
(-2.37) (-2.12) (-2.10) (-2.17) (-1.57) (-1.27) (-1.00) (0.07) (0.84) (-0.60) (-0.56) (0.25)
Observations 312 312 312 312 312 312 312 312 312 312 312 312
R-squared 0.037 0.029 0.030 0.029 0.019 0.014 0.011 0.002 0.000 0.006 0.006 0.001

46



Table 6: predicting equity premium around the world

We regress the semi-annual excess return of the leading market index from 19 different countries and regions on the global convexity index. The sample period
of the global convexity index is from 1996m1 to 2021m12. Standard errors are Newy-West standard errors with 6 lags. The t-statistics are reported in parentheses.
Superscripts ***, ** * correspond to statistical significance at the 1, 5, and 10 percent levels, respectively.

) () (3) (4) Q) (6) () (8) (©) (10)
VARIABLES USA AUS BEL CAN CHE DEU EAFE EEM ESP EU

Global convexity = 0.3002***  0.3773***  0.2535*  0.3304***  0.2050**  0.2594**  (0.2892***  0.3109** 0.1674 0.2946**

(3.69) (2.83) (1.88) (2.87) (2.28) (2.01) (3.52) (2.33) (1.18) (2.48)
Constant -0.1051**  -0.1412**  -0.0886  -0.1160*  -0.0621  -0.0904  -0.1183**  -0.1096  -0.0443  -0.1128*
(-2.25) (-2.03) (-1.23) (-1.79) (-1.25) (-1.27) (-2.44) (-1.61) (-059)  (-1.73)
Observations 312 312 312 312 312 312 312 312 312 312
R-squared 0.144 0.116 0.049 0.095 0.058 0.047 0.130 0.083 0.017 0.071
(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
VARIABLES FIN FRA GBR HKG ITA JPN KOR NLD SWE TWN
convex 0.3321**  0.3328***  0.2835%**  0.2548*  0.3627***  0.3860***  0.6824***  (0.2870**  0.4430%**  0.4584***
(2.29) (2.99) (2.74) (1.75) (2.73) (3.42) (3.06) (2.19) (3.02) (3.34)
Constant -0.1034  -0.1251**  -0.1133*  -0.0910  -0.1648**  -0.1814*** -0.2034***  -0.1025  -0.1716**  -0.1825**
(-1.30) (-2.02) (-1.94) (-1.22) (-2.22) (-3.10) (-2.72) (-1.41) (-2.24) (-2.56)
Observations 312 312 312 312 288 312 312 312 312 312
R-squared 0.059 0.094 0.100 0.046 0.086 0.138 0.128 0.065 0.116 0.116
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Table 7: alternative specifications to measure convexity and predictive R?

This table reports the in-sample R? from predicting semi-annual index returns using convexity measures constructed based on different specifications. Column
1 uses our baseline global convexity index. Columns 2 and 3 uses call and put implied volatilities to measure convexity. Columns 4 and 5 use in-the-money
(ITM) and out-of-the-money (OTM) implied volatilities to measure convexity. Columns 6 and 7 use implied volatilities with maturity no greater than or
greater than 6 month to measure convexity. Column 8 uses only US implied volatilities and Column 9 excludes US implied volatilities after 2002.

@ ) 3) (4) (5) (6) () (8) (9)
Country Baseline Call Put I™ OT™M <=6month >6month USA only Exclude USA
USA 14.4% 8.9% 14.3% 10.8% 15.7% 12.6% 14.6% 9.1% 14.6%
AUS 11.6% 3.3% 17.9% 12.2% 8.3% 12.4% 8.6% 5.0% 11.8%
BEL 4.9% 3.5% 4.4% 5.9% 2.8% 4.6% 4.5% 1.1% 5.3%
CAN 9.5% 3.8% 12.4% 6.8% 10.7% 8.3% 9.6% 5.0% 9.6%
CHE 5.8% 4.0% 5.2% 5.9% 4.3% 4.5% 6.8% 2.6% 6.0%
DEU 4.7% 2.7% 4.9% 4.2% 4.2% 3.3% 6.1% 0.7% 5.1%
EAFE 13.0% 8.7% 12.1% 10.2% 13.4% 10.6% 14.4% 8.0% 13.2%
EEM 8.3% 1.9% 14.0% 7.8% 6.9% 9.2% 5.8% 3.0% 8.6%
ESP 1.7% 0.9% 1.9% 1.8% 1.3% 1.4% 1.9% 0.1% 1.9%
EU 7.1% 4.8% 6.5% 5.9% 6.9% 5.8% 7.8% 2.1% 7.4%
FIN 5.9% 3.1% 6.6% 4.4% 6.5% 4.6% 7.0% 2.0% 6.1%
FRA 9.4% 7.3% 7.7% 7.5% 9.5% 7.7% 10.3% 3.7% 9.7%
GBR 10.0% 6.1% 10.1% 8.7% 9.2% 8.6% 10.5% 4.9% 10.3%
HKG 4.6% 1.0% 8.0% 5.0% 3.1% 3.9% 4.8% 1.3% 4.8%
ITA 8.6% 5.9% 7.9% 8.2% 7.0% 8.1% 7.8% 4.9% 8.7%
JPN 13.8% 8.2% 14.0% 14.2% 10.0% 12.2% 13.6% 8.5% 14.0%
KOR 12.8% 4.8% 17.4% 10.8% 12.1% 16.5% 6.6% 6.3% 12.9%
NLD 6.5% 4.4% 6.1% 5.2% 6.6% 5.5% 7.0% 2.3% 6.9%
SWE 11.6% 4.8% 14.9% 10.8% 9.7% 9.5% 12.7% 4.4% 11.9%
TWN 11.6% 3.4% 17.6% 10.6% 9.9% 11.6% 9.6% 6.2% 11.8%
Average 8.8% 4.6% 10.2% 7.8% 7.9% 8.1% 8.5% 4.1% 9.0%
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Table 8: auto-correlation and lead-lag relationship in the US, international, and global convexity index

This table reports the autocorrelation and lead-lag relationship of the USA convexity index, Non-USA convexity index, and the global convexity index. Non-
USA convexity index uses non-USA options and starts from 2002m1. The sample period of USA and global convexity indexes are from 1996m1 to 2021m12.
Standard errors are heteroscedasticity robust standard errors. The t-statistics are reported in parentheses. Superscripts ***, ** * correspond to statistical
significance at the 1, 5, and 10 percent levels, respectively.

1) (2) 3) 4) 5) (6) (7
VARIABLES USA Non-USA Global USA USA Non-USA Global
USA convexityts 0.8793%** 0.7654%** 0.7612%** 0.0119 -0.0111
(31.64) (18.03) (16.90) (0.33) (-0.31)
Non-USA convexity .1 0.9471%** 0.1732%** 0.9377***
(40.45) (3.58) (23.70)
Global convexity «1 0.9172%** 0.1535%** 0.9269%**
(40.14) (2.97) (22.67)
Constant 0.0669%** 0.0274%* 0.0423%** 0.0464%** 0.0548%** 0.0254%* 0.0435%**
(4.51) (2.34) (3.68) (2.62) (3.47) (2.02) (3.61)
Observations 311 239 311 239 311 239 311
R-squared 0.768 0.887 0.839 0.794 0.774 0.887 0.839
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Table 9: R? from predicting with global convexity left and global residual convexity right

We regress semi-annual index returns on the global convexity left index, on the residual global
convexity right index and on both indexes and report the R? in this table. Detailed definitions of these
variables are in the text and appendix. The sample period is from 1996m1 to 2021m12.

Country Convexity left Convexity right Left + Right
USA 9.2% 5.4% 14.6%
AUS 9.5% 2.2% 11.7%
BEL 1.1% 6.7% 7.7%
CAN 8.5% 1.3% 9.8%
CHE 1.2% 7.9% 9.1%
DEU 3.0% 1.8% 4.8%
EAFE 7.3% 6.3% 13.6%
EEM 8.1% 0.7% 8.9%
ESP 0.8% 1.1% 1.9%
EU 4.8% 2.3% 7.1%
FIN 4.5% 1.5% 5.9%
FRA 6.3% 3.2% 9.5%
GBR 4.8% 6.3% 11.1%
HKG 6.7% 0.0% 6.7%
ITA 4.6% 4.1% 9.0%
JPN 10.3% 3.4% 13.8%
KOR 16.1% 0.1% 16.2%
NLD 3.0% 4.4% 7.4%
SWE 10.8% 1.3% 12.1%
TWN 8.2% 3.3% 11.6%

Average 6.4% 3.2% 9.6%
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Table 10: explaining convexity left and right

This table regresses global convexity left and global convexity right index on global slope, SVIX,
TED spread, and aggregate short-interest. Detailed definitions of these variables are in the text and
appendix. The sample period is from 1996m1 to 2021m12. Standard errors are Newy-West standard
errors with 6 lags. The t-statistics are reported in parentheses. Superscripts ***, ** * correspond to
statistical significance at the 1, 5, and 10 percent levels, respectively.

Panel A: global convexity left

1) 2) 3 4) ®)
VARIABLES Global convexity left
Global slope -0.0295%** -0.0295%***
(-26.44) (-29.94)
Left-tail volatility 0.0289*** 0.0019**
(8.23) (2.06)
TED spread 0.0592 -0.0426***
(1.54) (-4.91)
Short-interest -0.0285** -0.0119%**
(-2.40) (-4.17)
Constant 0.0735*** 0.1785*** 0.3804*** 0.4110*** 0.0797***
(6.72) (6.62) (17.86) (26.13) (13.40)
Observations 312 312 312 312 312
R-squared 0.916 0.550 0.032 0.079 0.961
Panel B: Global convexity right
1 (2) 3) 4) ®)
VARIABLES Global convexity right
Global slope 0.0050** 0.0085***
(2.32) (4.04)
Left-tail volatility 0.0020 0.0098***
(0.56) (4.96)
TED spread -0.1121%** -0.0761***
(-5.99) (-4.47)
Short-interest -0.0285*** -0.0159***
(-4.23) (-2.73)
Constant 0.1426*** 0.0696*** 0.1363*** 0.0897*** 0.1413***
(6.75) (2.62) (10.75) (11.24) (11.26)
Observations 312 312 312 312 312
R-squared 0.074 0.008 0.322 0.218 0.501
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Table 11: out-of-sample predictive R?

This table reports the OOS R2 of predicting stock returns at different horizons. The predictor
is the global convexity index. The OOS R2 is computed as

MSE,

R(%os =1- MSEy

where MSE, is the mean squared error of the predictive model based on the global convexity
index and MSE), is the mean squared error of the historical mean model. To compute these
mean squared errors, we use first ten years of observations to train both models and then
update them on a rolling-basis.

1) (2) (3) (4) ®)
Country 1 month 3 month 6 month 9 month 12 month

USA 4.1% 12.6% 20.8% 18.1% 17.7%
AUS 3.0% 7.6% 13.1% 11.6% 10.8%
BEL 0.4% 2.9% 7.0% 3.4% -1.0%
CAN 2.4% 7.6% 14.4% 13.0% 14.0%
CHE 1.0% 4.3% 8.8% -0.1% -2.6%
DEU 1.8% 4.4% 7.4% 1.2% -2.9%
EAFE 3.1% 8.9% 18.3% 18.3% 18.7%
EEM 3.1% 6.9% 9.7% 6.6% 3.2%
ESP 0.4% 1.0% 1.6% -4.4% -8.4%
EU 1.9% 4.8% 9.3% 6.1% 4.3%
FIN 1.4% 4.1% 8.6% 6.0% 4.6%
FRA 1.9% 5.7% 12.2% 10.6% 9.8%
GBR 2.1% 6.8% 13.2% 10.3% 10.6%
HKG 0.2% 0.7% 1.5% -0.7% -4.1%
ITA 1.8% 5.1% 10.2% 11.1% 12.0%
JPN 3.2% 6.7% 15.5% 14.2% 9.6%
KOR 1.8% 6.1% 11.3% 7.0% -0.1%
NLD 2.0% 5.4% 9.5% 3.8% -0.7%
SWE 3.8% 9.9% 15.8% 14.0% 12.2%
TWN 4.1% 12.6% 20.0% 16.3% 11.5%
Average 2.2% 6.2% 11.4% 8.3% 5.9%
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Table 12: robustness checks

This table reports the R? of predicting semi-annual excess returns with the global convexity index as the predictor. We use different ways to construct the global
convexity index. Columns 1 drops the two outmost delta points to measure the global convexity. Column 2 uses only options from AUS, CHE, DEU, ESP, EU,
FRA, GBR, HKG, ITA, and USA. Column 3 estimates the convexity index in a robust fashion, which equals the average difference between the implied
volatility in the tail region and the implied volatility in the middle region of the volatility curve. Column 4 uses option-level implied volatility instead of the
standardized implied volatility surface to construct the global convexity index. Column 5 uses detrended convexity index. Column 6 uses annual change in
global convexity as the predictor. Details of the construction method are in the text.

1) ) @) (4) (%) (6)
Country Drop extreme tail Small set of countries  Robust convexity  Option level Detrended convexity  Annual change in convexity

USA 12.5% 11.0% 14.3% 13.2% 13.0% 11.5%
AUS 11.1% 17.7% 11.7% 11.9% 12.6% 13.9%
BEL 3.3% 7.7% 4.9% 6.9% 6.1% 9.6%
CAN 11.1% 14.5% 9.7% 5.9% 10.9% 6.3%
CHE 3.9% 6.5% 5.7% 6.1% 5.6% 6.5%
DEU 4.8% 5.6% 4.7% 3.0% 5.9% 8.4%
EAFE 11.6% 14.1% 12.8% 10.6% 12.4% 6.3%
EEM 9.3% 12.7% 8.4% 6.9% 9.2% 10.4%
ESP 1.6% 3.1% 1.8% 1.4% 3.3% 7.1%
EU 6.9% 7.8% 7.1% 4.3% 8.7% 10.6%
FIN 6.5% 7.7% 6.0% 2.6% 7.5% 10.0%
FRA 9.0% 10.5% 9.4% 5.6% 11.2% 11.3%
GBR 8.7% 11.9% 10.0% 8.1% 11.8% 11.6%
HKG 5.3% 8.0% 4.7% 2.8% 5.7% 9.8%
ITA 7.2% 11.1% 8.6% 7.4% 7.9% 7.3%
JPN 12.6% 16.9% 13.5% 12.9% 10.1% 12.1%
KOR 13.6% 15.6% 12.9% 8.4% 13.9% 13.4%
NLD 5.8% 6.3% 6.5% 5.9% 7.2% 11.8%
SWE 12.4% 14.7% 11.6% 7.6% 13.3% 13.3%
TWN 11.6% 12.2% 11.6% 10.0% 9.8% 15.9%
Average 8.4% 10.8% 8.8% 7.1% 9.3% 10.4%
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Table Al: summary statistics of index returns

This table lists the data coverage and summary statistics of monthly index returns in our sample. Returns are reported in percentage points.

Country / region Market index start finish mean sd skewness kurtosis
AUS S&P/ASX 200 1996m1 2022m12 0.71 6.12 -0.64 5.12
BEL BEL 20 1996m1 2022m12 0.54 5.96 -0.56 5.58
CAN S&P/TSX 60 1996m1 2022m12 0.70 5.80 -0.70 5.58
CHE SMI 1996m1 2022m12 0.60 4.72 -0.40 3.76
DEU DAX 1996m1 2022m12 0.60 6.77 -0.36 421
EAFE MSCI EAFE 1996m1 2022m12 0.37 4.14 -0.75 4.30
EEM MSCI EM 1996m1 2022m12 0.64 5.27 -0.84 5.92
ESP IBEX 35 1996m1 2022m12 0.61 6.94 -0.13 4.50
EUR STOXX 50 1996m1 2022m12 0.52 6.26 -0.31 3.79
FIN HELSINKI 25 1996m1 2022m12 0.91 6.95 0.06 4.90
FRA CAC 40 1996m1 2022m12 0.63 6.15 -0.29 3.85
GBR FTSE 100 1996m1 2022m12 0.38 4,72 -0.36 4.40
HKG HANG SENG 1996m1 2022m12 0.56 6.94 0.09 5.48
ITA MIB 1998m1 2022m12 0.35 7.21 -0.10 3.94
JPN NIKKEI 225 1996m1 2022m12 0.10 5.42 -0.20 3.39
KOR KOSPI 200 1996m1 2022m12 0.54 10.18 0.97 9.77
NLD AEX 1996m1 2022m12 0.61 6.16 -0.63 4.92
SWE OMXS30 1996m1 2022m12 0.69 6.73 -0.18 4.20
TWN TAIEX 1996m1 2022m12 0.60 7.34 0.10 4.01
USA S&P 500 Index 1996m1 2022m12 0.66 4.50 -0.57 3.82

54



Table A2: summary statistics of implied volatilities on the implied volatility surface

This table reports the summary statistics of implied volatilities from standardized implied volatility surfaces for each index.

Country / region mean p50 sd min max skewness kurtosis
AUS 17.67 15.82 7.19 2.87 198.19 2.06 12.46
BEL 19.97 17.98 8.38 3.17 200.00 2.40 19.47
CAN 19.84 17.53 10.33 1.45 200.00 4.65 57.66
CHE 17.71 16.03 6.67 3.39 103.62 2.04 10.00
DEU 21.74 19.95 7.91 3.78 131.34 1.70 7.77
EAFE 19.64 17.67 8.21 3.12 135.16 1.76 8.35
EEM 26.65 23.97 10.63 8.52 180.29 2.34 12.45
ESP 23.31 21.91 7.62 3.25 103.55 1.29 6.12
EUR 22.03 20.28 8.18 5.20 115.25 1.55 7.07
FIN 22.14 20.06 8.62 1.08 97.20 1.22 5.44
FRA 20.91 19.40 7.38 3.04 117.92 1.64 8.00
GBR 18.57 16.81 7.39 5.05 108.23 1.72 7.84
HKG 22.87 19.95 9.17 7.99 148.64 2.51 12.16
ITA 24.25 22.81 7.59 5.09 110.83 1.42 6.91
JPN 22.51 20.69 7.99 1.11 200.00 2.71 16.49
KOR 19.82 17.87 8.45 4.74 137.58 2.38 12.62
NLD 20.81 18.71 9.48 1.02 200.00 1.50 7.69
SWE 21.04 19.20 7.54 4.57 177.11 1.76 8.78
TWN 19.95 17.70 8.49 1.20 108.98 1.34 5.49
USA 19.58 18.45 7.23 3.70 99.34 1.43 7.20
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Table A3: convexity of implied volatility by maturity

This table shows the summary statistics of the convexity of implied volatility curve for each maturity in Panel A and their pairwise correlation in Panel B. The
sample period is from 1996m1 to 2021m12.

Panel A: convexity by maturity

Maturity (days) mean sd min p5 p25 p50 p75 p95 max skewness  kurtosis
30 0.65 0.20 0.20 0.40 0.52 0.62 0.74 1.05 1.36 1.10 4.52
60 0.54 0.17 0.15 0.31 0.42 0.51 0.60 0.87 1.23 1.14 4.72
91 0.51 0.16 0.21 0.30 0.40 0.49 0.60 0.86 1.07 0.82 3.56
122 0.50 0.16 0.21 0.31 0.39 0.47 0.61 0.84 0.98 0.79 3.19
152 0.48 0.15 0.20 0.28 0.37 0.45 0.59 0.78 0.95 0.77 3.08
182 0.46 0.15 0.19 0.26 0.35 0.43 0.56 0.75 0.92 0.70 2.96
273 0.44 0.14 0.18 0.24 0.33 0.41 0.55 0.69 0.81 0.49 2.52
365 0.43 0.14 0.16 0.23 0.33 0.42 0.54 0.67 0.77 0.27 2.16
547 0.41 0.14 0.10 0.20 0.32 0.39 0.50 0.65 0.79 0.27 2.54

Panel B: correlation matrix

Maturity (days) 30 60 91 122 152 182 273 365 547
30 100% 82% 78% 77% 75% 73% 66% 59% 51%
60 82% 100% 93% 84% 84% 83% 76% 68% 60%
91 78% 93% 100% 94% 90% 89% 84% 76% 68%
122 77% 84% 94% 100% 97% 93% 88% 83% 75%
152 75% 84% 90% 97% 100% 98% 91% 86% 79%
182 73% 83% 89% 93% 98% 100% 94% 88% 81%
273 66% 76% 84% 88% 91% 94% 100% 96% 86%
365 59% 68% 76% 83% 86% 88% 96% 100% 93%
547 51% 60% 68% 75% 79% 81% 86% 93% 100%
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Table A4: the economic gain of predicting the market return

This table reports the Sharpe ratio of three different investment strategies in each country from
2006m1 to 2021m12. The first strategy is to buy and hold each country’s market index. The
second strategy is to invest in the market index with a weight equal to

wy = a+ bx;,

where x; is the average global convexity over the past six months. The coefficients a and b are
optimized based on the in-sample data from 2006m1 to 2021m12. The third strategy is similar
to the second except that the coefficients a and b in each month are estimated based on the data
from 1996m1 until the month of trading on a rolling basis.

1) ) @)
Country  Buy-and-hold Sharpe ratio  In-sample optimal Sharpe ratio OOS optimal Sharpe ratio

USA 0.705 1.085 1.011
AUS 0.378 0.823 0.712
BEL 0.271 0.614 0.432
CAN 0.392 0.780 0.671
CHE 0.571 0.860 0.695
DEU 0.358 0.621 0.498
EAFE 0.373 0.853 0.778
EEM 0.495 0.861 0.793
ESP 0.203 0.381 0.203
EU 0.276 0.600 0.477
FIN 0.492 0.727 0.647
FRA 0.329 0.644 0.544
GBR 0.256 0.739 0.585
HKG 0.355 0.515 0.396
ITA 0.160 0.580 0.446
JPN 0.369 0.759 0.682
KOR 0.268 0.783 0.742
NLD 0.387 0.800 0.671
SWE 0.443 0.855 0.795
TWN 0.591 0.973 0.901
Average 0.384 0.743 0.634
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