Words floating on the surface of sound change

W. Labov, U. of Pennsylvania

International Conference on Bilingualism and Comparative Linguistics CUHK 15 May 2012.

The Neogrammarian viewpoint

Every sound change, inasmuch as it occurs mechanically, takes place according to laws that admit no exception. --Ostoff and Brugmann 1878

Sound-change is merely a change in the speakers' manner of producing phonemes and accordingly, affects a phoneme at every occurrence, regardless of the nature of any particular linguistic form in which the phoneme happens to occur. . The whole assumption can be briefly put into the words: *phonemes change*. --Bloomfield 1933:353-4

Lexical diffusion

We hold that words change their pronunciations by discrete, perceptual increments (i.e., phonetically abrupt) but severally at a time (i.e., lexically gradual) --Wang and Chen 1977:150.

The lexically gradual view of sound change is incompatible, in principle, with the structuralist way of looking at sound change. --Chen and Wang 1957:257.

The resolution proposed in 1981

Regular sound change is the result of a gradual transformation of a single phonetic feature of a phoneme in a continuous phonetic space.

Lexical diffusion is the result of the abrupt substitution of one phoneme for another in words that contain that phoneme.

The combined effects of lexical diffusion and regular sound change

Regular sound change in Philadelphia

Regress fo	sion a or Phi	nalysi ladelp
PHONETIC	Coef f	prob
Fricative coda	-56	0.0001
Nasal coda	-129	0.0001
Velar cpda	-110	0.0001
Labial onset	70	0.0001
Nasal onset	-21	0.0054
Apica onsetl	89	0.0001
Pallatal onse	202	0.0001
Velar onset	334	0.0001
C/Liq onset	-90	0.0001
No onset	236	0.0001
Multisyllabic	19	0.0001
C 1 1 1	20	0.0001

Regression analysis of raising of /eyC/ along the front diagonal for Philadelphia Neighborhood Corpus [N=28,026]

		Coef f	prob		Coeff	prob
РНС	NETIC			SOCIAL		
Frici	ative coda	-56	0.0001	Date of birth	4	0.0001
Nas	al coda	-129	0.0001	Higher Ed	16	0.0001
Vela	r cpda	-110	0.0001	Black	-21	0.0004
Labi	al onset	70	0.0001	Female	29	0.0001
Nas	al onset	-21	0.0054	Italian 💦	51	0.0001
Apic	a onsetl	89	0.0001	Irish	40	0.0001
Palla	atal onse	202	0.0001			
Vela	r onset	334	0.0001			
C/Li	q onset	-90	0.0001			
No o	onset	236	0.0001			
Mul	tisyllabic	19	0.0001			
Cod	a cluster	39	0.0001			

Regress fc	ion a r Phi	nalysis ladelp	s of raising hia Neighbo	of /eyo orhood	C/ alor l Corpi	ng the fro us [N=28	ont diag 3,026]	30nal	
PHONETIC	Coef f	prob	SOCIAL	Coeff	prob	LEXICAL	Coeff	prob	N
Fricative coda	-56	0.0001	Date of birth	4	0.0001	Frequency	0.0003	0.7453	
Nasal coda	-129	0.0001	Higher Ed	16	0.0001	DAY	68	0.0001	481
Velar cpda	-110	0.0001	Black	-21	0.0004	NAME	50	0.0002	825
Labial onset	70	0.0001	Female	29	0.0001	TAKE	50	0.0001	1476
Nasal onset	-21	0.0054	Italian	51	0.0001	CAME	27	0.0149	1272
Apica onsetl	89	0.0001	Irish	40	0.0001	MAKE	15	0.2473	1311
Pallatal onse	202	0.0001				STAY	11	0.5513	294
Velar onset	334	0.0001				MAYBE	-18	0.1246	856
C/Liq onset	-90	0.0001				WAY	-42	0.1788	81
No onset	236	0.0001				NBRHD	-67	0.0001	1069
Multisyllabic	19	0.0001				SAME	-96	0.0001	929
Coda cluster	39	0.0001				PLAY	-128	0.0001	573

Re	gression Neighb	analysi orhood	s of /ay0/ in Phil Corpus [N=74,2	adelphia 215]	
Variable	Coefficient	prob	Quest	Coeffici ent	prob
Frequency	0.00	0.0001	Unset	-32 74	2 0 0001
Date of Birth	-0.32	0.0001	Nasal	46 51	² 0 0001
Black	26.21	0.0001	Anical	-27.06	² 0 0001
Hispanic	28.63	² 0.0001	Velar	13.50	² 0.0001
Higher Ed	-10.63	² 0.0001	/w/	-14.13	² 0.0001
Female	3,49	² 0.0001	/v/	-79.31	² 0.0001
Coda				13.53	² 0.0001
Stop	-13.07	² 0.0001			
Fric	-6.81	0.0009	SPIDER [N=10]	-127.24	0.0001
Nasal	-17.57	² 0.0001	SNYDER [N=15]	-56.21	0.0404
Labial	10.17	0.0008	(Dob > 1970)		
Apical	8.65	² 0.0001			

/æh/ and the lexical rule	of short-a ten	sing
	(æh) sl	ort- <i>a</i> tensing
a) lexical diffusion found	no	yes
b) discrete	no	yes
c) phonetic differentiation	single feature	many features
d) phonetic conditioning	precise	rough
e) grammatical conditioning	no	yes
f) social affect	yes	no
g) categorically perceived	no	yes
h) learnable	yes	no

At the current stage of linguistics, we are likely to make more progress by broadening our data base and following the method of strong inference than by deduction from a ruling hypothesis (John R. Platt *Science* 146:347-353, 1964).

In order to discover when sound change is governed by regular phonological conditions and when by lexical selection we must take into account the significant findings that support both points of view.

Most recent findings show that speech communities can superimpose lexical effects on regular phonetic change or convert a lexically determined split into a regular allophonic opposition.