Brain mechanisms of reading: Universal or Culture-specific?

Li-Hai Tan

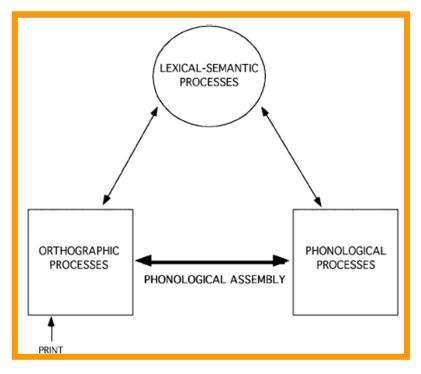
Department of Linguistics and

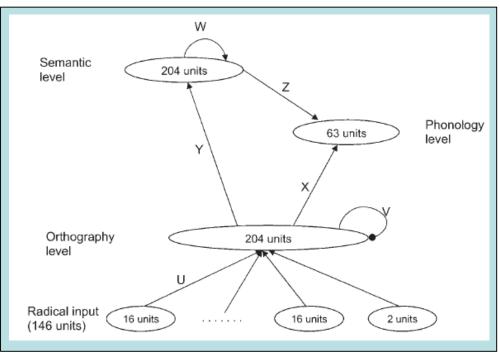
State Key Laboratory of Brain and Cognitive Sciences

University of Hong Kong

Chinese Language, Linguistic Science and Brain

Langue Chinoise, La linguistique science et Cerveau


中国语文, 语言科学和脑


Visuo-orthography Phonology Semantics Syntax

到"新石新石工工"式可以逐有"元可石工双石"口

Common cognitive processes are entailed in reading development in all languages

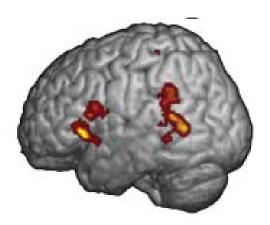
Reading acquisition in all written languages depends on the establishment of effective connections among three linguistic elements: orthography, phonology, and semantics.

Pugh et al., 2000

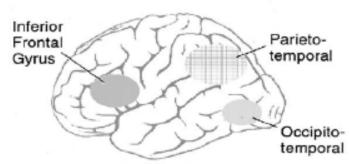
Perfetti, Liu, & Tan, 2005

Neural Mechanisms of Language and Reading:

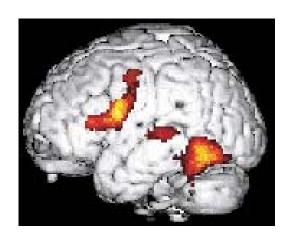
Are they universal or language-constrained?


The Universal Theory:

A universal brain basis is involved for reading in all languages

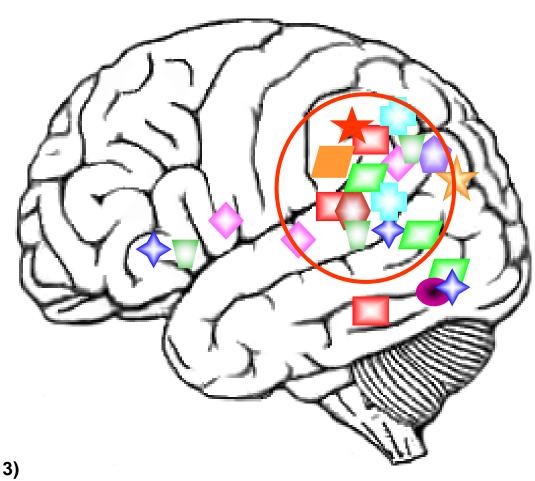

(Paulesu et al., Science, 2001; Dehaene et al., 2012)

Neuroimaging of normal and dyslexic reading in alphabetic languages: 3 systems

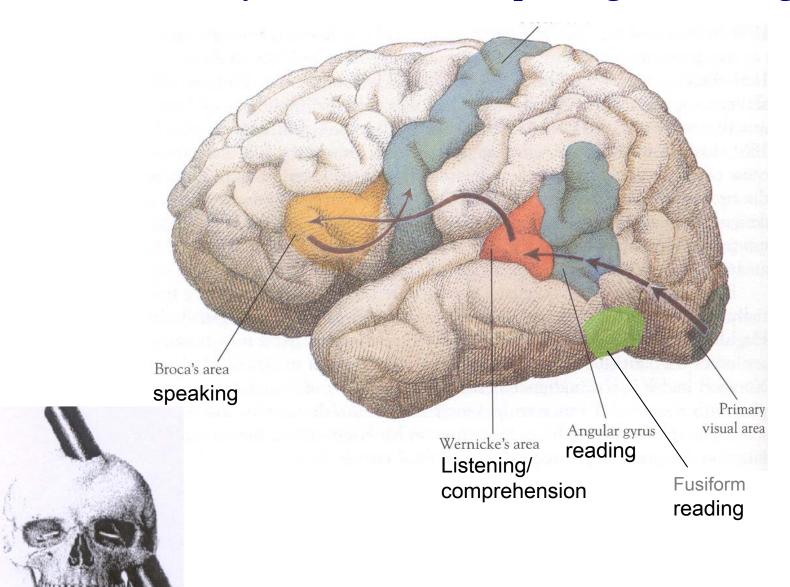

- Visual word form area (fusiform gyrus): orthography
- Temporoparietal regions: phonological processing
- Inferior frontal gyrus: phonology and meaning

Turkeltaub et al., 2003, English

Pugh et al., 2005 3 systems



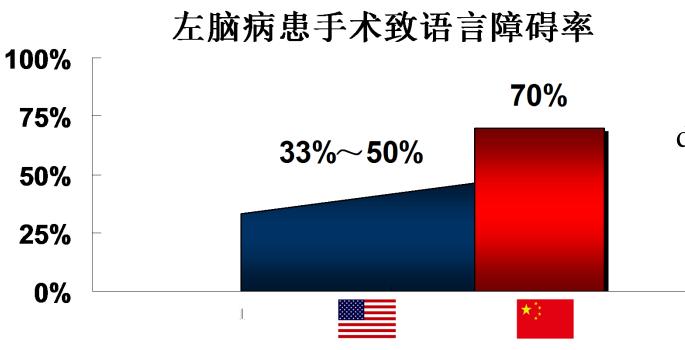
Paulesu et al., 2001, English French & Italian


Recent functional neuroimaging findings of dyslexia in alphabetic languages

- Flower et al. (1991)
- Rumsey et al. (1992)
- **Paulseu et al. (1996)**
- Rumsey et al. (1997)
- Horwitz et al. (1998)
- Shaywitz et al. (1998)
- Brunswick et al. (1999)
- **Paulesu et al. (2001)**
- **Temple et al. (2001)**
- Shaywitz et al. (2002)
- **Eden et al. (2004)**
- Hoeft et al. (2007)

Many new studies (2007-2013)

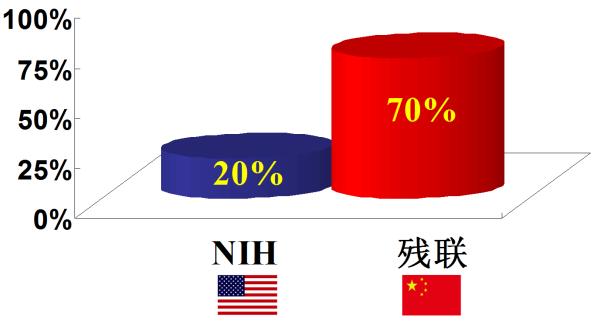
Brain systems involved in speaking and reading



Are there language-specific brain regions?

Suggestive evidence from brain diseases affecting language functions: epilepsy, tumor, stroke, brain palsy...

Neurosurgery
9M patients of epilepsy, 20% with surgery


• % of patients with left hemisphere damages suffering language disorders after neurosurgeries in USA & China

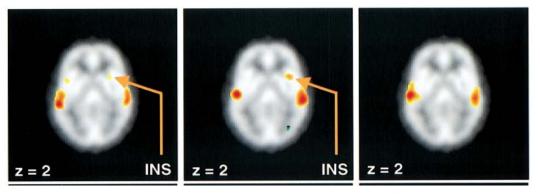
600萬中國腦癱患者和200萬美國腦癱 患者語言障礙發生率

% of brain palsy patients with severe language disorders in USA and China

脑瘫患者语言障碍发病率

These data indicate,
language disorders caused
by brain diseases are more
severe in China

Why? Do language differences matter?


大腦負責中國語言聽和說的中樞 Brain regions for listening & speaking of the Chinese language

▶中國語言(在此指漢語和中文)與英語等西方語言 有著顯著區別。

口頭語言來說: 帶調 與 非帶調

Chinese: tonal language

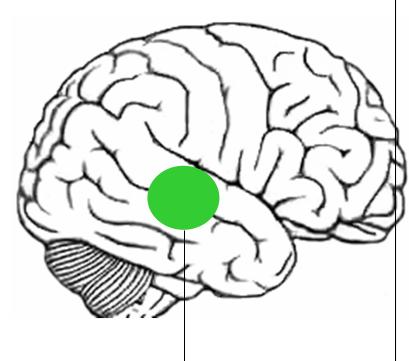
English: non-tonal language

≝動 motor 說漢語 Listening C&E 說英語

聽漢語

聽英語

Speaking C&E


主管漢語和西 方語言聽和說 的腦區有部分 重疊。

聽: 左顳葉

說: 左額下回

布羅卡區和韋爾尼克區主管 漢語的聽和說 的能力

Primary (Gandour et al)

聽說漢語 Chinese: listening & speaking 大腦的漢語理解 中樞: 不僅左腦額 中樞: 不僅左腦管 口語和單之 口語相同), 右腦 配對漢語聲 調加工也有獨特 作用。

Right superior temporal cortex crucial for Chinese tone processing Gandour et al. (NeuroReport, 1999? NeuroImage, 2004;

> Peng et al., (Neurolmage, 2006)

Luo et al. (PNAS, 2006)

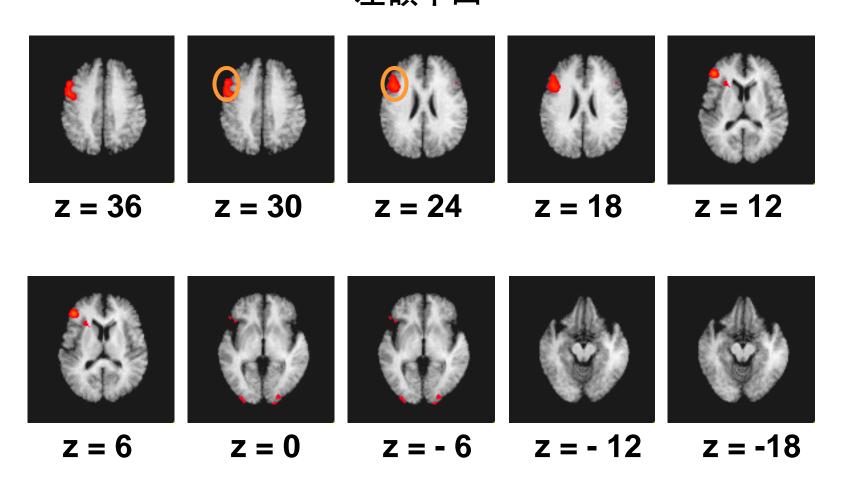
Chinese Reading Ability and Disability

Written Chinese 中文: 表意文字 (Wang, 1973) (logographic system)

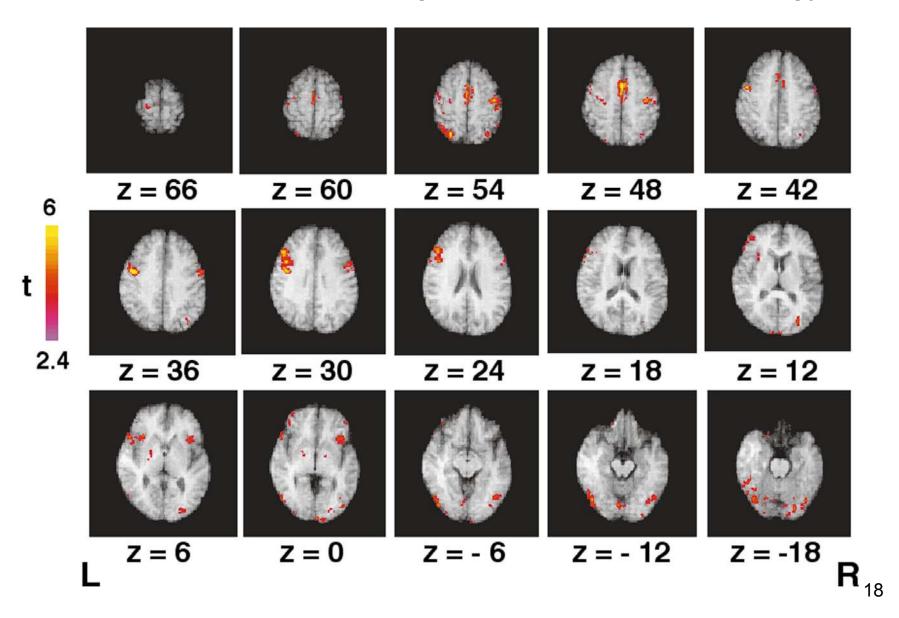
Visual Form: holistic vs. linear

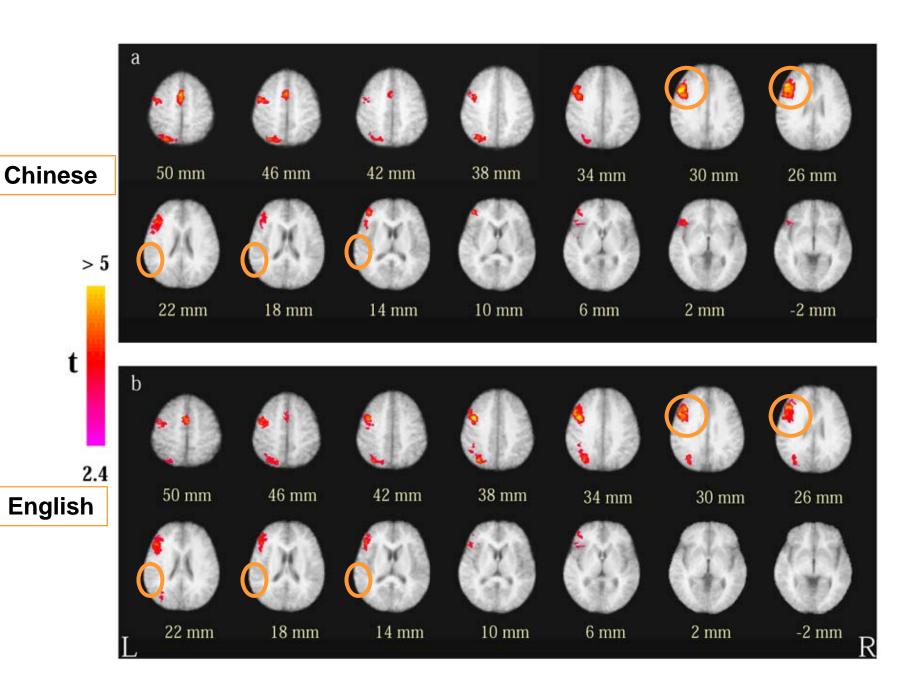
◆ Sound 字音:

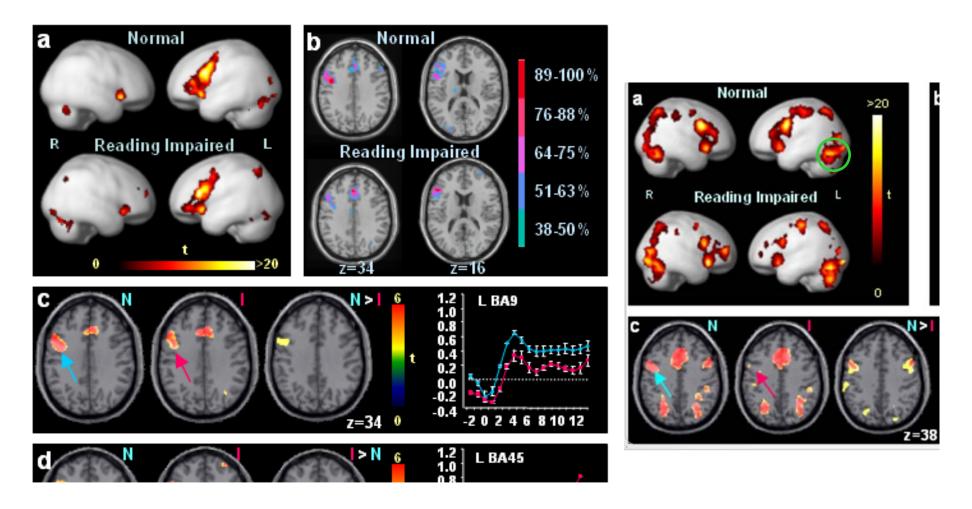
Characters > <u>syllables</u>: addressed phonology

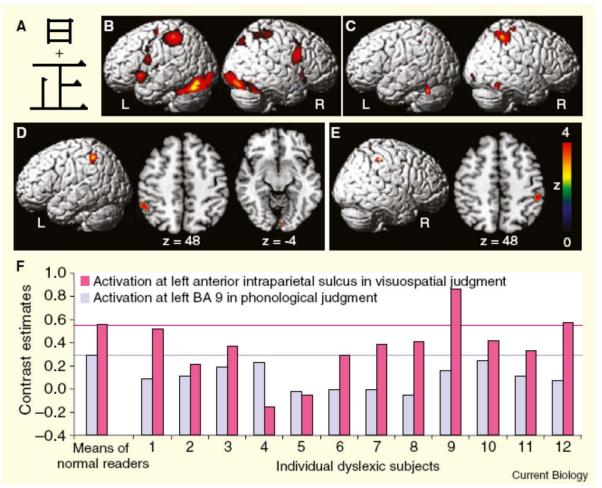

English words > <u>phonemes</u>: assembled phonology

Cortical Regions for Chinese Reading

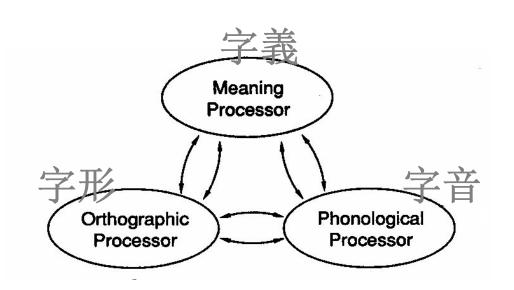

Word generation 蓝 >天 (blue > sky) 歌 Rhyme decision (ge > ke)颗 谢 Homophone decision (xie > xie)泻 妈 Semantic decision (ma > mu)


Hum Brain Mapp, 2000; Neurolmage, 2001; NeuroReport, 2001; Hum Brain Mapp, 2003; Nature,2004; PNAS,2005; Hum Brain Mapp, 2005; PNAS, 2008; Annals of NYAS, 2008; Current Biology, 2009; PNAS, 2011; PNAS, 2012


Left middle frontal region is critical for Chinese reading 左額中回


Left middle frontal region and bilateral fusiform gyri

Impaired reading shows weaker neural activity than normal readers at left middle frontal gyrus and a few other regions but the right occipital cortex has a reversed pattern.



Results from the physical size decision:

Left intraparietal sulcus mediates visuospatial processing of Chinese characters

- 1. Dyslexics show weaker activations in left intraparietal sulcus (IPS) mediating visuospatial processing.
- 2. Individual variability analysis shows that visuospatial & phonological deficits co-exist in the majority (83.33%) of Chinese dyslexics.

Possible role of left middle frontal gyrus in reading Chinese 左額中回的作用

Coordination of cognitive resources and **Memory**: orthography-to-phonology mapping orthography-to-semantics mapping

Brain systems of language

(including speaking, listening, and reading)

R

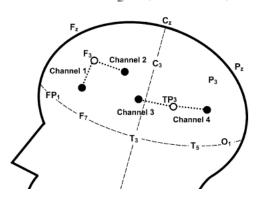
C = Chinese; E = English

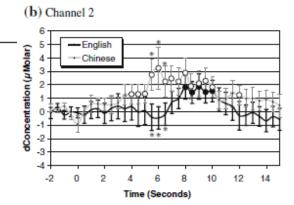
The culture-specific theory

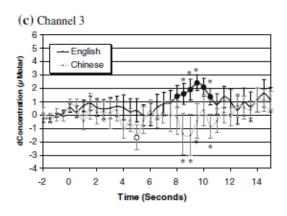
Written Chinese as a logographic language is cognitively and neuro-anatomically represented differently in some important aspects in comparison to alphabetic languages.

RESEARCH NOTE

Optical imaging of phonological processing in two distinct orthographies


Hsin-Chin Chen · Jyotsna Vaid · Heather Bortfeld · David A. Boas


H.-C. Chen (☑)
Department of Psychology,
National Chung Cheng University,
168 University Rd, Ming-Hsiung Chia-Yi, Taiwan
e-mail: psyhcc@ccu.edu.tw


J. Vaid · H. Bortfeld Department of Psychology, Texas A&M University, MS4235, College Station, TX 77843, USA

D. A. Boas

Anthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 13th Street Building 149, Charlestown, MA 02129, USA

"...the present results suggest an important role of the left middle frontal gyrus (BA9) for Chinese character processing and a special role of the left superior temporal gyrus (BA22) and supramarginal gyrus (BA40) for English readers."

A near-infrared brain function study of Chinese dyslexic children

Ranran Song¹, Jiajia Zhang², Bo Wang¹, Hui Zhang¹, and Hanrong Wu¹

Analysis of three kinds of blood hemoglobin in two groups for different channels

	Estimate	Error	p-Value
Total-Hb			
Group	-0.15	0.07	.037
Group*channel 1	-0.24	0.11	.026*
Group*channel 3	-0.28	0.11	.009**
Group*channel 11	-0.25	0.11	.020*
Oxy-Hb			
Group	-0.14	0.07	.0496
Group*channel 1	-0.00	0.10	.995
Group*channel 3	-0.27	0.11	.011*
Group*channel 11	-0.26	0.10	.010*
Deoxy-Hb			
Group	0.01	0.06	.826
Group*channel 1	-0.24	0.09	.009*
Group*channel 3	-0.17	0.09	.068
Group*channel 11	-0.14	0.09	.102

p < .05, **p < .01.

DISCUSSION

In this study, we applied NIRS to detect the prefrontal cortex of dyslexia in Chinese language for understanding their poor reading ability. We designed the phonological detection and exchange tasks, allowing us to make a close comparison between the present findings using NIRS with those from other recent fMRI studies by Siok et al. (2004, 2008).

Our present study has demonstrated different cerebral blood patterns between dyslexic children and controls. And dyslexic children exhibited lower activity than controls in the left dorsolateral prefrontal cortex (DLPFC), which have been thought to be the core areas involved in processing. Firstly, during the phonological tasks, we observed an increase in oxy-Hb and total-Hb of the controls' prefrontal lobes, while there was a decreasing trend of these two parameters in dyslexic

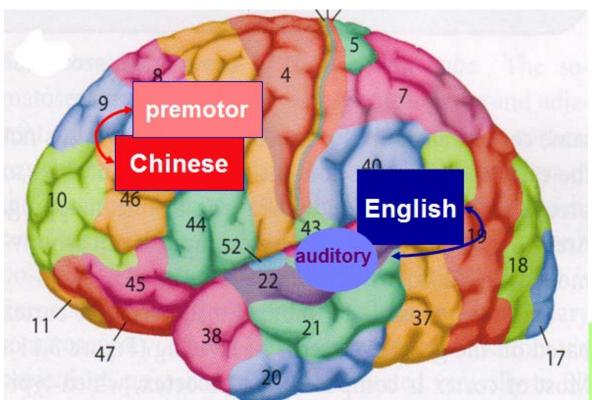
¹Department of Child and Woman Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China


²Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA

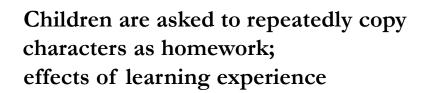
Developmental dyslexia in Chinese and English populations: dissociating the effect of dyslexia from language differences

Wei Hu,^{1,2} Hwee Ling Lee,³ Qiang Zhang,^{1,2} Tao Liu,^{1,2} Li Bo Geng,^{1,2} Mohamed L. Seghier,⁴ Clare Shakeshaft,⁵ Tae Twomey,⁶ David W. Green,⁶ Yi Ming Yang^{1,2} and Cathy J. Price⁴

- 1 Institute of Linguistics, Xuzhou Normal University, Xuzhou, Jiangsu Province, 221009, China
- 2 Jiangsu Key Laboratory of Language and Cognitive Neuroscience, Xuzhou, Jiangsu Province, 221009, China
- 3 Max-Planck Institute for Biological Cybernetics, 72076 Tubingen, Germany
- 4 Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London, WC1N 3BG, UK
- 5 The National Perinatal Epidemiology Unit, University of Oxford, Oxford, OX3 7LF, UK
- 6 Division of Psychology and Languages Sciences, UCL, London, WC1H OAP, UK

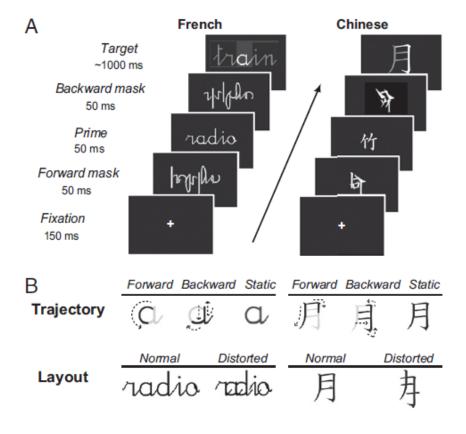

Chinese versus English normal readers

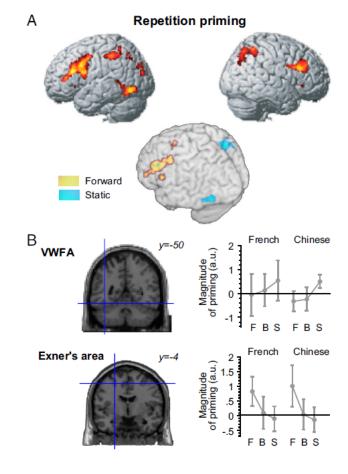
The activation patterns for semantic word matching were remarkably similar for Chinese and English monolingual normal readers (Supplementary Fig. 2), as observed in studies of Chinese-English bilinguals (Chee et al., 1999). Nevertheless, a direct comparison of activation for semantic word matching in Chinese and English monolingual readers also demonstrated differences that were consistent with studies of Chinese-English bilinguals (Tan et al., 2001, 2003). Specifically, we found that semantic word matching activation was greater in Chinese than English readers in the LIFS on the boundary between the left middle and inferior frontal gyri with peak co-ordinates in Montreal Neurological Institute space at x = -46, y = +6, z = +30, a Z-score of 3.4 and 20 voxels at P < 0.001. The peak co-ordinates are in close proximity to those that Tan et al. (2001) first identified with Chinese reading (x = -45, y = +13, z = +30) and our effect was highly significant following small volume correction for multiple comparisons (P < 0.02 corrected) based on Tan et al.'s previous result. In contrast, English readers had greater activation than Chinese readers in the LpSTS. The peak co-ordinates (x = -56, y = -38, z = +6) for this effect were also within the area (from x = -57, y = -42, z = +21 down to z = +6) that Tan et al. (2003) reported when English monolinguals read English but not when Chinese-English bilinguals read English.


Chinese versus English dyslexic readers

Why the left middle frontal gyrus plays an important role in Chinese reading?

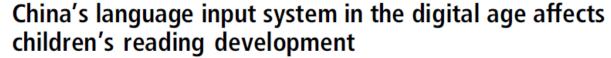
Why the left posterior temporoparietal regions are crucial for English reading?





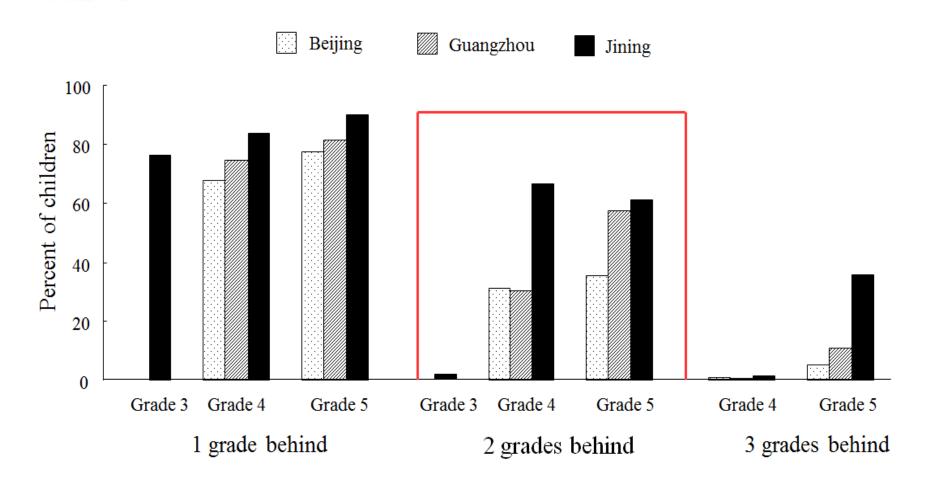
Universal brain systems for recognizing word shapes and handwriting gestures during reading

Kimihiro Nakamura^{a,b,c,d}, Wen-Jui Kuo^e, Felipe Pegado^{a,b,c,d}, Laurent Cohen^{f,g,h}, Ovid J. L. Tzeng^{i,j}, and Stanislas Dehaene^{a,b,c,d,1}


^aCognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale (INSERM), F91191 Gif-sur-Yvette, France; ^bNeuroSpin Center, Commissariat à l'Energie Atomique (CEA), Institut Fédératif de Recherche (IFR) 49, F91191 Gif-sur-Yvette, France; ^cUniversité Paris XI, 91405 Orsay, France; ^dCollège de France, 75231 Paris, France; ^eNational Yang-Ming University, Taipei 11221, Taiwan; ^fFaculté de Médecine Pitié-Salpêtrière, Université Paris VI, 75651 Paris, France; ^aDepartment of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique–Hôpitaux de Paris (AP-HP), 75651 Paris, France; ^hInstitut du Cerveau et de la Moelle épinière (ICM) Research Center, INSERM, Unité Mixte de Recherche Sciences 975, 75651 Paris, France; ^hAcademia Sinica, Taipei 11574, Taiwan; and ^jBrain Research Center, National Chiao Tung University, Hsinchu, Taipei 30010, Taiwan

What happens if a Chinese child does not spend much time on handwriting/copying?

For example, nowadays so many children use the Pinyin input method when texting.


Li Hai Tan^{1,2}, Min Xu¹, Chun Qi Chang, and Wai Ting Siok²

State Key Laboratory of Brain and Cognitive Sciences, Department of Linguistics, and Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong

Edited by Dale Purves, Duke–National University of Singapore Graduate Medical School, Singapore, and approved December 5, 2012 (received for review August 7, 2012)

	Beijing		Guangzhou		Jining		
	Grade 4	Grade 5	Grade 4	Grade 5	Grade 3	Grade 4	Grade 5
No. of children	263	203	250	227	1,262	1,322	2,324
No. of boys	146	109	145	114	669	714	1,288
No. of girls	117	94	105	113	593	608	1,036
Mean age in months (SD)	114.55 (4.58)	126.90 (5.50)	121.71 (4.22)	134.21 (4.72)	110.18 (5.38)	121.80 (6.14)	133.83 (5.08)
No. of children administered the nonverbal IQ test	262	203	248	226	1,222	1,247	1,209*
Mean nonverbal IQ in percentile (SD)	75.02 (21.16)	73.08 (23.52)	67.94 (25.15)	70.71 (24.66)	72.31 (24.51)	68.64 (23.78)	70.45 (24.40)
No. of missing data (date of birth, reading score)		=	2	1	21	44	4

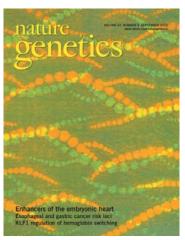
- Significant and positive correlations between reading performance and handwriting: r = 0.29 and P < .0001 for third graders, r = 0.34 and P < .0000 for fourth graders, and r = 0.45 and P < .00000 for fifth graders.
- Children's reading scores were negatively correlated with the use of the pinyin input method, with a stronger correlation found at the higher grade: r = −0.347 and P
 < .00000 for fourth graders, and r = −0.405 and P
 < .000000 for fifth graders.
- No significant correlation between pinyin typing time and handwriting time (r = -0.015 for grade 4, and r = -0.13 for grade 5).
- Thus, Pinyin use has its own negative impact on reading, presumably because it interferes with the learning of the visuospatial properties of characters.

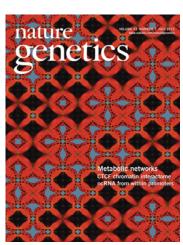
Is there a genetic basis for Chinese reading disorders?

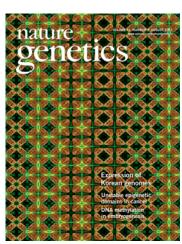
Genome-wide Association Study Of Developmental Dyslexia in Chinese Population

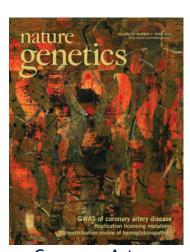
Yimin Sun, Yongyong Shi, Li-Hai Tan

Tsinghua University
CapitalBio Corporation
Shanghai Jiaotong University
University of Hong Kong

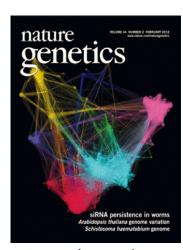

GWAS Papers Supported by CapitalBio


Osteoporosis 2008, 83(6):663-674

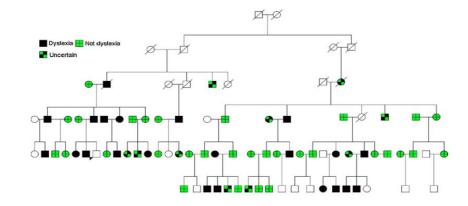

High-altitude adaptation 2010, 329(5987):72-5

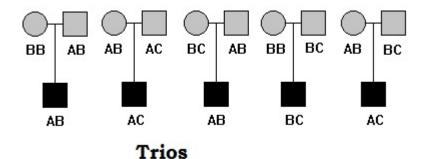

Liver Cancer 2010, 42(9):755-8

Esophageal Cancer 2011, 43(7):679-84


Lung Cancer 2011, 43(8):792-796

Coronary Artery Diseases 2011, 43(4):345-9


Pancreatic Cancer 2012, 44(1):62-66


Non-obstructive Azoospermia 2012, 44(2):183-186

Genetic Study Strategies

A: Linkage analysis based on extended families

B: Association/linkage study based on core families

C: Association study based case-control strategy

Nine DD Susceptibility Regions

Table 3 A summary of the DYX# loci

DYX#	Chromosome region	MIM		References of positive studies ^a	No. of negative studies	References of negative studies	Candidate DD susceptibility genes
DYX1	15q21	127700	6	[29, 60, 72, 116, 124, 130, 157, 161, 174]	10	[10, 39, 47, 54, 94, 117, 127, 129, 144, 153]	DYX1C1
DYX2	6p22.3-p21.3	600202	7	[25, 26, 54, 55, 65, 71–73, 95, 117, 174, 193]	9	[29, 39, 46–48, 51, 93, 94, 127, 129, 130, 140, 146, 153, 157]	DCDC2 and KIAA0319
DYX3	2p16-p15	604254	4 (+1)	[46–48, 54, 57, 117, 139] (+[94, 141])	4	[29, 39, 93, 127, 129, 146]	MRPL19 and C2ORF3
DYX4	6q11.2-q12	[#127700]	1	[137]	8	[39, 47, 54, 93, 94, 117, 127, 129, 146]	_
DYX5	3p12-q13	606896	2 (+1)	[54, 78, 127] (+ [54, 117])	5	[39, 47, 93, 94, 129, 146]	ROBO1
DYX6	18p11.2	606616	3	[54, 117]	7	[29, 39, 47, 93, 94, 127, 129, 146, 160]	_
DYX7	11p15.5	[#127700]	1 (+1)	[90] (+ [54, 117])	7	[39, 47, 54, 93, 94, 127, 129, 146]	_
DYX8	1p36-p34	608995	3	[74, 144, 194]	9	[39, 46–48, 54, 93, 94, 117, 127, 129, 146, 153]	KIAA0319L
DYX9	Xq27.2-q28	300509	1 (+1)	[39] (+ [54])	5	[39, 54, 94, 127, 129]	_

^a Positive studies, and their references, in brackets indicate linkages close to the DYX# loci

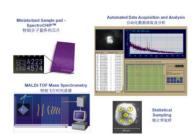
Four DD Susceptibility Genes

Method	Gene	Results	References
Linkage and association studies	_	Replicated linkage of dyslexia to	35, 62, 65, 80
in families		chromosome 15	
Targeted sequencing and	DYX1C1	Identified two SNPs associated with	96
association analysis		dyslexia	
Association study in families	DYX1C1	Found a nonsynonymous SNP associated	7
		with dyslexia	
Linkage analysis in a family	_	Detected significant linkage to	71
		chromosome 3 in a Finnish family	
Candidate gene sequencing	ROBO1	Found that partial haploinsufficiency for	40
		ROBO1 may cause dyslexia in humans	
Linkage and association studies	_	Suggested chromosome 6p21 as a locus for	28, 35, 36, 89, 98
in families		dyslexia	
Association studies in a	DCDC2 and KIAA0319	Suggested DCDC2 and KIAA0319 as	13, 30, 41, 64, 81
candidate locus		candidate genes for dyslexia	

By now, there is no published genome-wide association study for developmental dyslexia

Three-stage GWAS Design

Stage I: Whole-genome SNP detection (millions of SNPs)


Affymetrix: CHB 1 & 2

1284887 SNPs

Stage II: Replication I (about fifty SNPs)

Sequenom

Stage III: Replication II (about twenty SNPs)

Sequenom/Taqman

30,368 Chinese children were tested to identify dyslexics/impaired readers

对我国30368名儿童进行了系统的语言和非语言能力测试,鉴定筛选出了1500余名阅读障碍患者(和3000余名阅读成绩优异的对照组儿童),建立了我国首个阅读障碍研究队列,为深入探讨影响儿童语言能力发展的环境、学习和基因等因素提供了可靠的样本保证。

项目组在山东济宁市、梁山县和东明县战斗约10个月

■ 济宁市市中区

约14,000名小学生;其中<u>9,000</u>参加测试。山东教育出版社教材。

济宁市和平街小学 济宁市永丰街小学 济宁市明珠小学 济宁市普育小学 济宁市十二中小学部 济宁市霍家街小学

■ 济宁市梁山县县城

共3所小学9,139名小学生,其中两 所最大规模的小学<u>7,140</u>人全部参 加测试。人教社教材。

梁山县第一实验小学梁山县第二实验小学

■ 菏泽市东明县县城

共6所小学<u>13,968</u>名小学生,全部参加测试。江苏教育出版社教材。

东明县第一实验小学 东明县第二实验小学 东明县第三实验小学 东明县明贤小学 东明县玉成小学 东明县南门小学

测试内容

📕 第一阶段:班级语文测验(30368名儿童全部参加)

根据班级语文测验结果,先排除掉一年级,然后从二年级以上各年级筛选出语文成绩最好的15%和最差的15%(济宁、梁山)或13%(东明),总计筛选出7214名。(济宁2400,梁山1788,东明3026)

- 第二阶段:对7214名儿童进行标准化的个体阅读测试(5分钟)和集体非语言智力测验(45分钟,每40人1组)。每天平均测试6小时。10余名助手同时测试,约需要70天。
- 第三阶段: 筛选出阅读障碍患者和对照组,对梁山和东明约1500名阅障者和约3000名控制组儿童采集基因样本。10多名助手用了约20天采集完所有基因样本。 Saliva and buccal swabs were acquired for the DNA extraction
- 第四阶段:对梁山的1055名儿童(阅障者和控制组)进行近10余项行为测试,采集了大量有关阅读障碍的行为学特征的数据。10几名助手每天测试6至7小时,总计测试27天。

Stage I: Subjects

A total of **501** DD children (**391:110**) and **521** paired non-DD ones (**221:300**) were recruited with informed consent from about 7000 primary school students aging 8-12 years.

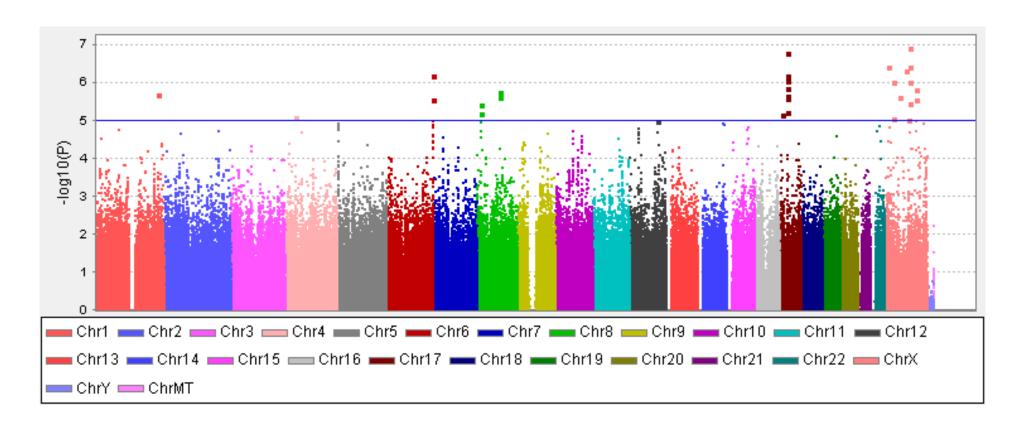
Saliva and buccal swabs were acquired for the DNA extraction.

- Chinese character reading;
- Raven's Standard Progressive Matrices;
- · Chinese onset;
- Rapid naming;
- Visual form constancy;
- Visual-spatial relationship
- Component search;
- Character copy

• • • • •

Quality Control

Affymetrix GeneTitan


Category	СНВ1	CHB1+2
Total Markers	640,673	1,296,521
Overlap with SNP 6.0	159,940	545,274
Overlap with 660W	139,511	229,407
Overlap with Omni Express	184,012	298,828

CHB: Chinese Han Beijing (HapMap I, II, III+1000 genomes)

- --40125 SNPs failed missingness test (GENO > 0.05)
- --2 individuals removed for low genotyping (MIND > 0.05)
- --8821 markers to be excluded based on HWE test ($p \le 1e-005$)
- --57844 SNPs failed frequency test (MAF < 0.01)

After filtering: 498 cases, 516 controls, 1,183,484 SNPs

Manhattan Plot

68 SNPs passed selection criteria for Chinese dyslexia in the discovery GWA scan. Manhattan plot of $-\log_{10}P$ values from the additive model after adjusting for age, sex and the first principal component.

Stage 2: Sequenom验证工作

样品:山东东明县采集样品,750 dyslexics,750 controls

位点:

- 1) 芯片筛选到的p value < 10⁻⁴的位点 68个;
- 2) ROBO1, DCDC2, KIAA0319和DYX1C1基因上Tag SNP总计30个。

显著性易感位点1(2.45E-5)

显著性易感位点2(2.64E-5)

显著性易感位点3(8.95E-5)

Inter-genetic region 基因间区域

Preliminary findings:

- Two genes have been identified. These two genes have not been reported in the literature, so they might be specific to Chinese dyslexia
- Their functions are to be explored
- Whether the two genes are linked to the languagespecific brain regions are unknown.
- The four known genes (ROBO1, DCDC2, KIAA0319, DYX1C1) causing alphabetic language reading disorders have not been confirmed.

China's National Key Basic Research Program Grant ("973" program grant)

Brain mechanisms underlying Chinese language processing and the neurogenetic basis for its disorder (2012CB720700)

1/2/2012 – 31/8/2016 (budget limit: RMB39M + a matching fund) 中国语言相关脑功能区与语言障碍的关键科学问题研究

Chief scientist: Tan Li-Hai

Major participants: HKU (subproject 1)

Beijing Institute of Tech (subproject 2)

CapitalBio Company and Tsinghua Univ (subproject 3)

Beijing 306 Hospital (subproject 4)

Qsinghua Univ Yuquan Hospital

Chinese U of HK (William Wang & Gang Peng)

Peking Univ

MIT

Team Members

HK:

John Spinks Wai Ting Siok William SY Wang Gang Peng

San Antonio: Jia-Hong Gao Peter Fox

Shanghai: Yongyong Shi Pittsburgh: Charles Perfetti

Beijing: Yimin Sun Jin Zhen

UC Berkeley:Paul Kay

Website: www.brain.hku.hk

