Motivation

- V-to-V coarticulation offers insight into the (in)dependence of units of production, including internal coherence of syllables of different structure.
- Articulatory Phonology [1, 2] suggests different C & V coordination for onset vs. coda; while carrier models [3] suggest no difference.
- Most studies only deal with CV syllables, except [4].
- We investigate V-to-V coarticulation in English syllable sequences involving the homorganic /st/ cluster:

 - onset /rst/ → heterosyllabic /s/t/ → coda /st/ (syllable boundary)
 - Experiments show that syllable onset and coda differ:
 - acoustically: onset Cs are longer and cohere more with syllabically than with the word. Contrary to expectation, only weak evidence to support heterosyllabic /s/t/.
 - perceptually: onsets are more distinct than codas in noise [6]. VC syllables are heard as CV under some conditions [10]; adaptation is position specific [11].

Hypothesis

Since coda is more variable than onset, we predict:

- Degree of V-to-V coarticulation:
 - onset > coda > syllable.
 - (*no clear prediction for heterosyllabic cases*)

Design

- Vowel sequence: /aɪ/ (sil) /st/ /iɪ/ (sil)
- Onset CV # silVC /stV/ # silVC
- Heterosyllabic CV's /stV/ # silVC
- Coda CV's /stV/ # silVC
- /aɪ/ Bar Stressed Pass Tart Pass Art
- /ɪ/ Bee Stressed Pass Tart Beat Art
- /aɪ/ Boo Stressed Pass Tart Beat Art
- /ɪ/ Boo Stressed Pass Tart Beat Art

Measurements

- Intervocalic duration: [s] = [t] closure + [t] burst + aspiration
- F1, F2, F3 freq. at 3 locations (25 ms Hannings windows):
 - offset: centered 12.5 ms before periodicity offset
 - onset: centered 12.5 ms after periodicity offset
- onset 2: 26 ms after the [t] burst, for heterosyllabic sequences only (this is a compatible place to onset 1 in terms of opening trajectory, when VOT is long)

Results

- **Intervocalic duration**
 - longest intervocalic duration for heterosyllabic sequence in both contexts (F[2,10] = 13.04, p = 0.002)
 - onset > coda in anticipatory context (t[5] = 13.66, p < 0.0001)
 - onset > coda in carryover context (t[5] = 0.21, p = 0.84)

- Formant Frequencies
 - Degree of V-to-V coarticulation:
 - /aɪ/ onset > heterosyllabic
 - /ɪ/ onset > /aɪ/ onset
 - /aɪ/ onset > /ɪ/ onset
 - /ɪ/ onset > /aɪ/ onset

Discussion

- Contrary to expectation, only weak evidence to support the effects of syllable structure on V-to-V coarticulation:
 - coda > onset > heterosyllabic
 - Thus word/syllable boundaries in heterosyllabic s/t/ may reduce the degree of V-to-V coarticulation.

- Onset and Coda conditions have similar F2 frequency, intervocalic duration and degree of V-to-V coarticulation in target vowels. Contrary to the literature. Why?
- Stressed syllables can ‘attract’ both onset and coda consonants [12]. Did stress placement increase similarity between onset and coda?
- onset V vs. s/t/ → (ambisyllabic Vst/) similar to coda Vst/V
- Only if s/t/ release → similar to s/t/ release

- The tongue is strongly constrained in an /st/ cluster which may reduce its freedom to coarticulate [13].

Theoretical significance:

- Articulatory Phonology [1, 2] assumes gestures are timed and coordinated with respect to each other. Only Cs are phased with the V as a unit (the c-centre effect) while only the start of a coda cluster is phased with the V.

- Öhman’s [3] carrier model of coarticulation suggests that V forms a continuous diphthongal movement with Cs being superimposed onto it — onset and coda should not affect V-to-V coarticulation.

- Results seem more compatible with carrier model of coarticulation, but further investigations are needed to verify this conclusion, since V/C coordination patterns are presumably language-specific [14].

References

Acknowledgements

This work was supported by the Sir Edward Youde Memorial Fellowships for Overseas Studies from Hong Kong and the Overseas Research Studentships from the United Kingdom to the first author.

Peggy Mok* and Sarah Hawkins#

*Department of Linguistics and Modern Languages, The Chinese University of Hong Kong
peggymok@cuhk.edu.hk

#Department of Linguistics, University of Cambridge; sh110@cam.ac.uk

Syllabification of the /st/ cluster and vowel-to-vowel coarticulation in English