

Peggy Mok

Department of Linguistics and Modern Languages, Chinese University of Hong Kong peggymok@cuhk.edu.hk

**International Congress for the Study of Child Language** (IASCL 2011)

#### Introduction

Linguists have long argued that languages belong to distinct rhythm classes

stress-timed: English, German

syllable-timed: French, Spanish

mora-timed: Japanese

The Chinese University of Hong Kong

### Rhythmic metrics

Bilingual patterns less separated than monolingual patterns

Results



- [1]
- Speech rhythm forms the prosodic cornerstone in early language acquisition, as newborn infants can distinguish languages based on their rhythms [2]
- Children have a bias towards syllable-timing because consonant clusters and vowel reduction are difficult to acquire
- Only few studies on the acquisition of speech rhythm

### **Rhythmic Metrics**

No isochrony (units of equal duration) can be found acoustically Important phonological differences between stress- and syllable-timing [3]

|                    | Stress-timed          | Syllable-timed |
|--------------------|-----------------------|----------------|
|                    | languages             | languages      |
| Word stress        | Variable, complicated | simple         |
| Syllable structure | complex               | simple         |
| Vowal raduction    | froquont              | infraquant     |



nPVIS



nPVIS

infrequent nequent vower reduction

- metrics based on durational variability Rhythmic were developed
  - **Δ**, %V, Varco (global variability) [4, 5]

**PVI** (local variability) [6]

English: stress-timed; Cantonese: syllable-timed [7]

# Bilingual Acquisition of Speech Rhythm

- Monolingual children at age 3;0 already have different rhythmic patterns [8, 9, 10]
- Bilingual children have distinct patterns from monolinguals: rhythmic delay affected by language dominance
- Less language separation for younger bilingual children
- Rhythmic metrics based on syllable duration are more robust than those on consonant and vowel duration for young children

#### The present study

Can the observed differences between monolingual and

#### **Stress patterns (duration of V1/V2)**

A tendency for weaker trochaic pattern in bilingual speech

| Child | Bilingual | Monolingual |
|-------|-----------|-------------|
| 1     | 1.09      | 1.08        |
| 2     | 1.34      | 1.32        |
| 3     | 1.30      | 1.27        |
| 4     | 0.94      | 1.22        |
| 5     | 0.95      | 1.57        |
| AVG   | 1.11      | 1.29        |

## Discussion

#### Monolinguals

- Already display distinct rhythmic patterns at 2;06  $\rightarrow$  early separation of speech rhythm begins before 2;06
- A bias towards syllable-timing in younger children, especially evident in monolingual English between 2;06 and 3;0

#### Bilinguals

bilingual children be found at an even younger age (2;06)? [11]

### Method

- 15 children aged ~2;06
  - 5 Cantonese-English bilingual
  - 5 Cantonese monolingual
  - 5 English monolingual
- At least 20 utterances for each language
- 4-9 syllables for each utterance (MLU 5.5)
- Rhythmic metrics on syllable, consonant and vowel duration
- Vowel duration of English trochaic disyllable words in sentence medial position (stress patterns)

- Rhythmic patterns of the two languages are more similar
- Weaker trochaic pattern in bilingual English, possibly influenced by Cantonese which has no lexical stress
- Increased Cantonese influence from 2;06 to 3;0
- Evidence for mutual influence between the two languages, supporting a distinct developmental path for bilingual
- More longitudinal rhythmic development of both monolingual and bilingual children are needed

# Acknowledgement

This study is supported by the Direct Grant for Research 2007-2008, Second Round, Chinese University of Hong Kong

[1] Abercrombie, D. (1967). Elements of General Phonetics. Edinburgh: Edinburgh: University Press . [2] Nazzi, T., Bertoncini, J. & Mehler, J. (1998). Language discrimination by newborns: towards an understanding of the role of rhythm. Journal of Experimental Psychology: Human Perception and Performance, 24, 756-766. [3] Dauer, R. M. (1983). Stress-timing and syllable-timing reanalyzed. Journal of Phonetics, 11, 51-62. [4] Ramus, F., Nespor, M. & Mehler, J. (1999). Correlates of linguistic rhythm in the speech signal. Cognition, 73, 265-292. [5] Dellwo, V. (2006). Rhythm and speech rate: a variation coefficient for  $\Delta$ C. In P. Karnowski & I. Szigeti (eds.), Language and the rhythm class hypothesis. In C. Gussenhoven & N. Warner (eds.), Laboratory Phonology VII, pp. 515-546. Berlin: Mouton de Gruyter. [7] Mok, P. P. K. (2009). On the syllable-timing of Cantonese and Beijing Mandarin. Chinese Journal of Phonetics, 2, 148-154. [8] Lleó, C., Rakow, M. & Kehoe, M. (2007). Acquiring rhythmically different languages in a bilingual context. Proceedings of the 16th International Congress of Phonetic Sciences (ICPhS), pp. 1545-1548. Saarbrueken, Germany. [9] Bunta, F. & Ingram, D. (2007). The acquisition of speech rhythm by bilingual Spanish- and English-speaking 4- and 5-year-old children. Journal of Speech, Language and Hearing Research, 50 (4), 999-1014. [10] Mok, P. (in press) The acquisition of speech rhythm by three-year-old bilingual and monolingual children: Cantonese and English. Bilingualism: Language and Cognition. [11] Paradis, J. (2001). Do bilingual two-year-olds have separate phonological systems? The International Journal of Bilingualism, 5, 19-38.