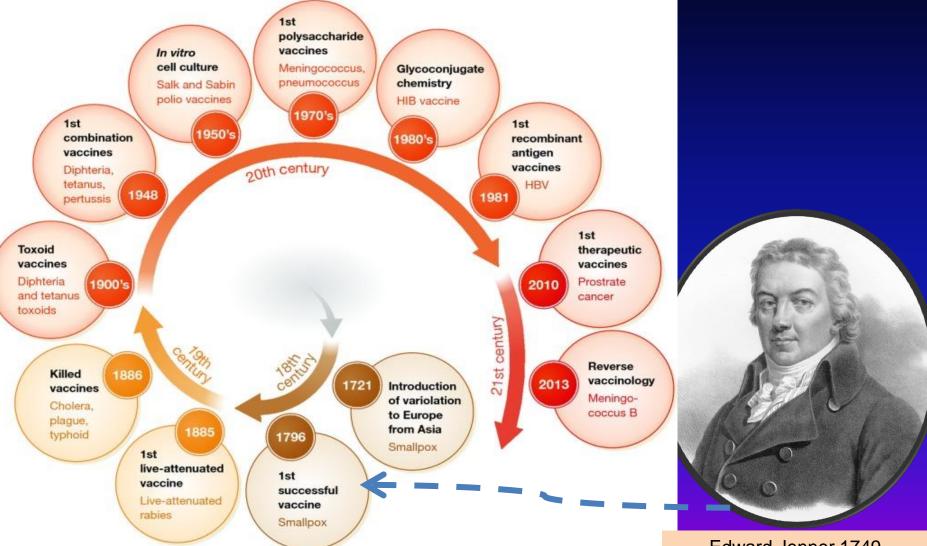
Rota Vaccine Introduction in the Thai National Program



16th Annual Scientific Meeting of CEID 11 June 2019 School of Public Health, Prince of Wales Hospital Shatin, New Territories, Hong Kong SAR CHARUNG MUANGCHANA M.D., M.P.H., Ph.D. Former Director of the National Vaccine Institute (NVI), Thailand

Outline

- Advance of vaccine development & its contribution
- Clinical and public health burden of diarrheal diseases and rotavirus gastroenteritis
- Rotavirus vaccine recommendation by WHO and implementing situation, including Thailand

Major milestones in the historical path of the development of vaccinology and vaccine design

Isabel Delany, Rino Rappuoli, and Ennio De Gregorio 2014

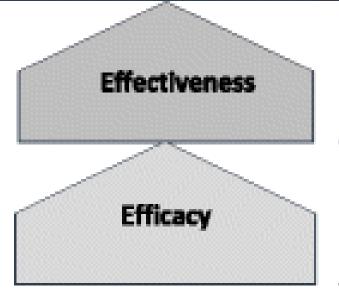
Edward Jenner 1749-1823(Smallpox Vaccine-1796)

History of vaccine development Slide 4

29 diseases are currently preventable by vaccination

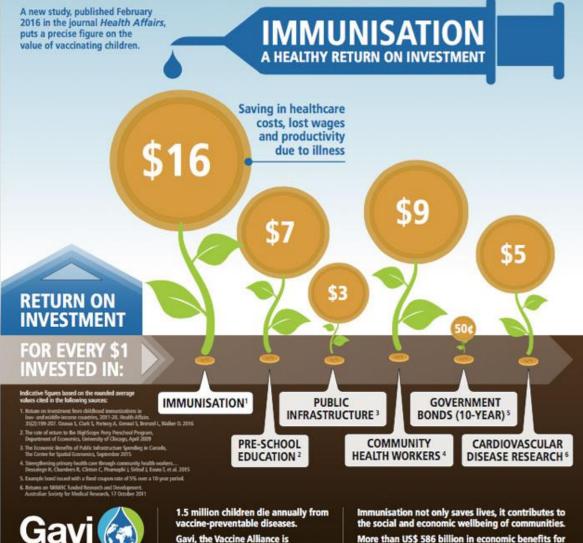
Global public health Cervical cancer¹ Diphtheria¹ Haemophilus influenzae type b¹ Hepatitis A¹ Hepatitis B¹ Herpes zoster¹ Human papillomavirus¹ Influenza¹ Measles¹ Meningococcal¹ Mumps¹ H1N1 flu¹ Pertussis¹ Poliomyelitis¹ Pneumococcal¹ Rotavirus¹ Rubella¹ Smallpox and vaccinia¹ Tetanus¹ Tuberculosis¹ Varicella¹

'Vaccines are one of the greatest achievements of biomedical science and public health'


Anthrax¹ Cholera² Japanese encephalitis¹ Monkeypox¹ Tick-borne encephalitis³ Typhoid fever¹ Rabies¹ Yellow fever¹

1. Centers for Disease Control and Prevention (CDC). Vaccines and preventable diseases. Available at: www.cdc.gov/vaccines/vpd-vac/default.htm (accessed August 2013); 2. Roush *et al. MMWR* 1999;48:243–8; 3.CDC. Special pathogens branch. Available at: www.cdc.gov/ncidod/dvrd/spb/mnpages/dispages/TBE.htm (accessed August 2013)

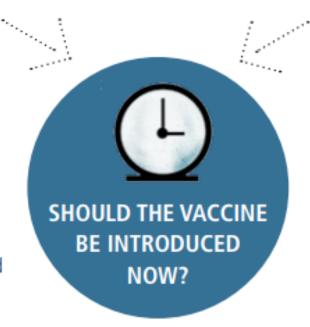
Public Health Value of Vaccines Beyond Efficacy



- Health and non-health outcomes in the population
- Direct and indirect effects on health outcomes in individuals and communities
- Direct effects of health outcomes in individuals

A. Wilder-Smith 2017

Immunization is one of the most cost-effective ways to save lives, improve health and ensure long-term prosperity


dedicated to addressing this issue.

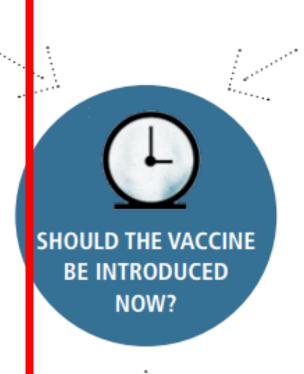
More than US\$ 586 billion in economic benefits for 94 of the world's poorest countries (2011-2020).

Key issues to consider when deciding on the introduction of a vaccine

THE DISEASE

- Public health and political priorities, alignment with global and regional recommendations
- Disease burden
- Status of other disease prevention and control measures

THE VACCINES


- Performance and characteristics of available vaccines
- Economic and financial issues
- Availability of vaccine supply

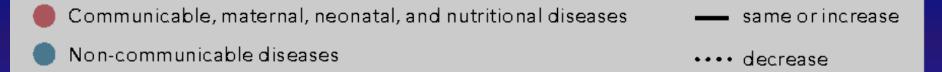
STRENGTH OF THE IMMUNIZATION PROGRAMME AND HEALTH SYSTEM

Key issues to consider when deciding on the introduction of a vaccine

THE DISEASE

- Public health and political priorities, alignment with global and regional recommendations
- Disease burden
- Status of other disease prevention and control measures

THE VACCINES


- Performance and characteristics of available vaccines
- Economic and financial issues
- Availability of vaccine supply

STRENGTH OF THE IMMUNIZATION PROGRAMME AND HEALTH SYSTEM

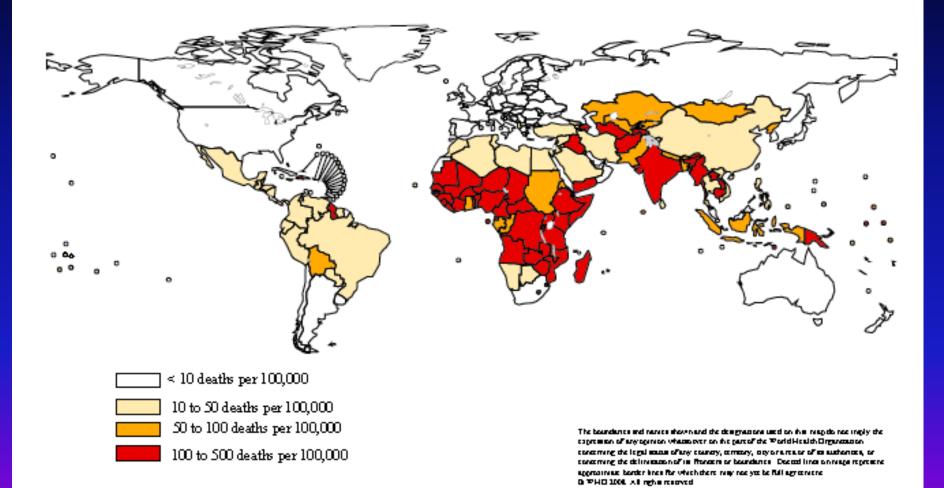
World Health Organization 2014

Top five causes of early death and disability globally, 2007 and 2017**

2007 Ranki	ng	J		2017	Ranking
lschemic heart disease	1	H		1	Ischemic heart disease
Lower respiratory infections	2	H		2	Lower respiratory infections
Diarrheal diseases	3			. 3	Chronic obstructive pulmonary disease
Neonatal preterm birth complications	4			4	Diarrheal diseases
HIV/AIDS other	5		•	5	Neonatal preterm birth complications
Chronic obstructive pulmonary disease	7			13	HIV/AIDS other

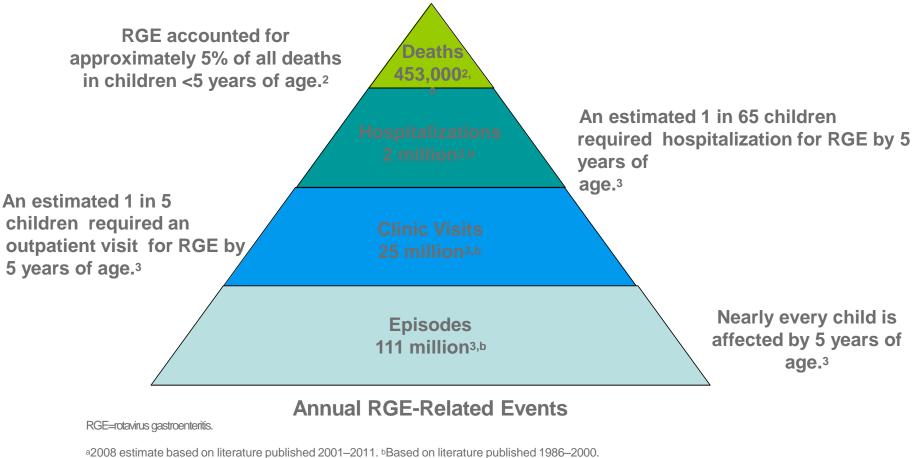
**This figure measures the top five causes of early death and disability globally by disability-adjusted life years, or DALYS. It shows that the burden from noncommunicable diseases is increasing in importance globally, while the burden of communicable, maternal, neonatal, and nutritional dis http://www.healthdata.org/

Diarrheal Disease—Still a Leading Child Killer


- Diarrheal deaths have dropped significantly since 2000, falling from 1.2 million to <u>526,000</u> in 2015 – a decline of 57%
- Yet children continue to experience an average of three episodes of diarrhea per year
- A case of severe diarrhea, especially during important developmental stages, can have a lasting <u>effect on a child's growth</u>
- Diarrhea can also make children more susceptible to death from other causes like pneumonia

1.Kotloff, K.L., et al., Burden and aetiology of diarrhoeal disease in infants and young children in developing countries 2013
2.UNICEF, One is too many: Ending child deaths from pneumonia and diarrhoea. 2016.
3.Walker, C.L., et al., Global burden of childhood pneumonia and diarrhoea. 2013

Number of diarrheal <u>deaths</u> estimated for each pathogen in children 0-59 m of age in the world, 2011

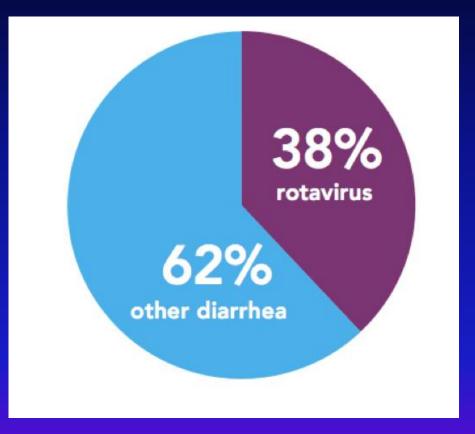

Pathogen	restricted to add 100%	1 100%		
	Median	No. Deaths (×1000)	95% CI (×1000)	
Viruses				
Rotavirus	27·8%	197	110-295	
Calicivirus	9.9%	71	39–113	
Astrovirus	2.1%	15	9–26	
Adenovirus	3.1%	22	12–37	
Bacteria				
EPEC	11.1%	79	31–146	
ETEC	6.0%	42	20–76	
Shigella spp	3.9%	28	12-53	
Campylobacter spp	3.2%	22	11–50	
Salmonella spp	2.5%	18	10–30	
Vibrio cholerae O1	1.3%	9	0–37	
Parasites				
Cryptosporidum spp	2.0%	14	3–31	
Giardia lamblia	2.3%	16	0–66	
Entamoeba histolytica	0.2%	1	0–19	
Episodes with unknown etiology	24.5%	176	56304	
Total	100.0%	712	491–1 049	

Lanata, Claudio F et al. "Global causes of diarrheal disease mortality in children <5 years of age: a systematic review." PloS one vol. 8,9 e72788. 4 Sep. 2013, doi:10.1371/journal.pone.0072788 Rotavirus mortality rate per 100,000 population less than 5 years of age: 2004

Annual Global Disease Burden of Rotavirus Gastroenteritis

RGE is the most common cause of severe gastroenteritis in infants and young children <5 years of age worldwide.¹

1. Glass RI et al. Lancet. 2006;368:323–332. 2. Tate JE et al. Lancet Infect Dis. 2012;12:136–141. 3. Parashar UD et al. Emerg Infect


Dis. 2003;9:565-572.

Median proportions of pathogens isolated in stool samples from diarrheal episodes seen in <u>IPD</u> services, in 208 studies in children 0-59 m of age in the world, 2011

Pathogen	Single pat	thogen (n=208 studies	s)			Studies th	nat sought 5–13 pathog	gens (n=27 studies)		
	N studies	N samples positive	N samples examined	Median %	Age adjusted median % (95%CI) ⁺	N studies	N samples positive	N samples examined	Median %	Age adjusted median % (95%CI)
Viruses										
Rotavirus	180	59 226	161 126	39.4%	39.4% (37.1-43.1)	24	8 384	43 719	19.7%	20.2% (15.7–26.3)
Calicivirus	12	639	4 412	15.6%	15.6% (10.5–21.2)	7	2 681	39 195	8·2%	8.2% (4.8–12.7)
Astrovirus	1	28	708	4.0%	4·0% (NA)	10	577	39 597	2.3%	2.3% (1.1–3.5)
Adenovirus	1	17	866	2.0%	2.0% (NA)	10	942	39 615	3.6%	3.6% (1.7–5.8)
Bacteria										
EPEC	0	-	-	-	-	9	6 05	2 961	15.8%	15.8% (7.9–29.2)
ETEC	1	43	314	13.7%	13·7% (NA)	16	355	5 461	8.1%	8.2% (5.1–11.9)
Shigella spp	2	118	668	17.1%	24·5% (NA)	24	520	43 947	6.0%	7.2% (3.2–7.9)
Campylobacter spp	1	64	2 163	3.0%	3·0% (NA)	23	596	43 882	4-8%	4.8% (3.1–9.3)
Salmonella spp	0	-	-	-	-	24	853	44 060	3.2%	3.2% (2.7-3.5)
Vibrio cholerae O1	2	134	1 441	10.5%	10·5% (NA)	11	227	36 025	0.2%	0.2% (0.0-6.1)
Parasites										
Cryptosporidium spp	7	192	5 451	2.8%	2.8% (2.0-6.1)	17	290	40 493	2.6%	2.6% (0.4–7.0)
Giardia lamblia	1	46	291	15.8%	15·8% (NA)	14	425	39 762	2.8%	2.8% (0.4–10.5)
Entamoeba histolytica	0	-	-	-	-	12	150	39 067	0-3%	0.3% (0.0–3.8)

Lanata, Claudio F et al. "Global causes of diarrheal disease mortality in children <5 years of age: a systematic review." 2013

Global diarrhea hospitalizations for children under 5

Lanata, C.F., et al., *Global causes of diarrheal disease mortality in children <5 years of age: a systematic review.* 2013.

Parashar, U.D., et al., Rotavirus and severe childhood diarrhea. 2006

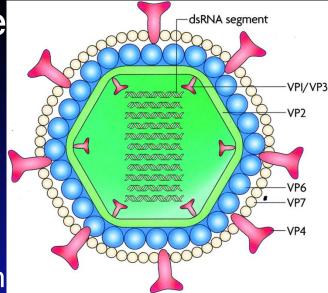
Median age-adjusted proportions of causes of diarrhea, constrained to fit 100%, in 286 <u>inpatient studies</u> of children <5 years of age published between 1990–2011, by <u>WHO region</u>

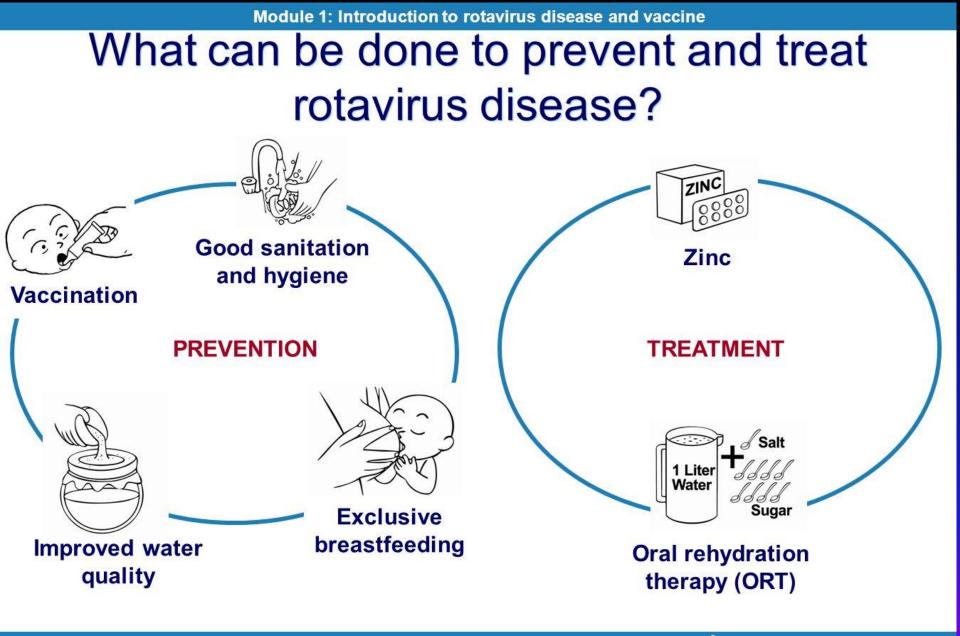
Pathogen	AF	RO (n=22)	AM	RO (n=53)	EM	RO (n=19)	EU	RO (n=50)	SEA	RO (n=64)	WP	RO (n=78)
	N	Median	N	Median	N	Median	N	Median	Ν	Median	N	Median
Viruses												
Rotavirus	18	26.8	47	23.4	16	31-3	44	25.9	42	25.5	75	32.6
Calicivirus	1	15·9	6	13.6	1	10-2	11	9-8	6	<mark>8</mark> ·4	11	10-3
Astrovirus	1	6-6	5	3-1	0	-	7	0-9	3	2.1	10	2.8
Adenovirus	1	3.7	4	2.4	0	-	10	2.7	4	5-1	11	3-4
Bacteria												
EPEC	1	10-3	6	10.8	2	13-0	0	_	2	8-9	0	-
ETEC	1	5.0	10	7.4	3	5.0	0	-	7	4-3	0	-
Shigella spp	2	4.1	15	5.7	2	11.9	5	0-1	10	3-5	2	0.2
Campylobacter spp	2	2.3	9	6 ·1	1	7.9	6	2.1	9	3-5	5	1.9
Salmonella spp	2	3-2	12	2.1	2	<mark>6</mark> ∙0	6	5-2	8	2.6	4	3-2
Vibrio cholerae O1	2	0-4	4	0-0	1	0.0	0	-	11	4-5	1	0.04
Parasites												
Cryptosporidium spp	2	2.5	12	3-1	0	-	1	0.0	9	2.1	1	0.3
Giardia lamblia	1	1.8	10	4.7	0	_	1	0.0	4	5-2	1	<mark>0</mark> ∙5
Entamoeba histolytica	1	0-3	8	0-02	0	_	1	0-0	4	1.7	1	0-2

Rotavirus gastroenteritis(RVGE)

- RVs are highly contagious
- RVs damage the enterocyte lining of the small intestine villi resulting in reduced absorptive capacity and diarrhea
- Clinical manifestations of RVGEs: watery diarrhea, fever, vomiting, resulting in dehydration with shock, electrolyte imbalance, and death

Rotavirus is in family Reoviridae


- Non-envoloped ds-RNA virus
- 3 layers capsid
- Serogroups
 - 7 serogroups (group A-G)
 - A, B,C,G cause disease in human animal


• D, E, F

- cause disease in animal only
- Serotypes

 G-serotype (by VP 7 protien)
 G1 to G4 and G9

 P-serotype (by VP4 protien)
 P1B[4], P2A[6], and P1A[8]

Key issues to consider when deciding on the introduction of a vaccine

THE DISEASE

- Public health and political priorities, alignment with global and regional recommendations
- Disease burden
- Status of other disease prevention and control measures

NOW?

THE VACCINES

- Performance and characteristics of available vaccines
- Economic and financial issues
- Availability of vaccine supply

STRENGTH OF THE IMMUNIZATION PROGRAMME AND HEALTH SYSTEM

World Health Organization 2014

Globally-used products: Rotarix[™] & RotaTeq[®]

VACCINE

MANUFACTURER

FORMULATION

STRAINS PRESENT IN VACCINE

PROTECTION AGAINST OTHER STRAINS

EFFICACY AGAINST SEVERE ROTAVIRUS DIARRHEA IN CHILDREN <1 YR (HIGH-INCOME COUNTRIES)

EFFICACY AGAINST SEVERE ROTAVIRUS DIARRHEA IN CHILDREN <1 YR (LOW- AND MIDDLE-INCOME COUNTRIES)

Rotarix™	RotaTeq [®]
GlaxoSmithKline	Merck & Co., Inc.
Monovalent attenuated human rotavirus strain	Pentavalent, human- bovine reassortant vaccine
G1P[8]	G1, G2, G3, G4, and P[8]
Yes, broad protection demonstrated	Yes, broad protection demonstrated
95.8-100%	85-96%
49-85% IEJM, 2010; Vesikari T, NEJM, 2006; Ruiz-Palac	51-64%

EJM, 2010; Vesikari T, NEJM, 2006; Ruiz-Palacios, NEJM, 2006; Patel MM, NEJM, 2011; MA, 2012; Cortese, PID.I, 2010; Haber P, Pediatrics, 2008; Buttery JP, PID.I, 2011;

Vesikari T, Lancet, 2007; Chandran A, Biologics, 2010; Phua KB, Vaccine, 2009; Eberly MD, Vaccine, 2011; Patel M, J Infect Dis, 2009.

The Available Rotavirus Vaccines

Rotavirus vaccines	Rotarix (GSK)	Rotataq (MSD)	Rotavac (Bharat Biotech)	Rotasil (Serum)	Rotavin (Polyvac)	LLR (Lanzhou)	Rotashield (Wyeth, Biovirx)
Licensure	Several countries, 2006	Several countries, 2006	India, 2014	India, 2017	Vietnam, 2012	China, 2000	Several countries, 1998
Pre-qual	Yes	Yes	Yes	No	No	No	No
Strains	Monovalent, human derived G1P8	Pentavalent, WC3 G6P5 bovine, reassortants G1-4, P8	Monovalent, human- bovine neonatal derived G9P11	Pentavalent, UK Bovine G6P5, reassortants G1-4, G9	Monovalent, human G1P8	Monovalent, human G10P12	Tetravalent, RRV G3P3 rhesus backbone, reassortants G1, 2, 4
No. of doses	2	3	3	3	2	1 per year for 3 yr	3 (2 neonatal)
Age first dose	6 weeks	6 weeks	6 weeks	6 weeks	6 weeks	2-36 mon	6 weeks
Dosage	10 ⁶ of live attenuated human G1P[8] particles	2.0-2.8 x 10 ⁶ infectious units per reassortant	10 ⁵ FFU of live rotavirus	10 ^{5.6} Infectious unit per reassortant	10 ^{6.3} of live attenuated human G1P[8] particles	> 5.5 log CCID ₅₀	1 x 10 ⁵ plaque- forming units (pfu) of each component

http://www.who.int/immunization/research/forums_and_initiatives/gvirf/Gagandeep_Kang_2018.pdf assess on Apr 19

Rotavirus vaccines are cost-effective

Recent studies show that national rotavirus vaccination programs will be highly costeffective and also reduce healthcare costs due to rotavirus-related illness.¹⁻⁷

COUNTRY	NUMBER OF CASES AVERTED	DEATHS AVERTED	HEALTHCARE COSTS AVERTED	DATE RANGE
Iran	35.1 million	266	US\$280 million	2014-2023
Kenya	1.2 million	61,000	US\$30 million	2014-2033
Senegal	2 million	8,500	US\$8 million	2014-2033
Uganda	4 million	70,000	US\$10 million	2016-2035
Malawi	1 million	4,313	US\$8 million	2014-2033
Afghanistan	1 million	12,000	US\$1.35 million	2017-2027
Bangladesh	3.9 million	3900	US\$7 million	2017-2027

In the US, in just four years, rotavirus vaccination saved nearly US\$1 billion by preventing hospitalizations, emergency visits and doctors' visits among children under age 5.⁵

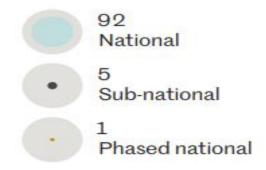
WHO's position papers on rotavirus vaccine

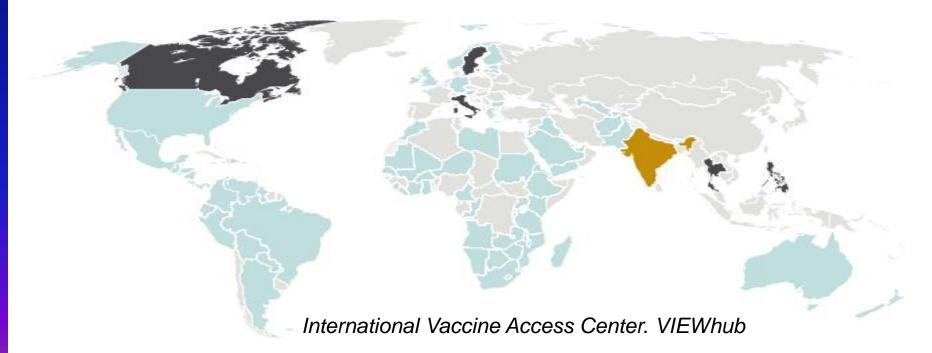
WHO's position papers on rotavirus vaccine: 2007, 2009 & 2013

Years	Recommendations
2007	the inclusion of rotavirus vaccination <u>into the national</u> <u>immunization programs</u> of regions and countries <u>where vaccine</u> <u>efficacy data suggest a significant public health impact</u> and where appropriate infrastructure and financing mechanisms are available to sustain vaccine utilization
2009	rotavirus vaccine for infants should be included <u>in all national</u> <u>immunization programs</u> . In countries where diarrheal deaths account for ≥10% of mortality among children aged <5 years, the introduction of the vaccine is strongly recommended
2013	Rotavirus vaccines should be included <u>in all national immunization</u> <u>programs and considered a priority</u> , particularly in countries with high RVGE-associated fatality rates, such as in south and south- eastern Asia and sub-Saharan Africa

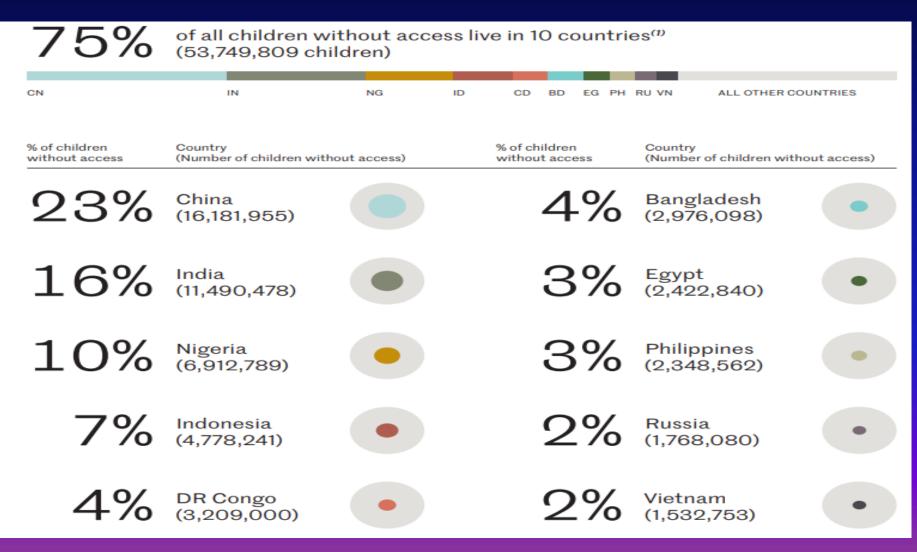
Table 2: Summary of WHO Position Papers - Recommended Routine Immunizations for Children

Antig	0D	Age of 1st Dose	Doses in Primary	Inte	rval Between Doses		Booster Dose	Considerations
Allug	en	Age of 1st Dose	Series	1 st to 2 nd	2 nd to 3 rd	3 rd to 4 th	BUUSLEI DUSE	(see footnotes for details)
Recommendat	ions fo <mark>r</mark> all cl	hildren						
BCG 1		As soon as possible after birth	1					Birth dose and HIV; Universal vs selective vaccination; Co-administration; Vaccination of older age groups; Pregnancy
Hepatitis B ²	Option 1	As soon as possible after birth (<24h)	3	4 weeks (min) with DTPCV1	4 weeks (min) with DTPCV2			Premature and low birth weight Co-administration and combination vaccine
neputitis b	Option 2	As soon as possible after birth (<24h)	4	4 weeks (min) with DTPCV1	4 weeks (min) with DTPCV2	4 weeks (min),with DTPCV3		High risk groups
Polio ³	bOPV + IPV	6 weeks (see footnote for birth dose)	4 (IPV dose to be given with bOPV dose from 14 weeks)	4 weeks (min) with DTPCV2	4 weeks (min) with DTPCV3			bOPV birth dose Transmission and importation risk criteria
	IPV / bOPV Sequential	8 weeks (IPV 1ªť)	1-2 IPV 2 bOPV	4-8 weeks	4-8 weeks	4-8 weeks		
	IPV	8 weeks	3	4-8 weeks	4-8 weeks		(see footnote)	IPV booster needed for early schedule (i.e. first dose given <8 weeks)
DTP-containing vaccine ⁴		6 weeks (min)	3	4 weeks (min) - 8 weeks	4 weeks (min) - 8 weeks		3 Boosters 12-23 months (DTP- containing vaccine); 4-7 years (Td/DT containing vaccine), see footnotes; and 9-15 yrs (Td)	Delayed/ interrupted schedule Combination vaccine; Maternal immunization
Haemophilus influenzae type b ⁵	Option 1 Option 2	6 weeks (min) 59 months (max)	3 2-3	4 weeks (min) with DTPCV2 8 weeks (min) if only 2 doses 4 weeks (min) if 3 doses	4 weeks (min) with DTPCV3 4 weeks (min) if 3 doses		(see footnote) At least 6 months (min) after last dose	Single dose if >12 months of age Not recommended for children > 5 yrs Delayed/ interrupted schedule Co-administration and combination vaccine
Pneumococcal (Conjugate) ⁶	Option 1 3p+0 Option 2 2p+1	6 weeks (min) 6 weeks (min)	3 2	4 weeks (min) 8 weeks (min)	4 weeks		9-18 months	Schedule options Vaccine options HIV+ and preterm neonate booster
Rotavirus ⁷		6 weeks (min) with DTP1	2 or 3 depending on product	4 weeks (min) with DTPCV2	For three dose series – 4 week (min) with DTPCV3			Vaccine Options Not recommended if >24 months old
Measles ⁸		9 or 12 months (6 months min, see footnote)	2	4 weeks (mm) (see footnote)				Combination vaccine; HIV early vaccination; Pregnancy
Rubella ⁹		9 or 12 months with measles containing vaccine	1					Achieve and sustain 80% coverage Co-administration and combination vaccine; Pregnancy
HPV 10		As soon as possible from 9 years of age (females only)	2	6 months (min 5 months)				Target 9-14 year old girls; Multi-age cohort vaccination; Pregnancy Older age ≥ 15 years 3 doses HIV and immunocompromised


Refer to http://www.who.int/immunization/documents/positionpapers/ for table & position paper updates.


This table summarizes the WHO vaccination recommendations for children. The ages/intervals cited are for the development of country specific schedules and are not for health workers.

National schedules should be based on local epidemiologic, programmatic, resource & policy considerations. While vaccines are universally recommended, some children may have contraindications to particular vaccines.


Number of countries introduced rotavirus vaccine, Oct 2018

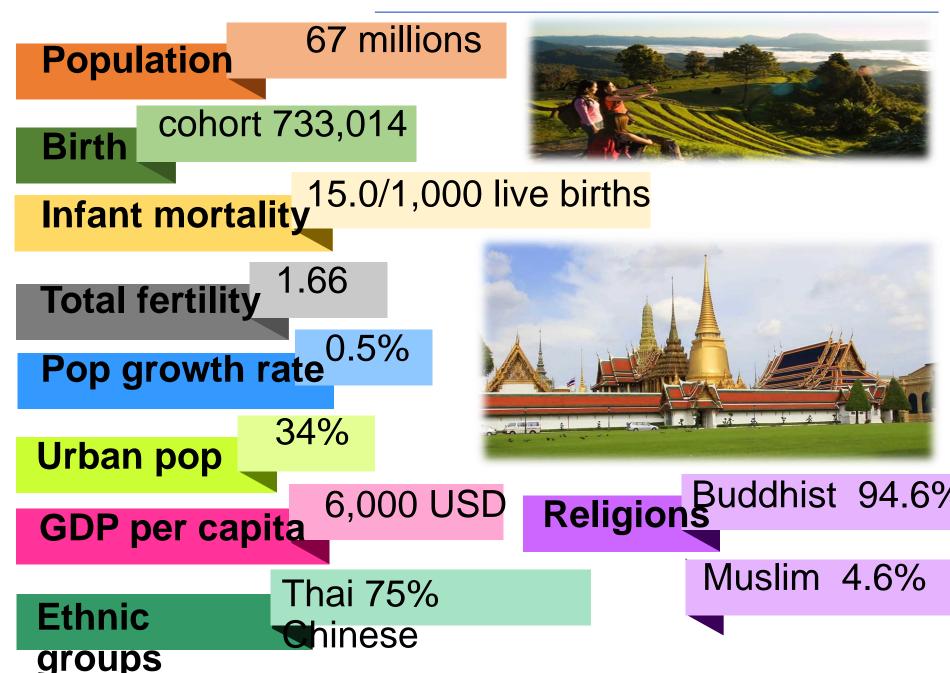
98 countries have introduced rotavirus vaccines

Worldwide, 71 million children lack access to rotavirus vaccine & most of them live in just 10 countries

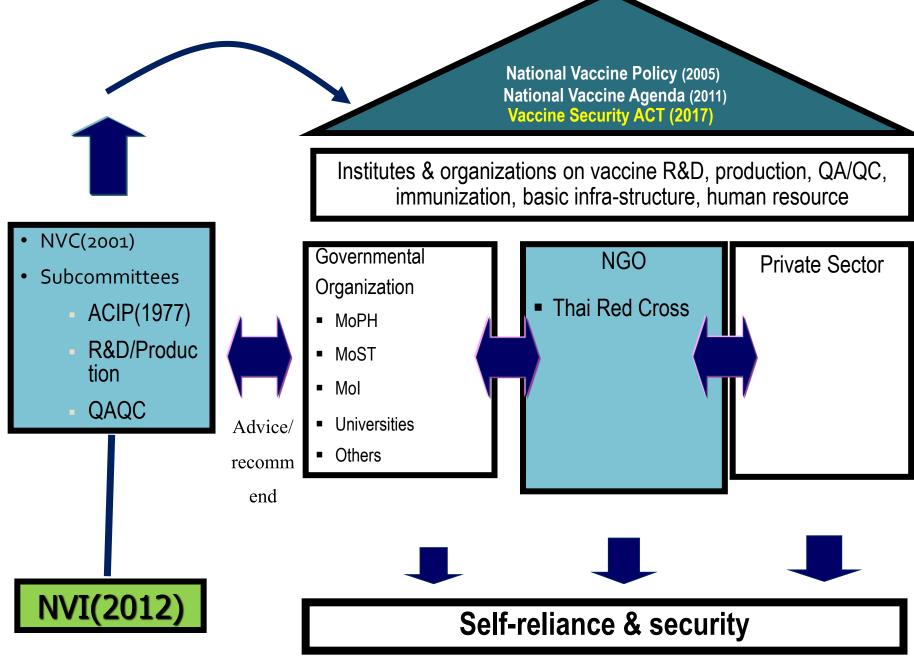
Key issues to consider when deciding on the introduction of a vaccine

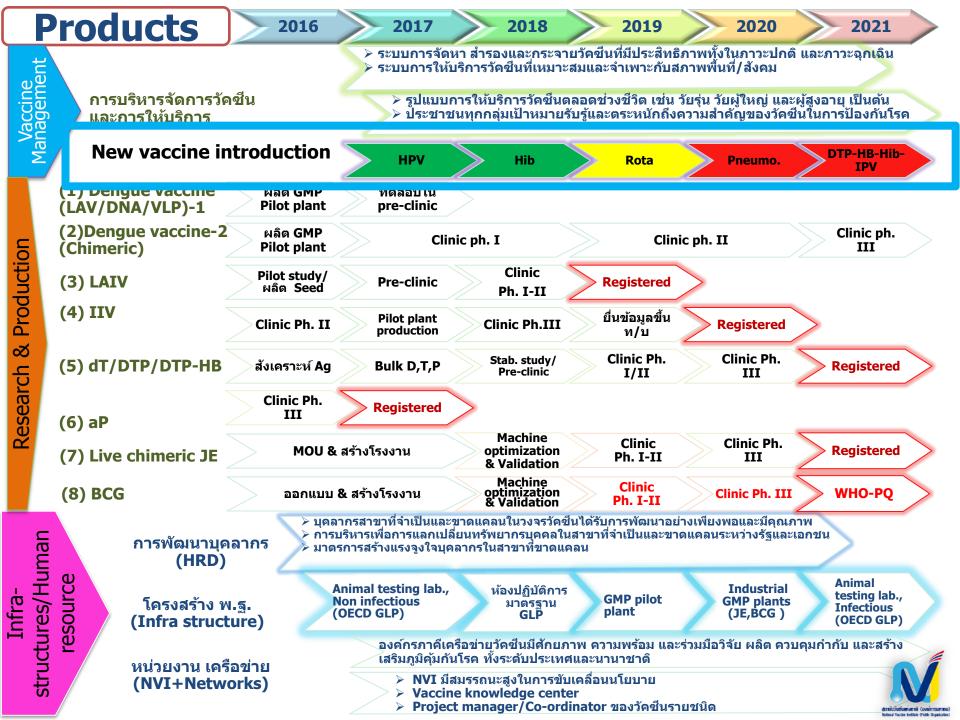
THE DISEASE

- Public health and political priorities, alignment with global and regional recommendations
- Disease burden
- Status of other disease prevention and control measures

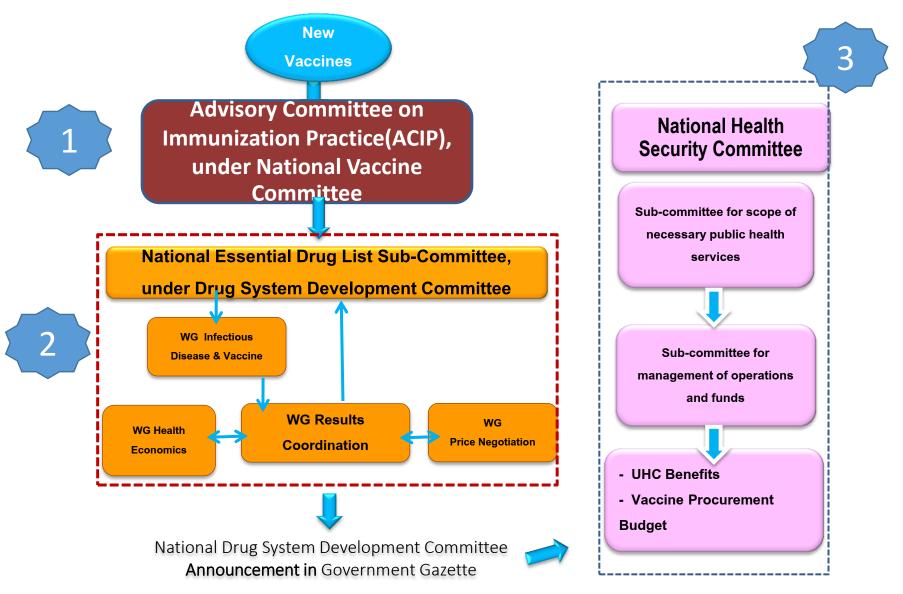


THE VACCINES

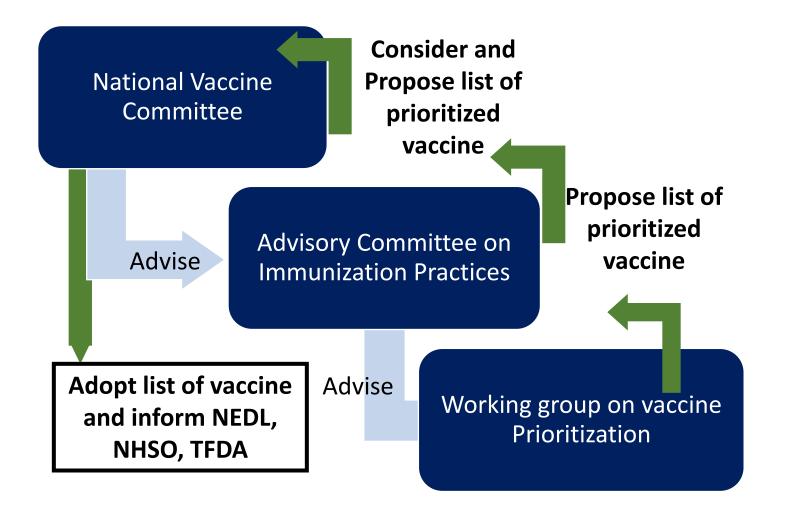

- Performance and characteristics of available vaccines
- Economic and financial issues
- Availability of vaccine supply


STRENGTH OF THE IMMUNIZATION PROGRAMME AND HEALTH SYSTEM

Selected Thailand Demographics

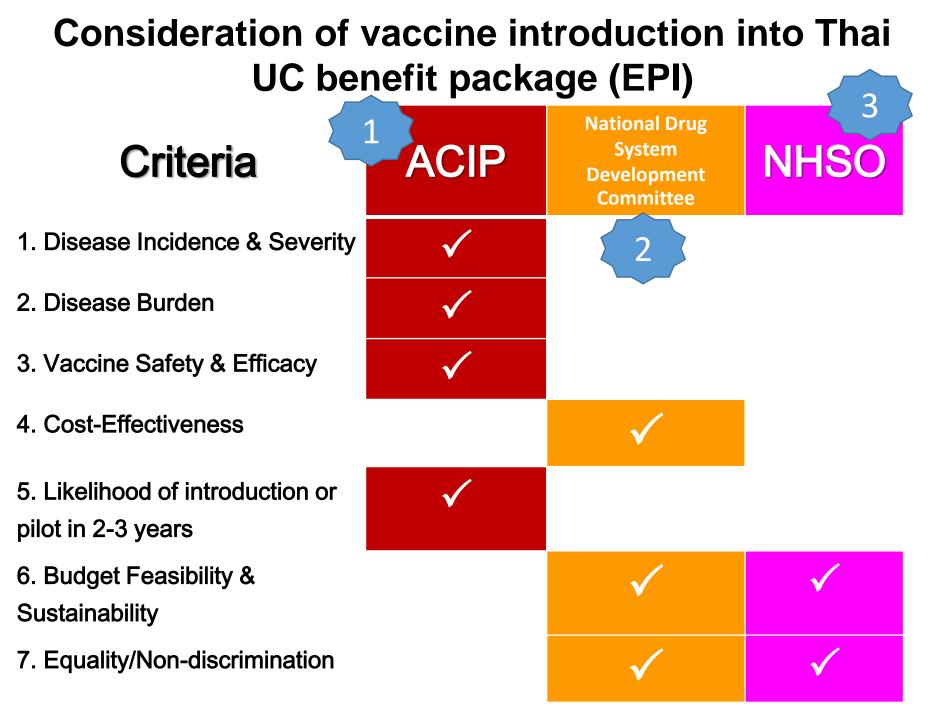


Current model toward vaccine security & self-reliance



Process of new vaccine introduction in Thailand

Vaccine Prioritization



Scoring for Measurable Criterion

Criterion	5	4	3	2	1
Size of pop. affected	<u>></u> 10,000	1,000 - 9,999	10 - 999	10 - 99	0 - 9
Case fatality rate	51-100	21-50	11-20	1-10	0-0.9
Efficacy/Effectiv eness	>90	81-90	71-80	61-70	<u><</u> 60
Safety	<0.01%	0.01–0.09%	0.1–0.9%	1–9%	<u>></u> 10%
Estimated budget	< 300 MB	300–499 МВ	500-799 MB	800– 1,599MB	>1,600 MB
Vaccine production in country	At least 1 upstream manufacturi ng	At least 2 down stream manufactur ing	One down stream manufacturi ng	At least 2 import vaccines	One Import vaccine

Vaccine Priorities by ACIP

Priority	Vaccines	Target population	
	Tdap	Pregnant woman	
	Influenza	Pregnant woman	
Phase 1	iiiiuenza	(year round)	
Flidse	DTwP-HB-Hib or	Child < 5 years	
	DTwP-HB-Hib-IPV	Child < 5 years	
	MR	Health care workers	
	DTaP-HB-Hib-IPV	Child < 5 years	
	PCV	Child < 5 years	
Phase 2	Dengue	to be considered	
	Varicella	Child < 5 years	
	Нер А	Child < 5 years	
	Rabies (pre-exposure)	Child < 5 years	
Phase 3	Zoster	Elders	

8 years of the introduction activities of rota vaccine in Thailand

National

ACIP 2010	MoPH 2011	ACIP 21 Dec 2015	МоРН 19 May 2016	Essential Drugs List Sub- Committee 2018-2019
MoPH to conduct pilot of rotavirus vaccine in Sukhothai Province June 8th	Pilot 2011- 2013 -Results show vaccine cost- benefit of rotavirus vaccine	in Sukhothai and Petchabun provinces - ACIP support introduction of	Collection of information for stakeholder presentation for new vaccine introduction -NHSO Secretariat -NVC Chairman -National Essential Drugs Committee Chairman Aim: Drive RV vaccine introduction in Thailand Expand Pilot Project	 NEDL evaluates Working Group evidence of health economics and vaccine price. Proposes to NHSO to evauate health budget and introduction to benefits package. NHSO provides resolution Agree to to create budget plan for rotavirus vaccine for 2020, after consideration of readiness of procurement for sustainable introduction. Agree to monitor vaccine target group to ensure long term sustainable vaccine access

Vaccine 30 (2012) 2839-2847

Contents lists available at SciVerse ScienceDirect

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

Economic analysis for evidence-based policy-making on a national immunization program: A case of rotavirus vaccine in Thailand

Charung Muangchana^a, Arthorn Riewpaiboon^{b,*}, Suchada Jiamsiri^c, Piyanit Thamapornpilas^a, Porpit Warinsatian^d

* National Vaccine Institute, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand

^b Division of Social and Administrative Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand

^c Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand

^d Bureau of General Communicable Disease, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand

ARTICLE INFO

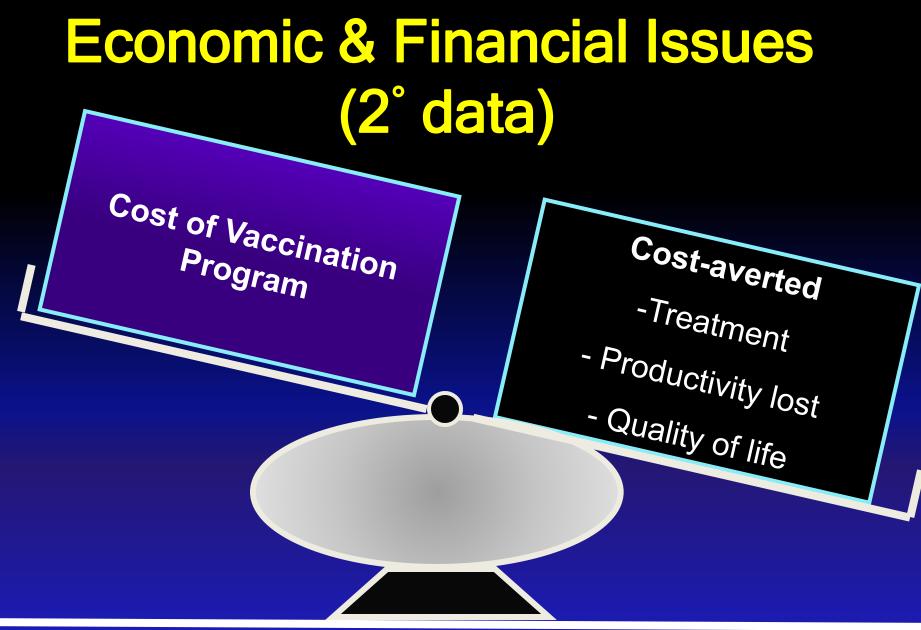
Article history: Received 11 January 2011 Received in revised form 29 December 2011 Accepted 20 February 2012 Available online 2 March 2012

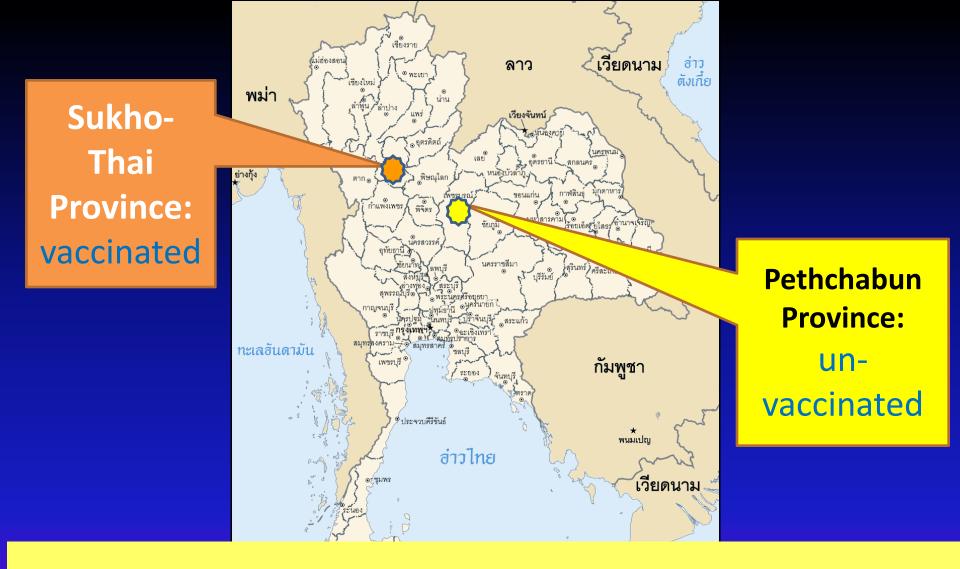
Keywords: Economic analysis Cost-effectiveness analysis Rotavirus Vaccine National immunization program Thailand

ABSTRACT

Severe diarrhea caused by rotavirus is a health problem worldwide, including Thailand. The World Health Organization has recommended incorporating rotavirus vaccination into national immunization programs. This policy has been implemented in several countries, but not in Thailand where the mortality rate is not high. This leads to the question of whether it would be cost-effective to implement such a policy. The Thai National Vaccine Committee, through the Immunization Practice Subcommittee, has conducted an economic analysis. Their study aimed to estimate the costs of rotavirus diarrhea and of a rotavirus vaccination program, and the cost-effectiveness of such a program including budget impact analysis. The study was designed as an economic evaluation, employing modeling technique in both provider and societal perspectives. A birth cohort of Thai children in 2009 was used in the analysis, with a 5-year time horizon. Costs were composed of cost of the illness and the vaccination program. Outcomes were measured in the form of lives saved and DALYs averted. Both costs and outcomes were discounted at 3%. The study found the discounted number of deaths to be 7.02 and 20.52 for vaccinated and unvaccinated cohorts, respectively (13.5 deaths averted). Discounted DALYs were 263.33 and 826.57 for vaccinated and unvaccinated cohorts, respectively (563.24 DALYs averted). Costs of rotavirus diarrhea in a societal perspective were US\$6.6 million and US\$21.0 million for vaccinated and unvaccinated cohorts, respectively. At base case, the costs per additional death averted were US\$5.1 million and US\$5.7 for 2-dose and 3-dose vaccines, respectively, in a societal perspective. Costs per additional DALYs averted were US\$128,063 and US\$142,144, respectively. In a societal perspective, with a cost-effectiveness threshold at 1 GDP per capita per DALYs averted, vaccine prices per dose were US\$4.98 and US\$3.32 for 2-dose and 3-dose vaccines, respectively; in a provider perspective, they were US\$2.90 and US\$1.93. One-way and probabilistic sensitivity analyses were included. The budget required for vaccine purchase was calculated for all scenarios.

© 2012 Elsevier Ltd. All rights reserved.


/accine


Economic & Financial Issues (Public Health & Individual Perspective)

Cost of Programs/Services

Cost-averted

- -Treatment
- Productivity lost
 - Quality of life

Pilot study for HRV vaccination by MOPH, Thailand(N=4,830), 2012-14

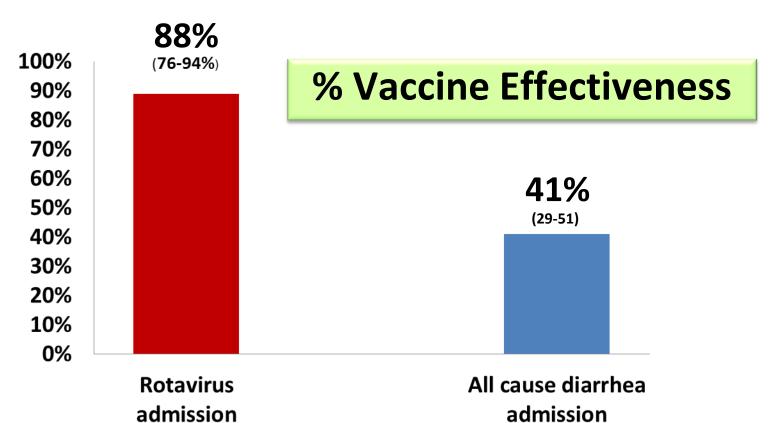
มาเลเซีย

 \sim

First HRV vaccination in Sukhothai under the pilot programme by MOPH, Thailand

sukhothai

Coverage: 96.5% Co-administer with OPV


- NO SAE
- No intussusception

The first child to receiving rotavirus vaccine under EPI. Picture courtesy of MOPH

RV1 effectiveness study comparing Sukhothai (vaccinated) with Petchaboon (non vaccinated) Sep 2012-14

Tharmaphornpilas P, et al. Vaccine 2017:35(5);796-801.

First HRV vaccination in Sukhothai under the pilot program by MOPH, Thailand

- Observational cohort study during Sep 2012 to Oct 2014
- 2,893 infants from Sukhothai (vaccinated only) and 1,937 infants from Phetchabun (non-vaccinated only)
- Case rotavirus admission 10/55 and case All cause diarrhea admission 203/232 in Sukhothai/Phetchabun respectively.

Tharmaphornpilas P, et al. Vaccine 2017:35(5);796-801.

First HRV vaccination in Sukhothai under the pilot programme by MOPH, Thailand

Age at onset (months)	RV vaccine coverage in Sukhothai (%)	% decline in Rotavirus hospitalization
6-11	97	90
12-23	97	85
24-35	68	60
36-47	<1	69
48-59	<1	40

HERD PROTECTION: Older children not vaccinated experienced a 40-69% reduction in RV hospitalization

Tharmaphornpilas P, et al. Vaccine 2017:35(5);796-801.

Evaluating the first introduction of rotavirus vaccine in Thailand: Moving from evidence to policy.

<u>Tharmaphornpilas P¹, Jiamsiri S², Boonchaiya S², Rochanathimoke O³, Thinyounyong W⁴, Tuntiwitayapun S⁵, Guntapong R⁶, Riewpaiboon A³, Rasdjarmrearnsook AO², Glass RI⁷.</u>

Author information

Abstract

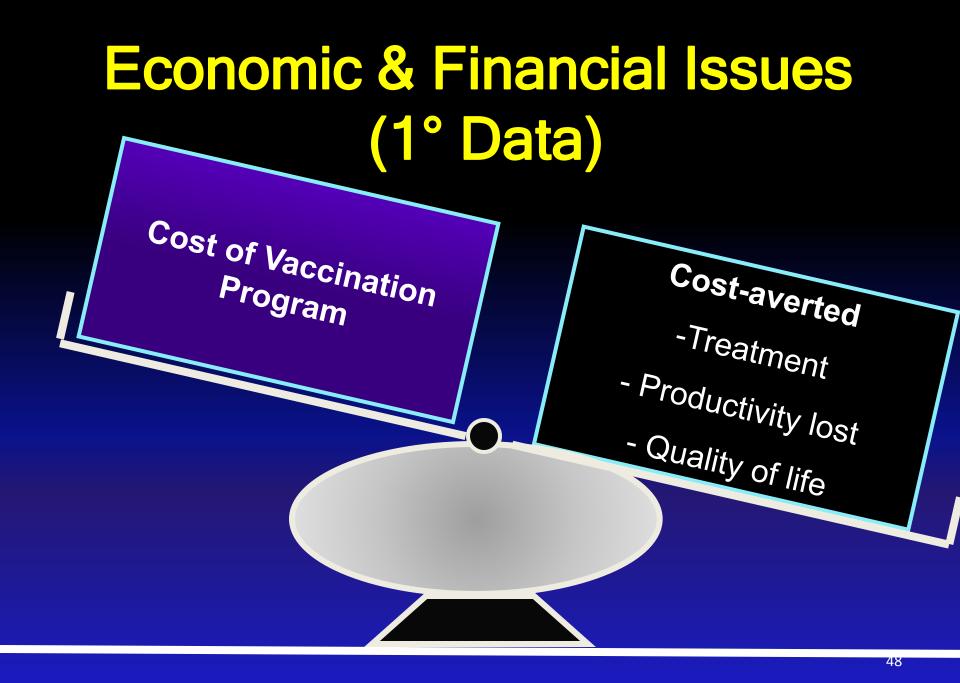
BACKGROUND: We assessed the effectiveness and possible impact of introducing rotavirus vaccine into the routine immunization program.

METHODS: Two provinces were selected for an observational study, one where vaccine was introduced and another where vaccine was not available. In these areas, two sub-studies were linked. The prospective cohort study enrolled children 2month old and followed them to the age of 18months to detect all diarrhea episodes. The hospital surveillance study enrolled all children up to age 5 hospitalized with diarrhea whose fecal samples were tested for rotavirus. Rates of rotavirus hospitalizations in older children who had not been vaccinated in both settings provided data to determine whether immunization had an indirect herd effect. The key endpoints for the study were both vaccine effectiveness (VE) based upon hospitalized rotavirus diarrhea and herd protection.

FINDINGS: From the cohort study, the overall VE for hospitalized rotavirus diarrhea was 88% (95%Cl 76-94). Data from hospital surveillance indicated that for 2 consecutive years, the seasonal peak of rotavirus admissions was no longer present in the vaccinated area. Herd protection was observed among older children born before the rotavirus vaccine program was introduced, who experienced a 40-69% reduction in admission for rotavirus.

CONCLUSIONS: Rotavirus vaccine was highly effective in preventing diarrheal hospitalizations and in conferring herd protection among older children who had not been vaccinated.

Copyright © 2016 Elsevier Ltd. All rights reserved.

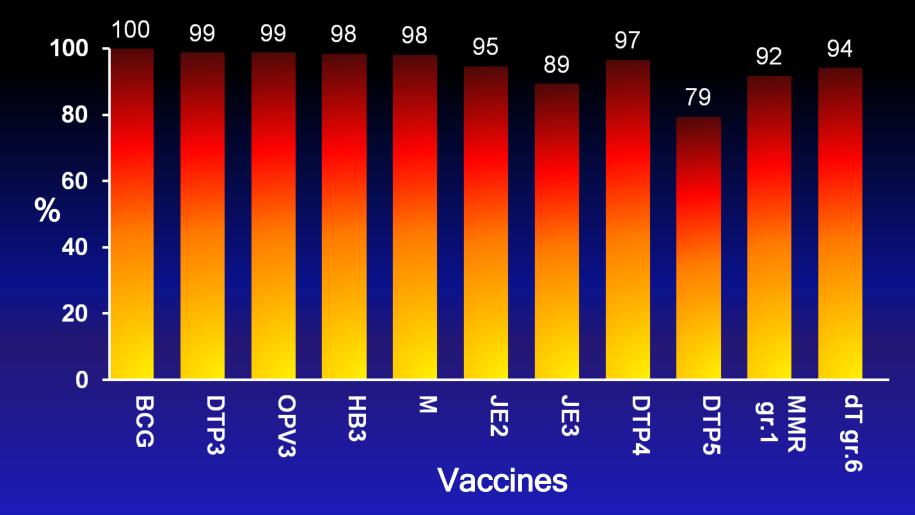

KEYWORDS: Rotavirus vaccine; Vaccine effectiveness; Vaccine impact

Economic & Financial Issues (Public Health & Individual Perspective)

Cost of Programs/Services

Cost-averted

- -Treatment
- Productivity lost
 - Quality of life



New Vaccine Introduction in Thai EPI

1974	1977	1984	1986	1988	1990	1997	2004	2005	2008	2017	2018	2019	2020	
WHO established EPI program	BCG DTPw OPV Typhoid	M	R	HB	•					HP\	Hib	Rota (dela		
WHO e:					JE	и ir	Flu HC\ D	Ns, TPw-	HB				Pneumo	

Source: modified from DDC, MOPH 2009

EPI Vaccine Coverage of Thailand

Source: modified from DDC, MOPH 2009

First campaign of the rotavirus immunization of the BMA-Bangkok Metropolitan Administration, Thailand, in Jan 2019

Conclusion

• Rotavirus is well known for the most common cause of severe diarrhea in infants and young children worldwide, resulting in dehydration with shock, electrolyte imbalance and death

• Vaccination as part of a comprehensive approach to diarrheal disease control offers the best hope for protecting children from rotavirus

• Despite the WHO recommendation that rotavirus vaccines be introduced into every country's national immunization program, over 90 million children throughout the world still do not have access to this critical intervention

Conclusion 2

- Among middle income countries, strong & clear system of the introductory consideration at the national level is the important successful factor (in Thailand), including
 - <u>Advisory Committee on Immunization Practices (ACIP)</u>, could facilitate the uptake of new vaccines and support evidencebased decision-making in the administration of national immunization programs
 - <u>Economical analysis and financing mechanisms</u> for the purchase of new vaccines have shown their potential
 - <u>Research agenda performed in the country encouraging for</u> <u>better understanding of the vaccine impact, effectiveness and</u> <u>safety</u> are strongly influential to the decision of introduction

Acknowledgement

Ms Sirirat Thechatawat National Vaccine Institute (NVI), Thailand

Prof Kulkanya Chokepaibulkit

Division of Pediatric Infectious, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand

Prof Chonamet Thechasansiri

Division of Pediatric Infectious, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand

Dr Piyanit Thamapornpilas Department of Disease Control, MoPH, Thailand

Thank you

ew.com

) ThaiWorldViern com