Photodynamic therapy: a new antimicrobial approach to infectious disease

Student: CHEUNG Yuk Yam, Andy Supervisor: Prof Mamie HUI Joint Graduate Seminar Dec 2015 Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong

Content

- Introduction-Photodynamic therapy (PDT)
- PDT for infectious disease
- Mechanisms of damage
- Photodynamic inactivation of bacteria, viruses and fungi
- In vitro selectivity compared to mammalian cells
- Clinical applications
- Conclusion

Introduction-Photodynamic therapy (PDT)

- photosensitizers (PS)
- absorb energy from light and transfer it to adjacent molecules
- produces a chemical change
- Type I and Type II photoprocesses
- cytotoxicity
- accumulate preferentially in malignant cells (Cancer)
- kill microbial cells (Infectious diseases)

Type I pathway

- Type I pathway:
 - -PS + light -> activated PS
 - -activated PS + substrate -> radical ions
 - radical ions + oxygen -> oxygenated cytotoxic species
 - -e.g. superoxide, hydroxyl and lipid-derived radicals

Type II pathway

- Type II pathway:
 - -PS + light -> activated PS
 - -activated PS + oxygen -> singlet oxygen (102)
 - -¹O₂ oxidize many biological molecules
 - -e.g. proteins, nucleic acids and lipids -> cytotoxicity

PDT for infectious disease

Emergence of antibiotic resistance :

- >to find alternative antibacterial therapeutics
 PDT
 - -Effectiveness?
 - -Selectivity?
 - (avoiding damage to host tissue)

Mechanisms of damage

bacteria, viruses and fungi

- (i) nucleic acid damage
- (ii) cytoplasmic membrane damage

Photoinactivation of Gram+ and Gram- bacteria in vitro

	Species (Gram-)	Photosensitizer	References
	Escherichia coli	Thiazines +, xanthenes +, acridines +, phenazines +, Cationic, neutral and anionic porphyrins 5-aminolevulinic acid, Zinc phthalocyanine tetrasulfonate +,	Martin & Logsdon 1987, Nitzan et al. 1995, Szocs et al. 1999, Gabor et al. 2001, Benov et al. 2002,
/	Acinetobacter baumannii	Cationic porphyrin	Nitzan & Ashkenazi 2001
	Species (Gram+)	Photosensitizer	References
	Staphylococcus aureus [MRSA too], Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis,	Methylene Blue+	Wainwright et al. 1998, Zeina et al. 2001, Usacheva et al. 2001
	S. aureus	Tetraphenylporphyrins, Hematoporphyrin	Nitzan et al. 1995, Bertoloni et al. 2000

PDT difference between Gram+ and Grambacteria

neutral or anionic PS:

effective for Gram+ bacteria

- bound to the outer membrane of Gram-bacteria
- but do not inactivate Gram-bacteria after illumination
- outer membrane: physical barrier

Act against Gram-bacteria

1) use a PS molecule with an intrinsic positive charge
e.g. Toluidine Blue O

- 2) use positively charged liposomes
- 3) add penetration enhancer e.g. EDTA/ polymyxin
 - increase the permeability of the Gram- outer membrane
 - allow PS to penetrate

Photoinactivation of viruses in vitro

	Speciesa	Photosensitizer	References
	Human immunodeficiency virus-1	Rose Bengal – Hypericin, Methylene Blue +	Lenard et al. 1993 Bachman et al. 1995
/	Herpes simplex virus	Hematoporphyrin derivative, Sapphyrins	Matthews et al. 1988, Judy et al. 1991
	Influenza A virus	Hypericin, Rose Bengal -	Lenard et al. 1993

Photoinactivation of fungi and yeasts in vitro

	Species	Photosensitizer	References
/	Aspergillus fumigatus	Green 2W	Friedberg et al. 2001
/	Saccharomyces cerevisiae	Glucosyl porphyrins, Hematoporphyrin, Eosin Y -	Cohn & Tseng 1977, Sharma & Jain 1994, Carre et al. 1999,
	Candida albicans	Rose Bengal -, Zinc phthalocyanines	Bertoloni et al. 1992, Lazarova 1993

Selectivity

- human fibroblasts and keratinocytes were unharmed
- 1 × 10⁵ cells /0.1–2.5 μ M phthalocyanine solutions
 - /600-700 nm light /1-5 min
 - (Soncin et al. 2002)
- tissue distribution study

Specific killing of PDT

 covalently bound PS to a monoclonal antibody
 e.g. *P. aeruginosa* (cell surface antigens) (Friedberg et al. 1991)

Clinical applications (1)

	Causative agent	Site of infection	Photosensitizer used	References
	Herpes simplex virus	Cornea	Proflavine	Moore et al. 1972
	Herpes simplex virus	Genitals	Methylene blue, neutral red	Chang et al. 1975
/	Bacteria	Brain abscess	Hematoporphyrin	Lombardet al. 1985
	Human papilloma virus	Respiratory tract (in larynx)	Hematoporphyrin derivative— dihematoporphyrin ether	Abramson et al. 1992
	Human papilloma virus	Genital warts	aminolevulinic acid	Fehr et al. 1996
	Human papilloma virus	Hand and feet Skin	aminolevulinic acid	Karrer et al. 1999
	Propionibacterium acnes	Skin/ sebaceous glands	aminolevulinic acid	Itoh et al. 2001

Clinical applications (2)

	Causative agent	Site of infection	Photosensitizer used	References
	Helicobacter pylori	Stomach	aminolevulinic acid	Wilder-Smith et al. 2002
	Protozoa	Skin	aminolevulinic acid	Gardloet al. 2003
/	Candida or Trichophyton	Between toes	aminolevulinic acid	Calzavara-Pinton et al. 2004
	Corynebacterium minutissimum	Skin	Endogenous porphyrins	Darras-Vercambreet al. 2006
	Mycobacterium marinum	Hands	Endogenous porphyrins	Wiegell et al. 2006
	Porphyromonas gingivalis Fusobacterium nucleatum	Dental pockets	Toluidine blue	de Oliveira et al. 2007
	Enterococcus faecalis	Teeth/ root canal	Toluidine blue	Garcez et al. 2008

PDT: "anti-virulence factor therapy"?

 alter biological function of LPS from *E. coli* inactivate proteases of *P. aeruginosa* (Komerik et al. 2000)

protease activity quantified by casein hydrolysis
 LPS ability to induce cytokine release reduced

Conclusion

Photodynamic therapy: alternative antimicrobial approach to infectious disease especially for

- multi-antibiotic resistant pathogens
- infection site: antibiotics not well perfused

End! Thank you!

References

- Hamblin, M. R., Hasan, T. Photodynamic therapy: a new antimicrobial approach to infectious disease?. 2004. Photochemical & Photobiological Sciences, 3(5), 436-450.
- Hamblin MR, Newman EL. On the mechanism of the tumour-localising effect in photodynamic therapy. J. Photochem. Photobiol., B. 1994; 23:3–8.
- Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol., B. 1997; 39:1–18.
- Athar M, Mukhtar H, Bickers DR. Differential role of reactive oxygen intermediates in photofrinland photofrin-II-mediated photoenhancement of lipid peroxidation in epidermal microsomal membranes. J. Invest. Dermatol. 1988; 90:652–657.
- Redmond RW, Gamlin JN. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol. 1999; 70:391–475
- Wainwright M. Photodynamic antimicrobial chemotherapy (PACT). J. Antimicrob. Chemother. 1998; 42:13–28.
- Raab C. Ber die wirkung fluoreszierender stoffe auf infusoria. Z. Biol. 1900; 39:524–546.
- Jesionek A, von Tappeiner H. Zur behandlung der hautcarcinomit mit fluorescierenden stoffen. Muench. Med. Wochenschr. 1903; 47:2042–2044.
- Hausmann W. Die sensibilisierende wirkung tierscher farbstoffe und ihne physiologische bedeu
- Malik Z, Ladan H, Nitzan Y. Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J. Photochem. Photobiol., B. 1992; 14:262–266.
- Nitzan Y, Gutterman M, Malik Z, Ehrenberg B. Inactivation of gram-negative bacteria by photosensitized porphyrins. Photochem. Photobiol. 1992; 55:89–96.
- Nitzan Y, Balzam-Sudakevitz A, Ashkenazi H. Eradication of Acinetobacter baumannii by photosensitized agents in vitro. J. Photochem. Photobiol., B. 1998; 42:211–218.

References

- Wilson M. Photolysis of oral bacteria and its potential use in the treatment of caries and periodontal disease. J. Appl. Bacteriol. 1993; 75:299–306.
- Friedberg JS, Tompkins RG, Rakestraw SL, Warren SW, Fischman AJ, Yarmush ML. Antibodytargeted photolysis. Bacteriocidal effects of Sn (IV) chlorin e6-dextran-monoclonal antibody conjugates. Ann. N. Y. Acad. Sci. 1991; 618:383–393. [
- Strong L, Yarmush DM, Yarmush ML. Antibody-targeted photolysis. Photophysical, biochemical, and pharmacokinetic properties of antibacterial conjugates. Ann. N. Y. Acad. Sci. 1994; 745:297–320.
- Fiel RJ, Datta-Gupta N, Mark EH, Howard JC. Induction of DNA damage by porphyrin photosensitizers. Cancer Res. 1981; 41:3543–3545.
- Menezes S, Capella MA, Caldas LR. Photodynamic action of methylene blue: repair and mutation in Escherichia coli. J. Photochem. Photobiol., B. 1990; 5:505–517.
- Capella M, Coelho AM, Menezes S. Effect of glucose on photodynamic action of methylene blue in Escherichia coli cells. Photochem. Photobiol. 1996; 64:205–210.
- Valduga G, Breda B, Giacometti GM, Jori G, Reddi E. Photosensitization of wild and mutant strains of Escherichia coli by meso-tetra (N-methyl-4-pyridyl)porphine. Biochem. Biophys. Res. Commun. 1999; 256:84–88.
- Soukos NS, Wilson M, Burns T, Speight PM. Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro. Las. Surg. Med. 1996; 18:253–259.
- Komerik N, Wilson M, Poole S. The effect of photodynamic action on two virulence factors of gram-negative bacteria. Photochem. Photobiol. 2000; 72:676–680.
- Shikowitz MJ, Abramson AL, Freeman K, Steinberg BM, Nouri M. Efficacy of DHE photodynamic therapy for respiratory papillomatosis: immediate and long-term results. Laryngoscope. 1998; 108:962–967.
- Lombard, GF.; Tealdi, S.; Lanotte, MM. The treatment of neurosurgical infections by lasers and porphyrins. In: Jori, G.; Perria, CA., editors. Photodynamic Therapy of Tumors and other Diseases. Padova: Edizione Libreria Progetto; 1985. p. 363-366.
- Wilder-Smith CH, Wilder-Smith P, Grosjean P, Van Den Bergh H, Woodtli A, Monnier P, Dorta G, Meister F, Wagnieres G. Photoeradication of Helicobacter pylori using 5-aminolevulinic acid: preliminary human studies. Lasers Surg. Med. 2002; 31:18–22.

References

- Moore C, Wallis C, Melnick JL, Kuns MD. Photodynamic treatment of herpes keratitis. Infect Immun 1972; 5(2): 169–171
- Chang TW, Fiumara N, Weinstein L. Genital herpes: Treatment with methylene blue and light exposure. Int J Dermatol 1975; 14(1): 69–71.
- LombardGF ST, LanotteMM, editors. The treatment of neurosurgical infections by lasers and porphyrins. Padova: Edizione Libreria Progetto; 1985. pp.363–366.
- Abramson AL, Shikowitz MJ, Mullooly VM, Steinberg BM, Amella CA, Rothstein HR. Clinical effects of photodynamic therapy on recurrent laryngeal papillomas. Arch Otolaryngol Head Neck Surg 1992; 118(1): 25–29.
- Fehr MK, Chapman CF, Krasieva T, Tromberg BJ, McCullough JL, Berns MW, Tadir Y. Selective photosensitizer distribution in vulvar condyloma acuminatum after topical application of 5-aminolevulinic acid. Am J Obstet Gynecol 1996; 174(3): 951–957.
- Karrer S, Szeimies RM, Abels C, Wlotzke U, Stolz W, Landthaler M. Epidermodysplasia verruciformis treated using topical 5aminolaevulinic acid photodynamic therapy. Br J Dermatol 1999; 140(5): 935–938.
- Itoh YNY, Tajima S, Ishibashi A. Photodynamic therapy for acne vulgaris with topical delta-aminolevulinic acid and incoherent light in Japnese patients. Brit J Dermatol 2001; 144: 575–579.
- Wilder-Smith CH, Wilder-Smith P, Grosjean P, van den Bergh H, Woodtli A, Monnier P, Dorta G, Meister F, Wagnieres
 G. Photoeradication of Helicobacter pylori using 5-aminolevulinic acid: Preliminary human studies. Lasers Surg Med 2002; 31(1): 18–22.
- Gardlo K, Horska Z, Enk CD, Rauch L, Megahed M, Ruzicka T, Fritsch C. Treatment of cutaneous leishmaniasis by photodynamic therapy. J Am Acad Dermatol2003; 48(6): 893–896
- Calzavara-Pinton PG, Venturini M, Capezzera R, Sala R, Zane C. Photodynamic therapy of interdigital mycoses of the feet with topical application of 5-aminolevulinic acid. Photodermatol Photoimmunol Photomed 2004; 20(3): 144–147
- Darras-Vercambre S, Carpentier O, Vincent P, Bonnevalle A, Thomas P. Photodynamic action of red light for treatment of erythrasma: Preliminary results. Photodermatol Photoimmunol Photomed 2006; 22(3): 153–156.
- Wiegell SR, Kongshoj B, Wulf HC. Mycobacterium marinum infection cured by photodynamic therapy. Arch Dermatol 2006; 142(9): 1241–1242.
- de Oliveira RR, Schwartz-Filho HO, Novaes AB, Jr., Taba M, Jr. Antimicrobial photodynamic therapy in the non-surgical treatment of aggressive periodontitis: A preliminary randomized controlled clinical study. J Periodontol 2007; 78(6): 965–973.
- Garcez AS, Nunez SC, Hamblin MR, Ribeiro MS. Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion. J Endod2008: 34(2): 138–142.