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environments, we examine the quantitative relationship between the spatial distribution of urban waterbodies
and the land surface temperature (LST) in Wuhan, China. This paper 1) applies two indicators, the fractional
water cover and the gravity water index, for measuring the spatial distribution of urban waterbodies; 2) conducts
simple linear regression and spatial regression analyses to explore the LST-water relationship at multiple scales;
and 3) compares the individual regression results from different land use types. The results show that the spatial
distribution of urban waterbodies affects the LST significantly, and the gravity water index sufficiently explains
the LST variation at various scales. Furthermore, the impact of urban waterbody distribution on the LST does
vary across different land use types. Conclusions from this study provide insights of the cooling effect of urban
waterbodies, which can further assist city planners and decision makers in utilizing cooling effects of waterbodies
to improve the thermal environment of urban areas.
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1. Introduction
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dense population and buildings, urban areas are commonly warmer
than surrounding areas, which is well known as Urban Heat Island
(UHI) effect (Oke et al., 2017). Both near-surface air temperature (AT)
and land surface temperature (LST) are widely used to assess the UHI ef-
fect. In comparison, the remotely sensed LST is considered as a primary
factor affecting the energy exchanges of the near surface layers of urban
atmosphere (Li et al., 2013; Voogt and Oke, 2003), and has an advantage
in spatial analysis process for its continuity of spatial resolution sup-
ported by remote sensing technology (Sobrino et al., 2012; Wang
et al., 2019; Weng and Fu, 2014).

The green spaces and urban waterbodies have cooling contribution
to surrounding thermal environment, which is characterized as Urban
Cool Island (UCI) effect (Dugord et al., 2014; Gunawardena et al.,
2017; Morris et al., 2016) or Surface Cool Island (SUCI) effect (Bahi
et al., 2016; Madanian et al., 2018; Rasul et al., 2015). The cooling capa-
bility of urban waterbodies is remarkable (Wu et al., 2018; Xue et al.,
2019), and intensified the UCI effects of green spaces (Yu et al., 2017).
And the water cooling effect extends from hundreds meters to more
than one kilometer in Shanghai (Du et al., 2016). However, affected by
area, depth, water quality, and other urban-driven factors, the thermal
contribution of waterbodies might be significantly different (Brans
et al., 2018). Hitherto, the researches of water cooling effect is much
less than that of green spaces (Bartesaghi Koc et al., 2018), and few stud-
ies have examined the LST-water relation from urban planning
perspective.

Selecting appropriate indicators to measure the spatial patterns of
the cool island is very important both for the analysis process and the
application scenarios. For urban planners, the most widely used indica-
tor is area fraction, such as green space ratio and water cover fraction.
But it describes only the size of the landscape in the given analysis
area, ignoring configuration and location. To consider composition and
configuration synthetically, a series of landscape pattern indices are
usually needed to describe the same landscape type, involving area,
shape, fragmentation, connectivity, diversity and so on. Some of them
are reported to affect the LSTs significantly (Connors et al., 2013;
Dugord et al.,, 2014). However, the correlation between landscape met-
rics would lead to multi-collinearity among the predictors and give in-
accurate results. A single comprehensive indicator would be more
convenient than multiple indicators in urban planning application.

Statistical analysis method is essential for quantifying the relation-
ship between LST and the impact factors. Based on grid analysis, previ-
ous studies have investigated LST variation affected by UCI patterns,
including urban green spaces (Kong et al., 2014; Myint et al., 2015)
and waterbodies (Cai et al., 2018). Among them, Pearson correlation
and/or Ordinary least Square (OLS) regression is the most commonly
used method (Deilami et al., 2018), which assumes that all the observa-
tions are independent. However, as geographical data, LST is spatially
auto-correlated, which means conventional regression analysis would
lead to unreliable parameters and underestimate or overestimate the
influence of the impact factors (Song et al., 2014; Wang et al., 2016;
Yin et al., 2018). Besides, since LST is scale dependent, the relationships
may change across scales (Wu, 2004). A multi-scale analysis is thus nec-
essary for better understanding.

Referring to the heterogeneity of urban land surface characteristics,
the relationship between LST and the impact factors is expected to be
different within urban area. Therefore, Comparative analysis of different
types of land surface is necessary to facilitate the knowledge for UCI, and
further contributes to explicit planning strategies. Conventionally, land
surface is divided by land use function, such as residential area, indus-
trial area, commercial area, etc., or by land cover information, such as
impervious surface, bare soil, trees, etc. However, the former classifica-
tion scheme is inconsistent with climatic response ability, and the latter
is hard to connect with urban planning application. As a climate-based
classification system, the Local Climate Zone (LCZ) scheme (Oke et al.,
2017; Stewart et al., 2014) subdivides the urban surface based on homo-
geneous microclimatic urban structure, and is deemed to have potential

to link climatology knowledge with urban planning practice (Cai et al.,
2017; Wang et al.,, 2017).

To expand the knowledge of urban water cooling effect, this research
aims to explore the relationship between the spatial distribution of
urban waterbodies and the LST. And the research questions are as fol-
lows: 1) how to quantify the relationship with appropriate indicator
and regression model; and 2) how does the relationship change with
different scales and land use types. Start from the point of urban land
use, we 1) set up two indicators to measure the spatial distribution of
waterbodies, Fractional Water Cover (FWC), a simple indicator in
urban planning application, and Gravity Water Index (GWI), a compre-
hensive indicator which account for both area and distance of
waterbodies; 2) test spatial correlation of the data and select spatial re-
gression model; 3) conduct regression analysis to examine the FWC-LST
and GWI-LST relation with 8 different grid sizes at local scale; 4) com-
pare the individual regression results from different LCZ types.

2. Study area and data
2.1. Study area

Wuhan is a mid-latitude inland city, located in central region of
China (29°58’-31°22'N, 113°41’-115°05’E) (Fig. 1). It has a very hot
and humid summer. The daytime maximum temperature is approxi-
mately 37-39 °C. It is one of the largest cities in China with a population
of >10 million. Yangtze River runs through Wuhan, and its largest trib-
utary, Han River, merges into the Yangtze River in core area of the
city. In addition, Wuhan is known of variety of lakes within urban
areas. Wuhan Metropolitan Development Area (MDA) covers approxi-
mately 3268 km?, which is chosen as the study area in this research.

2.2. Land surface temperature

The Landsat 8 TIRS image, acquired at approximately 10:58 am (Bei-
jing time) on July 31th 2013, is employed to retrieve the LST data in this
study. There are 3 reasons involved in this analytical period selection:
1) the end of July is the hottest time of the year in Wuhan; 2) very
clear sky on that day brought high quality of the image, and the sunny
days continued for more than a week before that day; 3) the date is
close to the urban building morphology data which was achieved in
2012-2013, which is used to generate LCZ map.

Land surface temperature is retrieved in ENVI 5.2 SP1 software,
using an extension tool named Landsat 8 LST. Based on the atmospheric
transmission and effective bandpass radiance computed by Atmo-
spheric Correction Parameter Calculator, the land surface temperature
is acquired (Fig. 2).

2.3. Urban water information

We used a Modified Normalized Difference Water Index (MNDWI),
which is demonstrated to be an effective method to distinguish water
surface from other types of land cover (Xu, 2005), to extract urban
water information as following:

GREEN—MIR

MNDWI = EREEN T MIR

where GREEN and MIR represent band 3 (0.525-0.600 um) and band 6
(1.560-1.651 um) of the Landsat OLS imagery, respectively. Based on
the dichotomy results of the MNDWI, the grid data of urban water land-
scape is obtained.

2.4. Land surface classification

The LCZ map (Fig. 3) of Wuhan (Wang et al., 2017) is used to identify
the land surface information. It is generated according to the WUDAPT
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Fig. 1. Location map of Wuhan and the study area (Wang et al., 2017).

(The World Urban Database and Access Portal Tools) workflow (Bechtel
et al,, 2015). The LCZ classification is based on the high-resolution Goo-
gle Earth image and Landsat 8 satellite images acquired in different sea-
sons, combined with urban building morphology data, online street
view imagery (https://map.baidu.com/) and field survey.

3. Methods
3.1. Spatial distribution of waterbodies

3.1.1. Fractional water cover

For simplicity, Fractional Water Cover (FWC) is employed to de-
scribe the water coverage ratio in urban landscapes. In a given analytical
grid, FWC can be calculated as following:

FWC:S?WX 100%

where S,, Swis the sum of water area, and S is the total area of this ana-
lytical grid. Similar to greenspace coverage ratio, FWC is easy to

understand and broadly used in the context of urban planning. It repre-
sents the composition of the urban waterbodies.

3.1.2. Gravity water index

Cooling effect of urban waterbodies will be influenced not only by
the area, but also by the distance. Referenced by the Reilly's law of retail
gravitation in the field of social economics (Reilly, 1931) and the gravity
park index in describing the distance-related park cooling effect (Dai
et al.,, 2018), we propose the Gravity Water Index (GWI) to measure
the spatial distribution of urban waterbodies as a comprehensive indi-
cator that takes account of both the area and distance. The GWI is
established from the water grid data of 30 m resolution. For each object
cell i, the following calculation is performed:

A
CWI=> e
ij

JEB;

where B; is the buffer area of 1500 m radius around the object cell
i, which is considered to be enough to cover the cooling effect of
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Fig. 2. Land surface temperature of Wuhan (Wang et al., 2017).
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Fig. 3. LCZ map of Wuhan (Wang et al., 2017).

urban waterbodies; A;j is the waterbody area within the cell j, which
equals to 1 if the cell j belongs to water, otherwise is 0; d;d;; is the
Euclidean distance between the center of cell i and j, and df; is an expo-
nential expression of the distance.

A higher value of ee means lower influence of water in the given dis-
tance on the object cell, and vice versa. In this study, the GWI calculation
is conducted in 7 different e values and the relationships between the
GWI and the LST are compared to select the best ee value. Fig. 4 shows
the R-squared values when the ee value is set to 0.5, 1.0, 1.5, 2.0, 2.5,
3.0, and 3.5. When the e value is 2.0, the GWI has the best explanation
power to the LST variation. As a result, the exponent is set to 2.0 in sub-
sequent analysis.

3.2. Statistics analytical unit

3.2.1. Grid sizes of multi-scale analysis

Considering the scale dependence of urban landscape pattern and
the LST, multi-scale grids are set up for regression analysis. The initial
scale of the grid, determined by the resolution of the Landsat 8 image
data, is 30 m. After that, the analytical grid size is enlarged gradually
from 100 m to 1500 m, with 200 m intervals. There are 2 reasons for
this setting. First, in this study, the land use information is expressed
on the LCZ classification which has a resolution of 100 m. Second,
1500 m is considered to be a sufficient distance to cover the water
cooling effect in reference to previous studies (Du et al., 2016; Sun
et al, 2012).

The initial grid data is resampled to coarser grids using pixel aggre-
gate tool in ENVI 5.2 SP1 software. The newly generated pixel value is
the weighted average of all the initial grid data values within the extent
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Fig. 4. R-squared of GWI-LST regression results.

of the output pixel. This resample method is verified to be reliable
(Wang et al., 2016; Weng et al., 2004).

3.2.2. Land use groups of comparison analysis

All the grids are classified into 17 LCZ types (Stewart et al,, 2014) and
further ranked into 3 groups (Fig. 5). Some of them have higher temper-
atures than the mean value of the city, and the difference is more than
one standard deviation of the city. They are defined as action types.
Those having a mean LST lower than the mean value of the city are de-
fined as compensation types. The remainders are moderate types. After
comparing the FWC-LST and GWI-LST relationships of these 3 groups,
the six LCZ types (LCZ_2,LCZ_3,LCZ_4,1CZ_5,1LCZ_8,LCZ_10) of action
group are examined individually because they are the most populous
area with the highest temperature in the city.

3.3. Regression analysis

Due to the spatial autocorrelation of LST (Song et al., 2014; Wang
et al.,, 2016), it is necessary to consider the spatial effect of the data
and choose an appropriate model before conducting regression analysis.
At the sample scale of 500 m, spatial effect of the grid data is inspected,
and three types of regression models are carried out respectively.

55
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0-g T B s +1STD
35:'*'7'7'; '''''' _--—_*(_-f.—_f\f\v\ 77777 Mean value
R > |.ism
30 il - P
25 -
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1234568 910ABCDETFG
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2773 Action types group <773 Compensation types group

Fig. 5. LST boxplots of Wuhan and the LCZ groups (Wang et al., 2017).
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3.3.1. Regression models

Ordinary Least Squares (OLS) linear regression model is the most
commonly used regression model in statistical analysis, which has the
formulation as:

Y=pPX+e

where (3 is the coefficient of explanatory variable, and € is the error term
that is assumed to be normal distributed.

There are two types of classical spatial regression models, Spatial Lag
Model (SLM) and Spatial Error Model (SEM).The SLM model builds on
top of the OLS and adds a spatial lag term for the response variables.
The formula is as follows:

Y=pWY+pPX+e

where W is the spatial weight matrix describing the neighboring effect
between the target pixel and the surrounding pixels, WYWY is the spa-
tial lag term, pp is the spatial lag factor, 3 is the coefficient of explana-
tory variable, and ¢ is the vector of random error term with normal
distribution.

SEM model takes into account the spatial transfer of error term. The
formula is as follows:

Y = BX+ AWe +

where We is the spatial error term, AN is the spatial error coefficient, and
wis the vector of random error term with normal distribution. In this
study, explanatory variable X is set to FWC and GWI separately, and re-
sponse variable is LST.

3.3.2. LM test and spatial regression model selection

A decision process (Anselin, 2005) is applied to select the appropri-
ate regression model. Lagrange Multiple (LM) test provides the statisti-
cal values, including LM lag, LM robust lag, LM error and LM robust
error, to determine the best fit model. The significance of LM lag/LM
error and LM robust lag/LM robust error means the applicability of the
SLM/SEM model. If all of them are significant, the model with larger
values of LM test should be chosen.

4. Results
4.1. Analysis at multi-scale scales

4.1.1. Explaining LST with OLS model

Fig. 6 illustrates the model parameters of the OLS regression results,
in which the response variable, LST, is predicated by two explanatory
variables, FWC and GWI, respectively. Both FWC and GWI have signifi-
cantimpact on LST (p value < 0.01) at all the scales. R-squared of the lat-
ter, ranging from 0.445 to 0.472, is higher than the former, ranging from
0.384 to 0.458, and more stable when the analysis scale changes. At finer
scale, the explanatory power of the GWI is much higher than that of the
FWC. As the size of analysis grid increases, the explanatory power of the
FWC increases. When the grid size is larger than 900 m, the R-squared
difference of the two indicators reduces to <0.01. When the GWI is
taken as explanatory variable, both the constant and the coefficient of
the GWI are stable as scale changing.

4.1.2. LM test and spatial regression model comparison

Table 1 reports the Statistic values of the LM test. When the GWTI is
taken as the explanatory variable, the robust LM lag is not significant,
which indicates that the SEM should be selected rather than the SLM.
When the FWC is taken as the explanatory variable, all indexes of LM
test is significant, however, the statistical value of LM-error and Robust
LM-error are larger than that of LM-lag and Robust LM-lag, which im-
plies that the SEM would be a better choice than the SLM.

Beyond the R-squared value, the goodness-of-fit of spatial regression
models should be determined by higher value of Log likelihood, com-
bined with lower values of Akaike info criterion and the Schwarz crite-
rion (Anselin, 2005). Table 2 reports the statistical values mentioned
above of the OLS, SLM and SEM. It is clear that the goodness-of-fit of spa-
tial regression model is superior to that of the OLS, and the SEM is better
than the SLM. If the spatial effect of the data is fully taken account in the
regression model, the residual of LST should be distributed randomly.
Compared with the OLS, the SLM reduces the Moran's I of residual sig-
nificantly. However, the SEM drops that values to 0.003 and — 0.003 re-
spectively, which is nearly random distribution (Moran's I = 0). All the
results show that the SEM fits very well on the relationships of FWC-LST
and GWI-LST.

4.1.3. Explaining LST with SEM model
The SEM regression results of the FWC-LST and GWI-LST are illus-
trated in Fig. 7. R-squared values of them increase from about 0.4 in

0.50 38.40
38.20 J
0.45 P i 38.00
k] 2 = 38
% o g P o ———
£ J/ % 37.80 e
% / 3 g
~ 040 -, - FWC 37.60 e —o-FWC
L
GWI 37.40 -GWI
0.35 T T T T T T 1 3720 + T T T T T 1
) 100 300 500 700 900 1100 1300 1500 b 100 300 500 700 900 1100 1300 1500
a Grid size (m) ) Grid size (m)
0.00 0.00
2 -3.00 J L 030 =
2 5
B -6.00 -0.60 ©
2 - g
'g -9.00 *‘4“,__‘__‘_+_ -0.90 -%
- --FWC , 5
g-12.00 pli 120 8
-15.00 -+ T T T T + -1.50

100 300 500 70
©

0 900 1100 1300 1500
Grid size (m)

Fig. 6. OLS parameters of FWC-LST and GWI-LST relationships a) R-squared; b) Constant; ¢) Coefficient of explanatory variable.
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Table 1

LM test results.
Value PROB
FWC Lagrange Multiplier (lag) 23,240.473 0.000
Robust LM (lag) 298.307 0.000
Lagrange Multiplier (error) 29,598.113 0.000
Robust LM (error) 6655.947 0.000
GWI Lagrange Multiplier (lag) 24,152.466 0.000
Robust LM (lag) 1.456 0.228
Lagrange Multiplier (error) 30,665.000 0.000
Robust LM (error) 6513.989 0.000

the OLS model to 0.872-0.978 and 0.874-0.979 respectively. The fitting
improvement of SEM model is due to the combined consideration in ex-
planatory variable and the spatial autocorrelation of error term. With
the increase of analysis grid size, the coefficient of error term decreases.
This is likely owing to the limited extension of water cooling effect. For
larger grid sizes, the influence of water cooling effect from neighboring
grid is relatively weak. This also leads to a continuously decline of R-
squared values.

Different from the results of the OLS, R-squared values of the FWC
and the GWI are very close to each other at all scales (Fig. 7a). The rea-
son is that the influence of water cooling distance, which is neglected in
the FWC, is well captured by the SEM. Thus the explanatory power of
the two indicators is similar.

When the FWC is taken as the explanatory variable, the absolute
values of FWC coefficient increases with the increasing of the grid size
(Fig. 7c). Every 10% increment of water area fraction decreases the LST
from 0.14 °C at the scale of 100 m to 0.89 °C at the scale of 1500 m. As
the analysis grids enlarge, every 10% increment of water area fraction
decreases the LST from 0.14 °C (with the grid size of 100 m) to 0.89 °C
(with the grid size of 1500 m). The same increment of the FWC means
larger water area increment in coarser grid size than in finer grid size.
It implies consistency with previous research results that larger water
area is very closely related with lower surface temperature (Imam
Syafii et al., 2017; Sun and Chen, 2012).

When the GWI is taken as the explanatory variable, the model pa-
rameters are fairly stable, except for some changes at the scale of
100 m. It shows that the GWI has characterized the key factors of the
water cooling effect very well, and there is no significant scale depen-
dence in the GWI-LST relationship.

4.2. Analysis in different LCZ types

4.2.1. Regression results of three LCZ categories

Fig. 8 compares the regression results of action types, moderate
types and compensation types. Generally, the more surface water is dis-
tributed, the lower the temperature will be. The action types have the
lowest value of R-squared and the compensation type has the highest
values. Action types, with a large number of impervious surface, has
very complex impact on the LSTs because of the various building cover-
age and street geometry. Compensation types are mainly composed of

Table 2
Goodness-of-fit of the OLS, SLM and SEM.
OLS SLM SEM
FwC R-squared 0.454 0.890 0.912
Log likelihood —31,379.200 —22,465.800 —21,406.401
Akaike info criterion 62,762.500 44,937.500 42,816.800
Schwarz criterion 62,777.300 44,959.800 42,831.600
Moran's [ of residual 0.796 0.117 0.003
GWI R-squared 0.469 0.878 0914
Log likelihood —31,212.300 —23,102.600 —21,282.511
Akaike info criterion 62,428.500 46,211.100 42,569.000
Schwarz criterion 62,443.400 46,233.400 42,583.900
Moran's [ of residual 0.810 0.103 —0.003

urban green spaces and waterbodies. Both of them are less involved in
artificial construction, thus has stronger negative relationship with the
LSTs.

4.2.2. Regression results of six action LCZ types

Regression results of six action LCZ types, including LCZ_2 (compact
midrise), LCZ_3 (compact lowrise), LCZ_4 (open highrise), LCZ_5 (open
midrise), LCZ_8 (large lowrise) and LCZ_10 (heavy industry), are com-
pared in Fig. 9. As explanatory variable, the FWC and the GWI show little
difference in the model parameters of these LCZ types.

With the highest building density, LCZ_3 type has the least water
area fraction in this city. However, the GWI of LCZ_3 shows that there
are some waterbodies not far away, which implies potential water
cooling effect from surrounding areas. The LCZ_3 type has the lowest
value of R-squared and the coefficient of error term, and the highest
value of constant of the coefficient of explanatory variable. This shows
that although the weaker spatial effect of the error terms causes weaker
goodness-of- fit of the models, the cooling contribution of urban
waterbodies is the greatest among all six types. For the LCZ_3 type,
every 10% of increment of water area fraction decreases LST by 0.43
°C, that is more than every other LCZ types.

The LCZ_4 type has the lowest building density, plenty of vegetation,
and highest fraction of waterbodies in all action types. Lower average
temperature of the LCZ_4 lead to weaker explanatory power of urban
waterbodies to the LSTs. Every 10% of increment of water area fraction
would decrease 0.29 °C of LST.

In this case, both the LCZ_8 and the LCZ_10 are mainly composed by
urban industrial land, and the latter has higher temperature because of
intensive artificial heat emission. Except for the constant term (higher
values in LCZ_10), other model parameters of these two types are sim-
ilar. The LSTs would decrease 0.27 °C and 0.30 °C respectively, with 10%
of water area fraction increment.

5. Discussion
5.1. The impact of urban waterbodies on LST

Urban waterbody is one of the most common factors affecting the
LSTs (Deilami et al., 2018), following impervious surface (Imhoff et al.,
2010; Li et al,, 2018; Wang et al., 2016), vegetation (Kong et al., 2014;
Weng et al., 2004; Zhang et al., 2013), etc. Although some of previous
studies report that the impact of waterbody on LST may be weak
when the total water area is limited (Peng et al., 2018; Zhou et al.,
2011), some other studies find significant negative relationship be-
tween waterbody and LST (Dai et al,, 2018; Song et al., 2014). In accor-
dance with the latter, our study finds significant negative water-LST
relationship in Wuhan, China. This can be partly due to the adequate
water cover in our study area. It implies that adequate spatial distribu-
tion of urban waterbodies may enhance the water cooling effect on
the LST. The findings of this study emphasize the importance in the cli-
matic knowledge of waterbody to mitigate UHI, especially for water-
front cities.

5.2. Spatial effect and regression model

This research highlights the need to choose appropriate regression
model to explore the relationship between spatial distribution of
urban waterbodies and the LST. Simple linear regression model fails in
interpreting spatial dependency and thus leads to unstable estimates
for parameters and unreliable significance tests. In this study, the SEM
model avoids these weaknesses and captures the neighboring effect
well. Not only the regression residuals are nearly normal distributed,
but also the goodness-of-fit is significantly improved (Table 2). It im-
plies that in this case, the spatial effect at fine scale is manifested by
the dependency of neighboring LST residuals.



Y. Wang et al. / Science of the Total Environment 671 (2019) 1-9

1.00
p -8 FWC
\ - GWI

2095 4 \

E X

< \

El »

g0 90 T

e 0. 5 g

t“*t\
0.85 ; : T
100 300 500 700 900 1100 1300 1500
Grid size (m)
0.00 0.00

@)
Z 200 T\ L -0.20
5 400 | O — 0.40
z Y - -
.9 ~
3 -6.00 e r -0.60
= Se
3 _goo | *FWC - __ L -0.80
0 GWI It

-10.00 4 ‘ : -1.00

100 300 500 700 900 1100 1300 1500
Grid size (m)

39.00
38.00 ) T
§ = 4(’__*,* -4
- -
2 37.00 »
O v 4
36.00 7 -e-FWC
GWI
B0 —r——————
,, 100 300 500 700 900 1100 1300 1500
) Grid size (m)
1.02
E _ 1.00 l - FWC
=} M\\
9 Zoos |\ - GWI
5] 2 N
5 30 Rcg.
2 5094 T
15} = —e_
8 0.92 ~—_
00 +—r—rr
g 100300 500 700 900 1100 1300 1500

Grid size (m)
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Consist with previous studies (Song et al., 2014), we find that the
spatial dependency is weaker at coarser scale than at finer scale.
Under the OLS regression, coarser grid sizes make the model fit better,
especially when the FWC is taken as explanatory variable. However,
finer grid sizes bring better goodness-of-fit of models under SEM
regression.

5.3. The indicators of urban waterbodies

This work examines the effectiveness of indicators used in the quan-
tification process. Both of the FWC and the GWI have advantages and
disadvantages distinctively. The FWC is straightforward and thus widely
applied by urban planners, just like greenery coverage. But in this case it
is not ideal for LST explanation in finer scale. That is because the water
cooling effect will extend to neighboring grid when the analysis grid
size is less than the water cooling distance. When the grid size increases,
the simple linear explanatory power of the FWC is gradually close to
that of the GWI. It suggests that the primary consideration of this simple
indicator is recommended to be over the scale of 900 m. And the SEM
regression can increase the explanatory ability of the FWC apparently.

Our results show that the GWI is fairly stable to explain the LST var-
iation at various scales, even in the OLS regression analysis. It is mainly
because the neighboring effects are already considered in the GWI by
drawing a buffer around the target cell. Thus the variations in the neigh-
boring dependency of the LST is better interpreted by GWI. It suggests
that the mainly impact factors of the water cooling effect are the area
and the distance. Furthermore, the exponent of distance in the GWI cal-
culation is demonstrated to be 2.0. Referring to the similar study in Bei-
jing (Dai et al., 2018), that the exponent of distance in gravity park index

is 2.5, we find that the urban waterbodies also have effective cooling
effects.

5.4. Comparison of different land use types

It is generally acknowledged that different types of urban land use
have different thermal and moisture properties and therefore show var-
ious spatial patterns in thermal distribution. Most of the previous stud-
ies are under the traditional framework of functional land use zoning.
For example, commercial areas significantly positive correlate to tem-
perature (Connors et al., 2013) and impede the park cooling effect ex-
tension (Hamada et al., 2013). Nevertheless, thermal characteristics of
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Fig. 8. Comparison of SEM parameters of three LCZ groups a) R-squared; b) Constant; c) Coefficient of explanatory variable; d) Coefficient of spatial error term.
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commercial areas are inhomogeneous due to the various building vol-
ume and density. The newly developed LCZ scheme creates an opportu-
nity to discuss thermal environment issue based on relatively
homogenous surfaces with similar climate response ability. In this
study, we find that the impact of urban waterbodies on the LSTs does
vary across different LCZ types. For example, the LCZ_3 (compact
lowrise) has the highest building density and least water area fraction
in the city. However, the LSTs of this type is most sensitive to the
urban waterbodies. Every 10% of increment of water area fraction
would decrease LST by 0.43 °C.

5.5. The contributions and limitations

The comprehensive understanding of urban water cooling effect is
crucial since urban waterbodies can effectively mitigate the increasing
UHI effects and enhance climate resilience of urban areas. On one
hand, this study quantifies the LST-water relationship within the city
using spatial regression method at multiple scales rather than conven-
tional statistical method at a single scale. Such analyses expand our
knowledge of urban waterbodies as very important UCI resource. On
the other hand, standing in the perspective of urban planning, this
study compares two indicators to measure urban waterbodies and
gives application suggestions to urban planners. Besides, the water
cooling effect for different land use types are analyzed respectively so
that specific mitigation and adaption efforts can be carried out. There-
fore, this study facilitates to bridge the gap between thermal environ-
ment research and urban planning application.

To better understand the thermal contribution of urban
waterbodies, following limitations of this study are expected to be im-
proved by further researches. First, due to the temporal resolution of
the Landsat image data, the nighttime thermal contribution of
waterbodies is not included in this research, which may be different
from that of the daytime. Therefore, diurnal variation, as well as sea-
sonal variation, could be considered in further studies. Then, although
LST offers widely spatial coverage in single snapshots so as to have ad-
vantage in spatial analysis, it still needs to combine with near surface
air temperature, humidity, air flow, etc. to evaluate the comprehensive
climate impact of urban waterbodies. Playing an important role in ther-
mal environment, urban waterbodies deserve more research attention
in future.

6. Conclusion

This research investigates the quantitative relationships between
the spatial distribution of urban waterbodies and the land surface tem-
perature in Wuhan. Due to the neighboring effect of the LSTs, the spatial
regression is necessary and the SEM is suggested as the appropriate
model. Spatial distribution of urban waterbodies, measured by two indi-
cators respectively, affects the land surface temperature significantly.
The FWCis an easy-to-use indicator that should be considered with cau-
tion, while the GWI is a reliable indicator at multiple scales. In addition,
the cooling effect of urban waterbodies will differ among the land use
types, and thus results regarding to certain land use types provide per-
tinent information to urban managers and planners who aimed to uti-
lize water cooling effect to mitigate the UHI effect.
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