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• We performed 1-km hourly air tempera-
ture mapping across multi-year warm sea-
sons using LCZ-based landscape metrics
and random forest algorithms.

• The air temperature maps steadily main-
tained high accuracy at nighttime
(20:00–7:00), which is important to inves-
tigate the urban heat island effect.

• Spatial pattern of the air temperature
maps exhibited a pronounced landscape
divide that air temperatures in contiguous
mountainous areas were lower.

• Air temperatures tend to fall more slowly
in the core of metropolitan areas than in
the urban fringe.
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 Air temperature is a crucial variable of urbanmeteorology and is essential to many urban environments, urban climate
and climate-change-related studies. However, due to the limited observational records of air temperature and the com-
plex urbanmorphology and environment, it might not be easy tomap the hourly air temperature with a fine resolution
at the surface level within and around cities via conventional methods. Thus, this study employed machine learning
(ML) algorithms and meteorological and landscape data to develop hourly air temperature mapping techniques and
methods at the 1-km resolution over a multi-year warm seasons period. Guangdong Province, China was selected
for the case study. Random forest algorithmwas employed for the hourly air temperature mapping. The validation re-
sults showed that the hourly air temperaturemaps exhibit good accuracy from2008 to 2019, withmean R2, root mean
square error (RMSE) andmean absolute error (MAE) values of 0.8001, 1.4821 °C and 1.0872 °C, respectively. The im-
portance assessment of the driving factors showed that meteorological factors, especially relative humidity, contrib-
uted the most to the air temperature mapping. Simultaneously, landscape factors also played a non-negligible role.
Further analysis revealed that the maps steadily maintained high accuracy at nighttime (20:00–7:00), which is essen-
tial for investigating nighttime urban climate conditions, especially the urban heat island effect. Moreover, a correla-
tion existed between the nighttime air temperature changes and urban morphology represented by the local climate
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zones. Air temperatures tended to fall more slowly in the core of metropolitan areas than in the urban fringe. UsingML,
this study reliably improves the spatial refinement of hourly air temperature mapping and reveals the spatially explicit
air temperature patterns in and around cities at different times in a day during thewarm seasons. Moreover, it provides
a novel valuable and reliable dataset for air-temperature-related implementation and studies.
1. Introduction

The rise of mega- and high-density compact urban regions is now an
irreversible trend of urbanization (McGregor, 2021). Such high-density
mega-urban living has caused numerous environmental challenges and
problems, such as intensified urban heat islands (UHIs) (Portela et al.,
2020; Yang et al., 2021a; Yang et al., 2021b) and air pollution
(Santamouris, 2020; Wang and Zacharias, 2015). Simultaneously, the
complex urban morphology poses a great challenge in depicting the near-
surface air temperature within and around cities.

Characterizing the spatiotemporal variability of the near-surface air
temperature at fine resolutions is of importance for investigating the UHI
intensity and heat-related risks (Rosenthal, 2010). It is becoming even
more important in the context of climate change. Specifically, human activ-
ities are predicted to have caused about 1.0 °C of global warming, compared
to the pre-industrial period (Masson-Delmotte et al., 2018). Moreover, it is
projected that without a significant reduction in greenhouse gas emissions,
the global near-surface temperature will continue to increase with an
increasing number of extreme weather events, like extreme heat waves
(Masson-Delmotte et al., 2018).

Air temperature (Ta) is a key variable in the investigation of climate
change (Masson-Delmotte et al., 2018), energy consumption (Savić et al.,
2014), thermal comfort (Lau et al., 2019) and human health (Macintyre
et al., 2018). Ta has been widely employed in the fields of epidemiology
and public health to explore its relation to morbidity and mortality in
vulnerable populations (Basu et al., 2008; Ostro et al., 2009). An accurate
and in-depth understanding of Ta will help scientists conduct subsequent
research applications in various fields to provide scientific-evidence-based
findings for policymakers to achieve sustainable development. However,
this subject is still under-researched in many regions worldwide due to
technical limitations.
1.1. Literature review

Typically, meteorological stations measure Ta at a reference height of
2 m above the ground (Landsberg, 1981). Meteorological stations usually
keep a long-term archive of observational weather data. However, their
ability to capture the spatial variation of Ta, particularly in heterogeneous
areas, is limited due to their limited spatial coverage (Kloog et al., 2014).
Specifically, meteorological stations provide long-term observational
weather data at fine temporal resolution. However, due to the lack of ade-
quate spatial coverage, their ability to depict small-scale spatial variability
in heterogeneous regions (including cities) is limited. Therefore, data from
meteorological networks are not often sufficient for studying the impact of
extreme hot weather on heat-related health risks, as the air temperature
may greatly vary with space and time. To address this issue, statistical
methods are applied to map the spatiotemporal pattern of Ta based on lim-
ited meteorological stations. These methods can be divided into two
groups: (1) Spatial interpolation methods, e.g. inverse distance weighting
(IDW) (Wang et al., 2017), Kriging interpolation (Florio et al., 2004) and
geographic weighted regression (Wang et al., 2017). These interpolation
methods are employed to predict Ta in an area surrounding a knownmete-
orological station at a fixed time. A prerequisite of these methods is a rela-
tively homogenous distribution of weather stations, but a study area may
have a highly heterogeneous distribution of weather stations. (2) Regres-
sion methods that can predict Ta at any location and time by establishing
a quantitative relation between Ta and possible influencing factors. These
methods include linear regression with simple or multiple variants
(Alvares et al., 2013; Zhao et al., 2005) and nonlinear regression, including
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machine learning (ML) methods (Salcedo-Sanz et al., 2016). Through
training and testing with considerable input data, ML models learn
how to estimateTawith optimal accuracy, even in areaswith highly hetero-
geneous landscape patterns.

Climate model simulation is another choice for mapping the spatiotem-
poral pattern of Ta across different scales, from global, regional, to city
scales. Global or regional climate models yield Ta with low spatial resolu-
tion (approximately 100–250 and 25–50 km) and high temporal resolution
(e.g. hourly or minute). Both kinds of climate models provide rough
descriptions of climate variables since the urban structure and its influence
on climate are both simplified in themodel setup and simulation (Oke et al.,
2017). Mesoscale models, such as the weather research and forecast model,
have been developed with additional urban information to simulate
climates at the local scale (1–5 km) (Oke et al., 2017). However, simulation
of Ta using mesoscale climate models is time-consuming and relies on the
computation power of the hardware. Furthermore, Ta generated via meso-
scale models can still not assist in the spatiotemporal pattern analysis of a
thermal environment at the district/block scale (e.g. hundreds or tens of
meters). Microscale climate models, like ENVI-met, have been further
developed for simulating microscale urban climates (Simon, 2016). Unfor-
tunately, despite the fine spatial and temporal resolution, the spatiotempo-
ral pattern of Ta across the entire city is hard to simulate using microscale
climate models due to the high time cost and limited computing ability of
the model. Generally, the simulation of Ta using various climate models
is limited by the lack of historical input data, long simulating time, high
learning cost, complicated model setup and simulation, a balance between
spatial coverage and spatial/temporal resolution and computational power.

Remotely sensed data have the advantage of broad spatial coverage and
various spatial and temporal resolutions; the land surface temperature
(LST) retrieved from remote sensing images is the most commonly used
satellite predictor for mapping the spatiotemporal variation of Ta (Dos
Santos, 2020). LST-based Ta estimation is mainly achieved via the follow-
ing ways: (1) Temperature-vegetation index method. This method assumes
that the LST of vegetation is similar to its surrounding Ta. Hence, the spatial
pattern of Ta can be interpolated based on the relation between LST and
vegetation (Nieto et al., 2011; Prihodko and Goward, 1997). However,
such a method is unsuitable for urban areas, which are mostly covered by
unvegetated surfaces (Agam et al., 2007). (2) Energy balance model. Both
LST and Ta are important components of energy fluxes in the energy
balancemodel, i.e. both are essential for calculating the longwave radiation
and sensible heat flux (Manoli et al., 2019). Ta can be retrieved by
analysing the energy exchanges within an urban canopy layer using LST
(Hou et al., 2013). This method requires input data that are not measured
by satellite sensors and needs prior knowledge to construct energy balance
models. (3) Statistical methods. Linear and nonlinear regression models
have been implemented for building a relation between Ta and LST as
well as other auxiliary data, like the land cover, daylight duration and
evapotranspiration (Good, 2015; Huang et al., 2017; Meyer et al., 2016;
Yoo et al., 2018; Zhang et al., 2016). However, such a Ta–LST relation is
sensitive to location, background climate and the presence of daylight
(Vancutsem et al., 2010; Zhou et al., 2020).
1.2. Research gaps

The spatiotemporal changes of air temperature at a micro to local
climate scale can be largely affected by the landscape pattern of land use/
land cover (LU/LC) because the land surface changes the boundary layer
climate conditions (Emmanuel, 2021). The abovementioned Ta estimation
methods have their own strengths and limitations in the investigation of the
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spatiotemporal changes in Ta. Therefore, developing a time-series Ta
dataset with both high spatial and temporal resolutions still needs to be ex-
plored, especially when focusing on the intra-urban variation of the thermal
environment. Most of the existing research is concerned with the daily air
temperature characteristics. Furthermore, most resulting spatiotemporal
temperature models are usually site-specific.

The local climate zone (LCZ) classification scheme not only enables the
investigation of a fine-scale intra-urban variation of Ta but also increases
the transferability of the resultant models, due to its ten built types classi-
fied using building morphology parameters (e.g. building height, building
coverage ratio and sky view factor) (Stewart and Oke, 2012). Furthermore,
the relevance of LCZs to the urban thermal environment has been argued in
literature (Li et al., 2022; Ren et al., 2022; Zhao et al., 2021). Moreover,
information from remote sensing imagery, such as Normalized Difference
Vegetation Index (NDVI) and multispectral albedos, has been used as
input variables for generating LCZ maps. Hence, landscape patterns of
LCZ classes, which can be represented by landscape metrics of LCZs, will
help refine the spatial variation of Ta, particularly in a complex urban
context. As mentioned earlier, ML algorithms exhibit good performance
in estimating Ta across the city scale because of their strong learning ability
from a large number of trials.
1.3. Study objectives

Herein, we aim to estimate the spatiotemporal hourly resolved air
temperature on a 1 km grid across the study area (Guangdong province in
China as the testbed) by incorporating LCZ-based landscape patterns as
predictors, refining both the temporal and spatial coverage. Specifically,
this study combines the LCZ-based landscape patterns with an ML method
to predict the Ta distribution in a highly urbanised region with complex
urban morphology, the Guangdong province. The study objectives include
Fig. 1.Weather station
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(1) developing a 12-year (2008–2019) spatiotemporal distribution map
of Ta at an hourly resolution and 1-km grid across the Guangdong province,
(2) generating averaged hourly Ta maps during warm seasons (May–
September) for each year and (3) identifying different Ta patterns during
the nighttime and daytime in urban and rural areas to facilitate an under-
standing of the spatiotemporal variability of Ta.

2. Materials and method

2.1. Study area and time period

Guangdong province is located in the southernmost part of mainland
China and faces the South China Sea to the south. The east and west sides
of the Pearl River Estuary in the Pearl River Delta region of Guangdong
Province are bordered by Hong Kong and Macao Special Administrative
Regions, respectively. Additionally, it is a subtropical region with high
spatial heterogeneity of LU/LC. The terrain of is high in the north and
low in the south and is complex and diverse, including mountains, hills,
plains and mesas. Its geographic complexity makes it a suitable study area
for testing the applicability of ML algorithms in predicting air temperature
with high spatial and temporal resolution.

2.2. Meteorological data

As a part of the national meteorological stations network of China, 86
nationalmeteorologicalmonitoring stations are located and are operational
in the Guangdong province (Fig. 1). All stations are operated by the China
Meteorological Administration (CMA). The siting, equipment set up and
operation strictly follow the World Meteorological Organization (WMO)
guidelines (WMO, 2008). Hourly air temperature has been continuously
recorded and managed by CMA data centre (https://data.cma.cn/en)
s in the study area.

https://data.cma.cn/en
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as a dataset, which is ready for scientific and academic use. Herein, to
facilitate the development of ML-based prediction models, the hourly air
temperature data from 2008 to 2019 was requested from the CMA. The
data are quality controlled by the CMA. The observed data missing rate is
less than 1 %.

In addition to the air temperature, the observed data include meteoro-
logical variables such as relative humidity (RHU), precipitation (PRE),
barometric pressure (PRS) and wind speed (VV2). These variables are
used as meteorological drivers in the subsequent spatial estimation model-
ling of the hourly air temperature. Furthermore, the geographical coordi-
nates and elevation information of the weather stations are provided.

To drive a well-trained Random Forest (RF) model for spatially estimat-
ing the air temperature, the spatial pattern of these meteorological
drivers across the study area needs to be obtained. Hence, we performed
the Kriging interpolation using the observed data to estimate the spatial
patterns.

2.3. LCZ data and landscape pattern analysis

2.3.1. LCZ mapping
Previous studies have demonstrated that the physical foundations of

cities, including building form and building materials, can influence the
spatial variations in the air temperature (Konarska et al., 2016; Yin et al.,
2018). As a widely used land surface classification scheme that defines
the land cover types based on the physical characteristics of the land surface
(Table 1), LCZ has unique advantages over traditional land cover classifica-
tions in depicting landscapes, especially landscapes within cities (Stewart
and Oke, 2012; Bechtel et al., 2015; Wang et al., 2019). Based on LCZ,
urban and natural landscapes have been classified into 18 types. We gener-
ated correspondingly categorical maps for each year in the study period
(2008–2019), which well represent the landscape diversity and geographic
complexity as well as the temporal changes of LU/LC in the study area.
Noted that the 2012 LCZmapwas not generated due to the quality deficien-
cies of the 2012 remote sensing images. The LCZmap development process
can be divided into three steps: (1) creating a multi-year LCZ sample set,
(2) preparing the input data on the Google Earth Engine (GEE) platform
and (3) conducting LCZ classification on the GEE platform using an RF
classifier, as performed in Chung et al. (Chung et al., 2021).

First, we selected 2165 LCZ sample polygons through Google Earth Pro
based on fine-resolution remote sensing images of 2019, which comprise
more than 100 sample polygons per LCZ type. Then, using the historical
images provided by Google Earth Pro, we modified the labels of these
samples in different years to construct a year-by-year sample set from
Table 1
Categories and definitions of local climate zone (LCZ) simplified
from Stewart & Oke (Stewart and Oke, 2012).

LCZ types Built and land cover types

LCZ 1 Compact high-rise
LCZ 2 Compact mid-rise
LCZ 3 Compact low-rise
LCZ 4 Open high-rise
LCZ 5 Open mid-rise
LCZ 6 Open low-rise
LCZ 7 Lightweight low-rise
LCZ 8 Large low-rise
LCZ 9 Sparsely built
LCZ 10 Heavy industry
LCZ A Dense trees
LCZ B Scattered trees
LCZ C Bush, scrub
LCZ D Low plants
LCZ E Bare rock or paved
LCZ F Bare soil or sand
LCZ G Water
LCZ H Wetlandsa

a Wetlands is an additional LCZ type that adapted the land
surface properties of coastal cities in the Guangdong province.
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2008 to 2019. In the LCZ classification of each year, 70 % of the 2165
samples were randomly selected for classifier training, while the remaining
30 % were used for accuracy validation.

Second, we selected suitable multi-year images from the multi-source
remote sensing images provided by the GEE platform and clipped them to
the Guangdong province extent. Data from Landsat 8 (Landsat 8 Surface
Reflectance Tier 2), Landsat 5 (Landsat 5 Surface Reflectance Tier 2),
Sentinel-1 SAR GRD (C-band Synthetic Aperture Radar Ground Range
Detected, log scaling), Sentinel-2 MSI (Multi-Spectral Instrument, Level-
1C), VIIRS (Stray Light Corrected Nighttime Day/Night Band Composites
Version 1) and DMSP OLS (Nighttime Lights Time Series Version 4) were
selected as input data for multi-year LCZ classification since they cover
different spectral and nighttime light information. Furthermore,
GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010)
ware chosen as the input data to provide elevation information. Table S1
provides the descriptions of these input data.

Third, we performed year-by-year LCZ classification by applying the RF
classifier provided by the GEE platform using training samples and multi-
source remote sensing images as the input data. RF is an ensemble ML
algorithm that estimates or classifies objectives by constructing multiple
decision trees and aggregating their decision results based on votes
(Breiman, 2001). It is a nonlinear algorithm that balances accuracy
and computational efficiency and performs stably because errors in a
single decision tree are unlikely to affect the voting results (Lee et al.,
2013; Kamusoko and Gamba, 2015). Therefore, RF is widely used in
land classification based on remote sensing images. Herein, we employed
the ‘.smileRandomForest’ package from the GEE platform to perform LCZ
classification. We kept the default parameter settings of the package except
for the number of trees (i.e. n-tree).We searched for the optimal n-tree from
20 to 120 at 10-tree intervals based on the validation accuracy and finally
set n-tree as 80.
2.3.2. LCZ-based landscape pattern
Most previous studies on the spatial estimation of air temperature have

usually investigated the LU/LC and landscape types at the exact location of
theweather stations (Katpatal et al., 2008; Shojaei et al., 2017). Few studies
have analysed how the spatial configuration, such as themixture, evenness,
diversity, clustering of different LU/LC and landscape types, affects the
variability in the spatiotemporal distribution of air temperature. Herein,
based on the generated LCZ maps, we introduced highly quantifiable
measures, landscape metrics, to quantify the LU/LC pattern of the study
area. Landscape metrics are developed based on the classic ‘patch-corri-
dor-matrix’ theory in the landscape ecology (Forman, 1995). Correspond-
ing to the above landscape theory, landscape metrics can be divided into
three main categories: patch-, class- and landscape-level metrics. Patch-
level metrics represent the characteristics of a single patch of a specific
type of landscape or LCZ class. Class-level metrics reflect the spatial pattern
of all patches with the same LCZ class within a certain spatial extent, while
landscape-level metrics provide an understanding of how different LCZ
classes spatially mix together. Landscape metrics have been widely used
to categorically analyse remote-sensed spatial datasets for two decades
(Southworth et al., 2002). Herein, based on literature (Neel et al., 2004;
Roy and Mark, 1996), a set of landscape metrics with radiuses ranging
from 1 to 10 km were chosen as candidate predictor variables (Table S2)
to quantify the detailed spatial pattern around each of the weather stations
and the spatial pattern in the entire study area. Fragstats (program version
4), a widely used software (McGarigal et al., 2012), was employed to deter-
mine the landscapemetrics on the basis of the LCZ categorical map for each
year in the study period. Using the above process, a large predictor dataset
(with an extensive amount of landscape patternmetrics of 13,550 variables,
as there are 18 classes of LCZ types reflecting the various landscape in the
study area) has been generated. However, to reduce the computational
burden on the model, only landscape metrics with more than 80 % of the
valid values in the sample were included as the preliminary drivers for
subsequent modelling. Figs. S1–S3 present the patterns of the three



Fig. 2. Relation between the number of trees (n-tree) in the RF modelling and R2
calculated using the out-of-bag samples (oob_score).

Table 2
Accuracy of the RF models for each year.

Year R2 oob_score RMSE (°C) MAE (°C)

2008 0.8036 0.7992 1.5112 1.0940
2009 0.8127 0.8084 1.4592 1.0879
2010 0.7684 0.7652 1.6049 1.1953
2011 0.8202 0.8132 1.5062 1.0951
2013 0.7685 0.7648 1.5498 1.1163
2014 0.8272 0.8252 1.4336 1.0323
2015 0.8197 0.8153 1.3368 0.9886
2016 0.7725 0.7697 1.5097 1.1133
2017 0.7810 0.7762 1.5145 1.1259
2018 0.8041 0.7997 1.3607 1.0002
2019 0.8234 0.8188 1.5165 1.1100
Mean 0.8001 0.7960 1.4821 1.0872
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landscape metrics with the highest contribution to the model, based on the
subsequent importance assessment of the drivers.

2.4. Estimating hourly air temperature spatial patterns using the random forest
model

The previously prepared meteorological and landscape drivers were
input into the RF model to estimate the spatial hourly air temperature
patterns. We selected the RF model as the regressor because it not only
has the abovementioned advantages but also allows the importance assess-
ment of each driver to the estimation accuracy (Zhang et al., 2020), which
is essential for this study. To estimate the air temperature at a certain hour,
we considered real-time-efficient drivers like the current time (hour), mete-
orological drivers for each of the previous 24 h and environmental drivers
like the landscape drivers, longitude, latitude and elevation, yielding a
total of 941 preliminary drivers in the RF model. The driving factors need
to be considered as comprehensively as possible, but this will increase the
computational burden of themodel and significantly increase the operation
time. Moreover, most of the drivers contribute little to improving accuracy.
Therefore, we first built an RF model using the 2019 data to select critical
drivers from the 941 preliminary drivers based on the importance assess-
ment. Simultaneously, we tested the optimal n-tree for the RF model.
Finally, we identified key drivers and adopted the optimal n-tree for
building the RF model for other years.

In Python, we used the ‘.RandomForestRegressor’ class provided by the
‘scikit-learn’ extension package (Version 0.24.2) to build the RFmodel. The
default values are employed for all parameters except the n-tree. Addition-
ally, we employed the permutation importance provided by scikit-learn as
the metric to assess the importance of the drivers as it is applicable in
cases where there are many unique values of the features. The permutation
importance of a feature is defined as the deviation of the metric value from
the baseline metric value after permutation of this feature column. We
performed ten evaluations of the permutation importance of the drivers
and took their average value as the importance of the drivers.

To build the RFmodel, 70 % of the samples were randomly selected for
training the model. We used four accuracy metrics to measure the model
accuracy. One is to calculate the goodness-of-fit, R2, of the trained model
using the remaining 30 % samples. The second is to estimate the R2 of the
model using the out-of-bag samples (oob_score) during model training.
Further, the root mean square error (RMSE) and mean absolute error
(MAE) were calculated using the test samples to evaluate the model's
bias. These four metrics provide a comprehensive picture of the model's
generalisation ability.

3. Result

3.1. Accuracy of the LCZ mapping

Table S3 presents the assessment table for LCZ mapping in the study
area from 2008 to 2019. Moreover, we used user accuracy (UA) and pro-
ducer accuracy (PA) to assess the performance of each LCZ type and used
the overall accuracy (OA) and Kappa coefficient tomeasure the overall per-
formance of LCZ maps for each year. The results showed that the average
value of the OA of the LCZ maps reached 61.64 % and that of the Kappa
coefficient reached 0.594; the best performance was observed in 2019,
where OA and the Kappa coefficient reached 71.86 % and 0.702, respec-
tively. According to Bechtel et al. (Bechtel et al., 2015), the accuracy of
our LCZ maps is comparable to that of most current LCZ mapping and is
therefore acceptable.

3.2. Accuracy of the hourly air temperature estimation

We selected 90 drivers from the 941 preliminary drivers for subsequent
model training and estimation with the permutation importance. The sum
of the importance scores of the 90 drivers (1.772) represents 97.0 % of
the total importance score of all the preliminary drivers (1.826). Therefore,
5

the selected drivers are sufficiently representative. Among the 90 drivers,
74 meteorological and 12 landscape drivers are present, and current time,
latitude, longitude and elevation drivers are also present. The five most
important drivers are RHU_1Hours_Before (0.725), Current_time (0.471),
mw09_shdi (Shannon's Diversity Index at a radius of 9 km, 0.072), latitude
(0.072) and RHU_10Hours_Before (0.065).

We performed tests to search for the optimal n-tree from 50 to 400. The
results showed that the R2 calculated using the out-of-bag samples
(oob_score) logarithmically grew with increasing n-tree value (Fig. 2).
Furthermore, the oob_score significantly improved with increasing n-tree
increased from 50 to 200. With increasing n-tree from 200 to 400, the
oob_score still displayed a slight improvement. Therefore, for better
accuracy, we set the n-tree value in the RF modelling to 400.

After determining the drivers and n-tree value, we executed the RF
modelling for each year. Table 2 shows the performance of the RF models
for each year. The R2, RMSE andMAE calculated using the 30 % validation
samples and the oob_score calculated using the out-of-bag samples exhibit
similar accuracies. The RF models exhibited good accuracy in different
years, with the mean values of R2 and oob_score reaching 0.8001 and
0.7960, respectively. Additionally, the mean values of RMSE and MAE
were 1.4821 °C and 1.0872 °C, respectively. The results indicate that the
RF models constructed to estimate the hourly air temperatures from 2008
to 2019 are acceptable and reliable.

3.3. Performance of the air temperature estimation in various hours

Furthermore, we explored the performance of the estimated air temper-
ature at different hours. We merged the temperatures for all dates at a
particular hour and assessed the model performance for that hour by
comparing the observed and estimated mean air temperature. We selected
three metrics to measure the hourly model performance: R2, RMSE and a
deviation ratio.



Fig. 5. Deviation ratio of the estimated hourly air temperatures in different years.
Here, ‘TEM 50 %’ denotes the difference between the air temperatures observed
at the middle 50 % of the weather stations.

Fig. 3. R2 of the air temperature estimation models for different hours in different
years.
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Fig. 3 shows the R2 of the models for different hours in different years.
Figs. S4–S14 display the scatter plots of the estimated versus observed
values for different hours in different years. Clearly, the performances
show consistency and stability across the years. For example, the models
maintained stable high R2 during the nighttime (i.e. 20:00–07:00), while
during the daytime hours, the models did not perform well overall, except
for the period from 14:00 to 16:00 when they reached a high R2 level. Note
that herein we directly calculated R2 using the estimated and observed air
temperatures, rather than calculating R2 after fitting a linear regression to
them; thus, R2 affords a maximum value of 1 and it could be negative.
However, when R2 is negative, the estimated and observed air tempera-
tures may still exhibit a good linear relation, as shown in Figs. S4–S14.

RMSE is a metric reflecting the absolute error between the estimated
and observed values; thus, a smaller RMSE value denotes a higher estima-
tion accuracy. Fig. 4 presents the RMSE of the air temperature estimation
models for different hours in different years. The RMSE distribution is
similar to the R2 distribution. The performance of the models for the
samehourwas essentially stable across the years. Better RMSE performance
was obtained from 20:00 to 07:00 at night and for a short period in the
afternoon. Larger RMSE values were afforded in the morning
(8:00–11:00), but the RMSE values slightly increased in the late afternoon
(around 18:00). During the periods when the model performed well,
RMSE did not exceed 0.6 °C overall, even reaching 0.2 °C.

In addition to using RMSE to measure the absolute error of the estima-
tion results, we defined a deviation ratio to reflect the relative error of the
estimation results. The deviation ratio is the ratio of RMSE to the difference
between the air temperatures observed at the middle 50 % of the weather
Fig. 4. RMSE of the air temperature estimation models for different hours in
different years.
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stations. Fig. 5 shows the deviation ratio of the estimated air temperatures
for different hours in different years. Notably, the trajectory of the deviation
ratio is similar to that of the R2 and RMSE. In most years, the deviation
ratios were generally below 0.5 and even below 0.2 during the night
(20:00–07:00) and afternoon (14:00–16:00).
3.4. Spatial performance of the air temperature estimation

In addition to the overall and temporal perspective, we explored how
the models performed in space. We compared the performance of the RF
model with traditional spatial interpolation methods, such as IDW and
Kriging interpolation, for estimating the spatial distribution of the air
temperature. Fig. 6 shows the comparison result for the mean air tempera-
ture in warm seasons in 2019. Clearly, the air temperature distribution
estimated by the RF model was generally consistent with that estimated
by IDW and Kriging interpolation. Although humidity strongly contributes
to the predictions of the air temperature distribution, landscapemetrics add
considerable spatial detail to the air temperature distribution mapping,
which cannot be obtained by directly interpolating air temperature using
almost any other methods. Moreover, the difference in air temperature
between urban and rural areas was more evident in the results of the RF
model than in the those of IDW and Kriging interpolation. Rural areas
cooled faster than the urban areas at night. Moreover, comparing the air
temperature distribution at 21:00 and 04:00, the temperature dropped
more slowly in the urban core than in the urban fringe.

Furthermore, to demonstrate the role of landscape drivers in enhancing
the spatial detail of the air temperature estimation, we added a control
experiment without LCZ-based landscape drivers in the modelling. Fig. 7
shows the role of LCZ-based landscape drivers in the air temperature
estimation, taking the example of 21:00 in the 2019 warm season. When
modelling without the LCZ-based landscape drivers (Fig. 7(a)), elevation
enhanced the spatial detail by making the air temperatures cooler in
mountainous places and hotter at lower elevations near the sea. However,
the effect of urban morphology on the air temperature distribution could
not be reflected. When the LCZ-based landscape drivers were considered
(Fig. 7(b)), the effect of urban agglomerations on the air temperature
distribution was revealed.

Since the RF model spatially demonstrated the difference in air temper-
ature between urban and rural areas, we analysed the difference in the RF
model performance for estimating urban and rural air temperatures. There-
fore, wefirst selected urban and rural stations from the 86weather stations.
To exclude changes in the station types due to urbanisation, we counted the
major land types around a station within a radius of 500 m. LCZs 1–10 are
urban and LCZs A–H are rural. If more than 50 % of the land around a
station was urban LCZs, it was denoted as an urban station; otherwise, it
was denoted as a rural station. Ultimately, only the stations whose station



Fig. 6. Comparing IDW and Kriging interpolation with the RF model in terms of the spatial performance of the air temperature estimation for the mean air temperature in
warm seasons in 2019.
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type remained constant throughout 2008–2009were included in the subse-
quent urban–rural analysis. Consistent with Section 3.3, we selected the
gaps in R2, RMSE and the deviation ratio between urban and rural areas
to measure the difference in the RF model performance in urban and
rural areas.
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Fig. 8 shows the differences in R2 between urban and rural areas in
different years for the hourly air temperature estimations. In the figure,
R2

urban–rural greater than zero denotes that R2 is better for air temperature
estimation in urban areas than rural areas. The results show that at night
(20:00–07:00), which is also the period that continuously maintains good



Fig. 7. Comparing the impact of modelling with andwithout LCZ-based landscape drivers on the spatial detail of the air temperature estimation. (a) Mean air temperature at
21:00 for the 2019 warm season modelling without LCZ-based landscape drivers; (b) Mean air temperature at 21:00 for the 2019 warm season modelling with LCZ-based
landscape drivers; (c) LCZ in 2019.
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overall R2, urban areas afforded better R2 than rural areas. However, during
the daytime period, when the overall R2 was good (14:00–16:00), R2 in
urban areas was generally lower than that in rural areas. In contrast, during
the remaining periods, when the overall R2 was relatively low, the urban
and rural areas did not exhibit a general advantage or disadvantage in R2

across the years.
A similar comparison was applied for RMSE. Fig. 9 shows the differences

in RMSE between urban and rural areas in different years for the hourly air
temperature estimations. Since RMSE measures the absolute error between
the estimated and observed air temperatures, an RMSEurban–rural less than
zero indicates that the estimated temperature in urban areas is closer to
the observed temperature than that in rural areas, and vice versa. Unlike
R2, RMSE was consistently smaller in urban areas than in rural areas
throughout the day, indicating better performances in urban areas.

Fig. 10 shows the urban–rural difference in the performance of the RF
models in terms of the relative error by comparing the deviation ratios. A
Fig. 8.Differences in R2 between urban and rural areas in different years for hourly
air temperature estimations.
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value of less than zero on the Y-axis signifies that urban areas afford a
smaller deviation ratio than rural areas, signifying better model perfor-
mance. The results show that the deviation ratio was consistently slightly
lower in urban areas than rural areas for most nighttime hours. In contrast,
the difference was insignificant during the daytime, or rural areas per-
formed marginally better than urban areas.

4. Discussion

4.1. Nighttime vs daytime estimation

Overall, the results show that the RF models for estimating hourly air
temperatures performed better at nighttime than daytime. This suggests
that the dataset we created is appropriate for urban climate studies, such
as UHI, which have been demonstrated to be typically more pronounced
at nighttime than daytime (Bohnenstengel et al., 2011; Dialesandro et al.,
Fig. 9.Differences in RMSE between urban and rural areas in different years for the
hourly air temperature estimations.



Fig. 10. Differences in the deviation ratio of the estimated hourly air temperatures
between urban and rural areas in different years. ‘TEM 50%’ denotes the difference
between the air temperatures observed at the middle 50 % urban/rural weather
stations.
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2019; Kim and Baik, 2002). Note that the overall R2 of the RF models was
satisfactory, although R2 was negative for some hours, mainly since we
directly calculated R2 using the estimated and observed temperatures
instead of linearly regressing them before calculating R2. On the other
hand, the estimated and observed temperatures maintained a high linear
correlation (Pearson's correlation coefficient, R) in almost all hourly periods
(Figs. S4–S14).

To improve the relatively low accuracy of air temperature estimation
during the daytime, we tried modelling adjustment. We separated the
7:00–21:00 period from the whole day for RF modelling. However, the
adjusted daytime models did not significantly improve the estimation
accuracy during the daytime and presented the same hourly accuracy
trajectories as thewhole-daymodels in different years. Furthermore, we de-
termined that the estimation accuracy always started decreasing in the
morning after the sun rose and the fog gradually dissipated, it recovered
in the early afternoon when the solar radiation was stable and then
decreased again when the sun went down and the solar radiation
decreased. The decrease in evaluation accuracy always occurred when
there was a significant change in solar radiation. A similar situation has
been observed in some other studies on spatial air temperature estimation,
where the accuracy was lower in the daytime than in the nighttime (Zhang
and Du, 2022). Therefore, we infer that the variation in solar radiation due
to the Earth's rotation likely decreases the temperature estimation accuracy
as it is the primary source of surface heat, subsequently causing a minor air
temperature difference during the daytime than the nighttime (Bernard
et al., 2017). However, due to the lack of local observation data, it is not
included in the driving factors. Thus, we currently recommend using the
nighttime portion of our dataset.

4.2. Importance assessment of drivers

According to the importance assessment of the drivers, the top impor-
tance drivers are mainly the meteorological drivers, 74 of the 90 selected
drivers. Among them, RHU was the most important driver. The RHUs for
each hour within the last 24 h were input into the 90 drivers, totally con-
tributing 52.9 % importance. RHU from 1 h prior was the most important
driver, contributing 40.9 % importance, while RHUs from 10 h, 24 h and
16 h prior were also selected as the top 10 most important drivers. The cur-
rent time (h) is the second most important driver (26.6 %), demonstrating
the inherent characteristics of air temperature at different times of the day.
Additionally, PRSs for each hour within the last 24 h contributed a total of
7.2 % importance. Simultaneously, the landscape and geographic (eleva-
tion, latitude and longitude) factors also evidently influence thefinal spatial
pattern of temperature, contributing 5.9 % and 5.8 % importance, respec-
tively. Therefore, consideringmore landscape and physical drivers tofinely
depict the hourly air temperature pattern should be helpful.
9

4.3. Landscape vs temperature pattern

The spatial pattern of the air temperature estimations exhibited a pro-
nounced landscape divide, which was associated with landscape drivers.
Comparing the spatial air temperature patterns, the LCZ maps and Digital
ElevationModel (DEM), we determined that the landscape divide appeared
in the contiguous area of LCZ A (dense trees). In other words, air tempera-
tures tend to be cooler in the mountainous regions with contiguous dense
trees than in the areas of other land types, such as plains. Some users may
be concerned about the accuracy of this hourly air temperature dataset in
mountainous regions. However, since none of the weather stations are
located in mountainous regions with continuous dense trees, we cannot
specifically verify the air temperature estimation accuracy there. Therefore,
we recommend that these users consider the factors ofmountainous regions
and plains when using this dataset.

Furthermore, the urban–rural comparison showed that the models
generally had better accuracy in urban areas. Moreover, the nighttime
temperature pattern showed some correlation with urban morphology.
The tracking of the early- and late-night temperature patterns revealed
that air temperatures tend to fall more slowly in the core of metropolitan
areas than in the urban fringe. Therefore, we believe that this product
will be useful for urban-temperature-related studies.

4.4. Comparison to other studies

Using Fig. 6, we have demonstrated the advantages of ML over conven-
tional interpolation methods in depicting the hourly air temperature distri-
butions in terms of presenting spatial details. Simultaneously, our air
temperature mapping accuracy is comparable to that of other studies. On
the one hand, hourly air temperature mapping is not well practised. The
existing hourly air temperature mapping studies (Zhou et al., 2020;
Zhang and Du, 2022) typically achieve RMSE and MAE of 0.8–1.9 °C and
0.6–1.5 °C, respectively. On the other hand, the accuracy of our hourly air
temperature mapping can be even better than that of the daily air temper-
ature mapping. For example, a national-scale daily air temperature
mapping using deep learning (Shen et al., 2020) affords RMSE and MAE
of 2.0 and 1.5 °C, respectively. Overall, our hourly air temperaturemapping
achieves comparable or even better accuracy.

Additionally, the previous hourly and daily air temperature estimation
studies are mainly driven by multi-source remote sensing imagery;
however, this study focused on integrating meteorological station data
and remote sensing techniques for air temperature estimation. In the future,
to improve the air temperature estimation accuracy, more available near
real-time remote sensing imagery along with meteorological data and
remote sensing techniques could be included.

4.5. Potential applications

Our proposed hourly temperature dataset has the potential for applica-
tion in various fields. For example, this dataset provides air temperature
maps with more spatial detail than traditional air temperature maps
obtained by station interpolation, providing better weather service for
relevant studies such, as UHI and heat wave. Additionally, the hourly air
temperature maps can strongly support health-related heat exposure risk
studies, such as blood pressure and myocardial infarction (Xu et al., 2019;
Bhaskaran et al., 2012). Moreover, air temperature is closely related to
energy consumption (Fumo and Biswas, 2015), precipitation (Li et al.,
2020; Mishra et al., 2012) and air pollution (Kalisa et al., 2018). Therefore,
the hourly air temperature maps can contribute towards affording an
accurate assessment of urban environmental studies on a fine scale, such
as at a building or community level (Gonzalez and Zamarreno, 2005).

4.6. Study limitations and future work

Despite several benefits of this dataset, some limitations still exist. First,
the meteorological spatial drivers used to predict air temperatures were
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obtained via Kriging interpolation. In the future, with more efficient inter-
polation methods, meteorological drivers with more spatially detailed
information could further improve the accuracy of the air temperature
maps. Second, the accuracy of this dataset is relatively low during the day-
time, especially in the morning and at dusk. We believe that this is related
to the rapid changes in solar radiation effected by the sun's rising and set-
ting. Therefore, hourly solar radiation could be added to the driving factor
in future work. Third, the RF modelling herein only focused on the 1-km
scale, and the optimal scale for RF models in air temperature estimation
is a topic worth exploring in the future. Fourth, although comparable to
existing LCZ classification studies, the accuracy of the LCZ maps herein is
still not flawless. In future work, improvements in LCZ map accuracy
could help enhance the air temperature mapping performance. Further-
more, in the future, if hourly air temperature mapping is extended to
cover the whole year, the effect of seasonal differences may need to be
considered in the model.

5. Conclusion

Herein, we presented an hourly air temperature mapping method at
1-km resolution by adopting the ML (RF algorithm) technology. The
method considered topography and LCZ-based landscape drivers;
consequently, the air temperature mapping maintained a satisfactory
accuracy while affording a more detailed air temperature pattern than
spatial interpolation methods. The generated hourly air temperature
maps exhibited particularly outstanding accuracy during the nighttime
and showed a pattern of slower cooling processes in the urban core
during the nighttime than that in the urban fringe, which can help
improve studies such as UHI. Moreover, the importance assessment of
the driving factors revealed the essential contribution of relative humid-
ity to air temperature mapping, while landscape drivers played a
nonnegligible role. Furthermore, given the high spatiotemporal resolu-
tion, the generated air temperature mapping can remarkably contribute
towards understanding the spatial patterns of urban climate and health-
related heat exposure risk studies.
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