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Urban heat island (UHI) effect significantly raises the health burden and building energy consumption in the
high-density urban environment of Hong Kong. A better understanding of the spatiotemporal pattern of UHI is
essential to health risk assessments and energy consumptionmanagement but challenging in a high-density en-
vironment due to the sparsely distributed meteorological stations and the highly diverse urban features. In this
study,wemodelled the spatiotemporal pattern ofUHI effect using the landuse regression (LUR) approach in geo-
graphic information system with meteorological records of the recent 4 years (2013–2016), sounding data and
geographic predictors in Hong Kong. A total of 224 predictor variables were calculated and involved inmodel de-
velopment. As a result, a total of 10models were developed (daytime and nighttime, four seasons and annual av-
erage). As expected, meteorological records (CLD, Spd, MSLP) and sounding indices (KINX, CAPV and SHOW) are
temporally correlatedwith UHI at high significance levels. On the top of the resultant LURmodels, the influential
spatial predictors of UHI with regression coefficients and their critical buffer width were also identified for the
high-density urban scenario of Hong Kong. The study results indicate that the spatial pattern of UHI is largely de-

termined by the LU/LC (RES1500, FVC500) and urban geomorphometry (h, BVD, λF,Ψsky and z0) in a high-density
built environment, especially during nighttime. The resultant models could be adopted to enrich the current
urban design guideline and help with the UHI mitigation.
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1 The abbreviations of all land use variables/predictors have been included in Table 1,
thus not be included in this nomenclature.

Nomenclature1

Symbols and abbreviations
A.A.D.T Annual Average Daily Traffic
ADDRESS A Distance Decay REgression Selection Strategy
AF Total frontal area of all buildings in the urban lot along

with the wind direction
AICc Akaike information criterion
AP Building footprint area
AT The area of a certain urban lot
AWSs automatic weather stations
BIC Bayesian information criterion
C&SD Hong Kong Census and Statistics Department
CDh drag coefficient
d The radius of the hemisphere circle for SVF calculation
DEM digital elevation model
GIS geographical information system
h building height
HKO Hong Kong Observatory
HKPSG Hong Kong Planning Standards and Guidelines
HKTD Hong Kong Transport Department
ISA impervious surface area ratio
K Kármán's constant
LCZ local climate zone
LOOCV leave-one-out cross-validation
LST land surface temperature
LU/LC Land use and land cover
LUR Land use regression
MLR multiple linear regression
NDBI Normalized Difference Building Index
NDVI Normalized Difference Vegetation Index
P(θ) the probability of wind direction θ.
PlanD Hong Kong Planning Department
p-Value significant level
r Coefficient of correlation
R2 coefficient of determination
RMSE root-mean-square error
RS Remote sensing
SB/VC Street Block/Village Clusters
SUHI surface urban heat island
UHI urban heat island
V total building volume of each district
v, Spd wind speed (m/s)
Var regression model predictor
VIF variance inflation factor
z0 roughness length
α slope aspect
αm, βn Slopes of regression model predictors
αr(θ) The angle between the slope aspect α of a certain

location and wind direction θ
β slope angle
γ Regression model intercept
ε residual
θ wind direction (0–360°)
λF, FAI frontal area index
λP Building coverage ratio
φ horizon angles
Ψsky,SVF sky view factor
Ф azimuth directions
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1. Introduction

Over the past few decades, the negative impacts of climate and
weather conditions on public health have been identified as an issue
of increasing concern (Patz et al., 2005;WHO, 2003). To bemore specif-
ic, impacts of climate change (especially, the trend of global warming)
and the intensifying urban heat island (UHI) effect due to rapid urbani-
zation lead to much more frequent, longer and more severe heatwave
events in urban areas (Li and Bou-Zeid, 2013). UHI effect refers to the
phenomenon that the ambient air temperature in highly-urbanized
areas is higher than the rural area and natural lands (Rizwan et al.,
2008). Rapid urbanization processes change the natural landscape into
highly artificial environments, which change the land surface
geomorphometry aswell as the thermal properties (e.g. emissivity, per-
meability). As a result, the radiation balance in the urbanized area is
greatly different from the neighboring rural area. Urbanization also in-
troduces a large amount of anthropogenic heat which further exacer-
bates the UHI intensity (measured by the air temperature difference
between urban and rural area) (Taha, 1997). The subsequent negative
impacts on public health have been identified as serious threats to pub-
lic health and have raised concerns.

A number of studies have proved strong associations between the
increases in health risks and UHI effect with intensified heat waves,
both in the long and short term, worldwide (Anderson and Bell, 2009;
Buechley et al., 1972; Clarke, 1972;Meehl and Tebaldi, 2004) and locally
in Hong Kong (Goggins et al., 2012; Yan, 2000). It has been found that a
1 °C increase in air temperature of 29 °C is associated with a 4% increase
inmortality in those areas of HongKongwith high UHI intensity. In con-
trast, the correspondingmortality increase in low UHI intensity areas is
b1% (Goggins et al., 2012). This finding indicates the UHI effect could
lead to a much higher local heath burden under the same regional
weather background. The above implies that a better understanding
and more detailed information of the spatiotemporal pattern of UHI
are urgently needed for urban environmental management and heat-
related health risk assessment. For instance, local scholars emphasize
that a hot weather warning system might be useful to reduce elderly
mortality (Chau et al., 2009). The detailed information of the spatiotem-
poral pattern of UHI will play an important role in that.

In HongKong, hourlyweather conditions are currently observed and
recorded by a well-equipped local monitoring network maintained by
the Hong Kong Observatory (HKO). Currently, it contains 85 well-
instrumented automatic weather stations (AWSs). In this present
study, the data of ambient air temperature are obtained from 42 AWSs
of this network (Fig. 2). The local meteorological records provide fine
temporal resolution for UHI studies. However, the real challenge of a
local UHI study is that, Hong Kong has a total land area of around
1100 km2 and with extremely heterogeneous urban settings (including
but not limited to topography, land coverage, natural landscape, land
use, building form and population distribution, etc.). This heterogeneity
results in large ambient air temperature variations between different lo-
cations of the city, which cannot be effectively observed by the sparsely
distributed meteorological stations. This consequently introduces the
issue of using the meteorological records from the closest AWSs. The
distance between the site and the AWS may lead to uncertainties and
even errors in the mapping of the spatiotemporal pattern of the UHI
and further investigation of heat-related health risks at the community
level. Moreover, the identification of hotspots and problematic areas of
heat-related health riskswill be difficult if only the localmonitoring net-
work is used.

Remote sensing (RS) satellite-based methods are also popularly
used to explore the spatial structure of UHI (Gallo et al., 1995;
Tomlinson et al., 2011), because these methods provide sufficient spa-
tial information at a relatively fine resolution (90–120 m) (Liu and
Zhang, 2011; Nichol and Wong, 2005). However, the main issue of
using satellite images is that the retrieved UHI measurements are
based on land surface temperature (LST) not the ambient air
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temperature. It is a known fact that the diurnal cycle of atmospheric UHI
and surface UHI (SUHI) are considerably different (Roth et al., 1989).
The atmospheric UHI is larger during nighttime while the SUHI is larger
during the daytime. Using SUHI for heat-related health risk assessment
may introduce estimation error. Other vegetation and land use/land
cover indicators, such as Normalized Difference Vegetation Index
(NDVI), Normalized Difference Building Index (NDBI) and impervious
surface area ratio (ISA), are also commonly retrieved and used for UHI
estimation (Zhang et al., 2009; Zhou et al., 2014b). However, the use
of these indexes alone may be still insufficient for UHI estimation in
Hong Kong due to the cloudy weather and the occlusion issue among
high-rise buildings.

To overcome the above limitations of RS-based UHI studies, an at-
tempt has been made to quantify the UHI intensity by classifying the
near surrounding of a very limited number of weather stations (17 sta-
tions) using the concept of local climate zone (LCZ) classification with
long-term monitored data (Siu and Hart, 2013). Attempts have been
made to quantify the correlations between UHI and urban surface ge-
ometry with statistical algorithm as well (Svensson, 2004; Unger,
2004). In Hong Kong, a significant correlation has been found between
the intra-urban air temperature difference and a surface-geometrical
parameter – sky view factor (SVF) (Chen et al., 2012), which means
that the incorporation of surface geometry as predictors will help im-
prove the accuracy of UHI estimation.However, there are still somegen-
eral limitations of the inner LCZ variability and the issues of
unclassifiable areas due to the extremely heterogeneous city form
(Leconte et al., 2015). In some cases, the results are also sensitive to
the spatial scale/resolution used for data analysis (Kotharkar and
Bagade, 2007). Moreover, it can be observed that the detailed methods
of data processing vary between different studies despite the standard-
ization efforts of LCZ. Therefore, a standardizedmethod is necessary as a
supplement to avoid the current limitations of unclassifiable areas and
also the differentiation in data processing among different studies.

Land Use Regression (LUR) is a popularly used and standardized sta-
tistical method in the estimation of spatial variation of environmental
exposure at a fine scale and has been widely adopted in public health
studies (Hoek et al., 2008; Ryan and LeMasters, 2007; Xie et al., 2011).
LUR estimates the environmental exposure level of locations/individ-
uals in a study area by treating them as the response variable of a mul-
tiple linear regression model (MLR) of several explanatory variables
resulting from geographical predictors and urban indices (such as land
use, traffics and population) in a series of buffers of the receivers' loca-
tion. Using statistical algorithms in geographical information system
(GIS), LUR can accurately estimate the long-term averaged environ-
mental exposure level in unmonitored areas based on existingmonitor-
ing locations. An attempt has been made in applying LUR method in the
investigation of the effect of land use on temperature during heat waves
(Zhou et al., 2014a). Furthermore, recent LUR research have focused on
developing temporal-resolved LUR models (Kloog et al., 2012; Saraswat
et al., 2013). These temporal-resolved models allow for a series of map-
pings of spatiotemporally varying environmental exposure level at a
finer spatial resolution compared to the RS results (Hoek et al., 2008).
Therefore, temporal-resolved LURmodels could be helpful in the process
of health risk assessment and further environmental policy-making.

The objective of this present study is to estimate the spatiotemporal
variation of UHI for high-density Hong Kong for the purpose of provid-
ing a good reference for heat-related health risk assessment. In Hong
Kong, spatially varying urban surface characteristics (both the natural
landscape and artificial environment) significantly modifies the local
meteorological conditions, and subsequently affects the intraurban
UHI pattern. Moreover, the intraurban air temperature difference is
also affected by the non-uniformly distributed local anthropogenic
heat sources. In this study, for thefirst time,we introduce the LURmeth-
od to estimate the spatiotemporal UHI in Hong Kong by incorporating
LUR modelling with a comprehensive set of geographic/meteorological
predictors.
2. Materials and methods

Traditionally, UHI is defined as the air temperature difference be-
tweenurban and rural areas. However, it is difficult to define the specific
terms of “urban” and “rural” in the spatially varied and unique urban
context of Hong Kong (Siu and Hart, 2013). Assessing the heat-related
health risk need as detailed as possible spatiotemporal information of
UHI rather than a simple value of air temperature difference between
urban and rural areas. Therefore, in this study, air temperaturemeasure-
ment from the HKO AWSs network over the years of 2013–2016 are
used as the proxy for investigating the UHI effect, as such used as the re-
sponse variable for spatiotemporal LURmodelling. A comprehensive set
of geographic/meteorological predictors (land cover, urban indices and
meteorological sounding data) were selected as explanatory variables
and calculated in GIS by following the buffer-based analysis process of
LUR method (Ryan and LeMasters, 2007). After developing the LUR
model, the spatiotemporal distribution of air temperature can be
mapped for UHI investigation and also adopted as the basis for public
health assessment. Fig. 1 shows the workflow of the LUR approach
used in this present study.

2.1. Response variables - air temperature measurements

LUR studies typically use an environmental exposure sample set of
20–100 fixed reference points within the study area (Hoek et al.,
2008). As mentioned, hourly air temperature measurements at 42
AWSs of HKO meteorological monitoring network over Hong Kong are
available for this study which is much more than a previous study (17
stations involved only) (Siu and Hart, 2013). Hourly meteorological re-
cords of the years 2013–2016 were obtained from HKO. Daily air tem-
perature were calculated in terms of daytime and nighttime average
to separately develop models so that the difference of UHI pattern be-
tween day and night can be observed. The annual and seasonal averages
(Spring - Mar to Apr; summer - May to Aug; Fall - Sep to Nov; winter -
Dec to Feb (Chin, 1986)) of air temperature are also calculated to under-
stand the seasonal difference of the UHI pattern. Figs. 3 and 4 show the
data plot of daily average air temperature of different AWSs (by group-
ing the data by seasonal periods and separating them in daytime and
nighttime). The above data are used as response variables to develop
the LUR models. A total of ten models will be developed (daytime and
nighttime, four seasons and annual average).

2.2. Weather records and meteorological variables as temporal predictors

Besides the hourly records of air temperature (Ta), other available
hourly weather data include wind speed (Spd), rainfall (Rf), mean sea
level pressure (MSLP) and cloudiness (CLD) were also requested from
HKO. Rainfall measurements are not available for a few of those AWSs.
Therefore, observatory data were assigned to the nearest AWS for
those with no available records. A total of 18 sounding indices were
also used in this study as model predictors (Table 1) because the atmo-
spheric stability is also closely related to the spatial pattern and intensi-
ty of UHI (Lee, 1979;Oke, 1982). Relative humidity (RH)was not used as
a predictor variable because it is inherently correlated with Ta.

2.3. Geographic variables as spatial predictors

A total offive categories of data setswere prepared as the geographic
predictors for the LUR modelling of UHI in this present study. They are
(1) land use distribution, (2) population distribution, (3) traffic volume,
(4) natural geography and (5) urban surface geomorphometry. The am-
bient Ta is jointly determined by the local condition within a small scale
neighborhood and the regional background condition of a larger area.
To consider both the local and regional effects. All predictorswere calcu-
lated in a series of varied buffer widths (range from50m to 5000m) for
each AWS (Table 1).



Fig. 1. The workflow chart of this present LUR modelling study.
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2.3.1. Land use and land cover (LU/LC)
Land use distribution as an influential factor of UHI (Bottyán and

Unger, 2002;Oke, 1982) has been used for regional/urban climaticmap-
ping (Katzschner and Mülder, 2008), thus adopted as the predictors of
the LUR modelling in this study. The land use distribution of Hong
Kong was requested from the Hong Kong Planning Department
Fig. 2. The locations of 42 available HKO AWSs in the l
(PlanD). Based on the literature of previous LUR studies (Hoek et al.,
2008), the complex land use types of Hong Kong was reclassified as
the following types: Residential area (RES); Commercial area (COM);
Industrial area (IND); Government area (GOV) and Open space area
(OPN). Using buffering analysis, we calculated the total area (measured
in the unit of m2) of each reclassified land use type in the buffers for
ocal weather observation network of Hong Kong.

Image of Fig. 1
Image of Fig. 2


Fig. 3. Seasonal data plot of daily averaged daytime air temperature observations.
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each AWS as a predictor variable. Fractional vegetation cover (FVC)was
alsoused as a spatial predictor variable of UHI because it depicts the spa-
tial coverage of vegetation and also implies the fraction of pervious and
impervious surface.

2.3.2. Population distribution
The population distribution has been commonly investigated in UHI

studies (Oke, 1973) because it is a major factor of profiling anthropo-
genic heating in urban areas (Fan and Sailor, 2005; Sailor and Lu,
2004). In this present study, the most recent population census data of
the year 2011 is obtained fromHong Kong Census and Statistics Depart-
ment (C&SD). The population distributionwasmapped using the digital
boundary of Street Block/Village Clusters (SB/VC, obtained from PlanD,
which is a standard planning level of Hong Kong) for calculating the
population density (people/km2) in the buffers of each AWS.

2.3.3. Traffic counting
UHI is exacerbated by the anthropogenic heating from vehicles

(Yuan and Bauer, 2007). Therefore, it is necessary to examine the possi-
ble impact of urban traffic in a UHI study. The number of vehicles in dif-
ferent road segments inHongKong is counted at N800 counting stations
and averaged to obtain the Annual Average Daily Traffic (A.A.D.T) data
(HKTD, 2016). The A.A.D.T data and spatial distribution of the counting
stations are available at the Hong Kong Transport Department (HKTD)
in their “Annual Traffic Census”. In this study, to map the spatial distri-
bution of the traffic volume, the A.A.D.T datawere aggregated as a raster

Image of Fig. 3


Fig. 4. Seasonal data plot of daily averaged nighttime air temperature observations.
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data layer in GIS using a grid system with a spatial resolution of 100 m
(corresponding to the smallest buffer size used in this study which is
50m) based on the road network. The traffic volume of public transport
vehicles and private/government vehicles were mapped separately as
two data layers in order to differentiate waste heat sources of different
types of vehicles. The traffic volume within the neighboring area of
each AWS was then calculated by using buffering analysis.
2.3.4. Natural geography and landscape
A set of commonly-used variables was selected as the predictors to

profile the surrounding natural geography of AWSs: x coordinate, y co-
ordinate, altitude, nearest distance to waterfront, distance to city parks,
distance to country parks. All spatial data were projected to the HK1980
coordinate system.

2.3.5. Urban surface geomorphometry
Densely-built urban forms significantly change the aerodynamic and

thermal properties of the ground surface, and hence alter thewind field
and radiation/energy balance near the ground surface and result in con-
siderable urban microclimatic variation (Arnfield, 2003). Urban form
and building density differences result in spatial variability in the
intraurban air temperature (Givoni, 1998). Therefore, the use of those
commonly-used land use variables mentioned above alone may not be
sufficient in the investigation of the intraurban air temperature differ-
ences in the highly varied urban environment of HongKong. To consider

Image of Fig. 4


Fig. 5. Example mapping of spatial distribution of spatial predictors.
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the urban geomorphometric variability and its influence on the spatial
pattern of UHI in a high-density urban environment, a set of urban sur-
face geomorphometric parameters was calculated and used as predictor
variables in LUR modelling. They are the mean building height (h),
building ground coverage ratio (λp), building volume density (BVD),
sky view factors (Ψsky), weighted frontal area index based on the prob-
ability of wind directions (λF ), urban surface roughness length (z0).
Among these parameters, h and λp are themost basic parameters of de-
scribing the geometrical characteristics of building bulks:

h ¼ 1
n
∑n

i¼1hi

λP ¼ ∑n
i¼1APi

� �
=AT

where h is the averaged building height of a district. n is the total num-
ber of buildings in the district. hi is the height of the building i. AT is the
area of the district. APi is the footprint area of the building i. Building
bulks absorb the shortwave solar radiation during the daytime such
that the volume of the buildings determines the capacity of heat storage.
During the nighttime, a larger building volume blocks more longwave
radiation (released by the buildings) than an open area, and conse-
quently trapsmore heat within the city. Therefore, a higher the building
volume density leads to a larger heat capacity (Ng and Ren, 2015). BVD
is calculated as follows:

V ¼ ∑n
i¼1APihi

BVDj ¼ V j=Vmax

where the total building volume of each district in the city is calculated
as V. j is the total number of the districts. Vmax is the highest V among all
districts in the city. Ψsky, as a measure of urban geometry, has been
widely used to analyze the intraurban variation for the three decades
(Chen et al., 2012; Eliasson, 1990; Hillevi and Deliang, 1999). It was

Image of Fig. 5


Fig. 6. Regression plot of all resultant models and corresponding spatial mapping of annual/seasonal averaged daytime and nighttime UHI spatial mapping.
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calculated by following the formula proposed byDozier and Frew (1990
using the 1 m–resolution digital elevation model (DEM) of the entire
Hong Kong:

Ψsky ¼
1
2π

Z2π

0

cosβcos2φþ sinβ∙ cos Ф−αð Þ∙ 90−φ− sinφ cosφð Þ� �
dФ
where the Ψsky value is calculated for each pixel of the DEM with the
corresponding slope aspect α, slope angle β and the horizon angles φ
in azimuth directions Ф of the hemisphere circle with a search radius
of d. Variables λF and z0 are related to the conditions of urban ventila-
tion which are influential in the cooling potential as well. It has been
proved that the incorporation of λF and z0 enhances the LURmodel per-
formance of air pollution in a high-density scenario (Shi et al., 2017).

Image of Fig. 6


Table 1
List of the temporal and spatial predictor variables for LUR modelling of UHI.

Categories Predictor variables Unita Abbreviation

Temporal predictors
Available hourly weather data (4 variables) Wind speed (measured at the WGL as the background wind condition) m/s Spd

Rainfall mm Rf
Mean sea level pressure (measured at the location of WGL) hPa MSLP
Cloudiness (measured at the location of HKO) Oktas CLD

Atmospheric sounding indices (18 variables) K index KINX
SWEAT index SWET
Lifted index LIFT
LIFT computed using virtual temperature LIFV
Showalter index SHOW
Cross totals index CTOT
Total totals index TTOT
Convective Inhibition J/kg CINS
Mean mixed layer mixing ratio g/kg MLMR
Convective Available Potential Energy J/kg CAPE
CAPE using virtual temperature J/kg CAPV
CINS using virtual temperature J/kg CINV
Bulk Richardson Number BRCH
Bulk Richardson Number using CAPV BRCV
Mean mixed layer potential temperature K MLPT
Temperature of the Lifted Condensation Level K LCLT
Total precipitable water mm PWAT
Pressure of the Lifted Condensation Level hPa LCLP

Spatial predictors
LU/LC (Total land area within certain buffer widthb, 6 variables) Residential use m2 RES

Commercial use m2 COM
Industrial use m2 IND
Government use m2 GOV
Open space m2 OPN
Fractional vegetation cover %d FVC

Population distribution (1 variables) Population density People/km2 POP
Traffic counting (A.A.D.T, 2 variables)c A.A.D.T of public transport vehicles Vehicles AADTPT

A.A.D.T of private/government vehicles Vehicles AADTPG
Natural geography (based on HK1980 coordinate system,6 variables) Longitude m X

Latitude m Y
Altitude/elevation of the monitoring station m Z
Distance to waterbody m d_water
Distance to city parks m d_cityp
Distance to country parks m d_countryp

Urban surface geomorphometry (6 variables) Mean building height m h

Building grounding coverage ratio % λp

Building volume density % BVD
Sky view factore % Ψsky

Weighted frontal area index based on the probability of 16 wind directions λF

Urban surface roughness length m z0
a Empty cell means the data of the corresponding variable is a dimensionless number.
b The bufffer width series: 50, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000 m.
c More details are available at the publicly assessable annual traffic census by HKTD at http://www.td.gov.hk/.
d Data normalization (Percentage value/100). All percentage values were normalized into [0–1].
e Point Ψsky value was represent as theΨsky within a buffer width of 0 m.
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Incorporating these variables could possibly improve the estimation ac-
curacy of Ta under such scenario aswell. In this present study, theywere
calculated based on the local building dataset using following equa-
tions:

λF ¼
X16
θ¼1

∑n
i¼1AFi θð Þ

� �
=AT

h i
P θð Þ

z0 ¼ h−h∙λP
0:6

n o
exp −

Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5∙CDh∙λF

q
2
64

3
75

where AFi(θ) is the frontal area of building i under the scenario of wind
direction θ. P(θ) is the probability of the scenario of wind direction θ.
CDh is drag coefficient considered as 0.8. K is the Kármán's constant of
0.4. Fig. 5 shows the spatial distribution of several spatial predictors as
examples. We use a 10 m–spatial resolution for the mapping of all
urban geomorphometric parameters, which is informative for fine-
scale LUR modelling of air temperature variability.

2.4. Statistical modelling and validation methods

The study aims to develop LUR models for the investigation of the
UHI spatiotemporal pattern by using spatial and temporal predictors
as explanatory variables. Statistical regressionmodellingwas conducted
to develop the LURmodels for investigating daytime and nighttime UHI
spatiotemporal pattern in different seasons. Daytime and nighttime
daily averaged Tawere used as the response variables for themodel de-
velopment with those predictor variables listed in Table 1 as

http://www.td.gov.hk
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explanatory variables. As commonly used in previous studies, the mul-
tiple linear regression (MLR) modelling method was conducted in this
study. The structure of a spatiotemporal LUR modelling by using MLR
is as follow:

Taij ¼ α1Vart1 j þ…þ αmVartmj þ β1Vars1ij þ…þ βnVarsnij þ γ þ ε

where Taij is the observed air temperature at the location i on day j. The
model includes m temporal predictors and n spatial predictors. α1, …,
αm are the slopes of values of the temporal predictors Vαrt1, …, Vαrtm
on day j. β1, …, βn are the slopes of spatial predictors Vαrs1, …, Vαrsn
at the location i on day j. γ is the model intercept and ε is the residual.

2.4.1. Sensitivity test for determining the critical buffer width for spatial
variables

Buffering analysis was performed for 15 buffer-based spatial predic-
tors using 13 buffer width. Together with other variables, a total of 224
explanatory variables need to be examined formodel development. The
optimal spatial scales in the evaluation of the microclimatic impact of
different spatial variables are varied. For example, it has been found
that the air temperature variation has a higher correlation with the av-
eragedΨsky calculatedwithin a 100mbuffer than theΨsky calculated for
the point location (Lindberg, 2007). A previous LUR study in Hong Kong
also demonstrates that it is possible that there are two critical buffers
depicting the influence of the same variable at different spatial scales
(Shi et al., 2017). Sensitivity tests were performed for each buffer-
based variable byusingmultivariate analysis to understand the sensitiv-
ity of the variables' value to different buffer widths and determine the
critical buffer width for the variables. In this present study, the critical
buffers for each variable were determined by adopting the “A Distance
Decay REgression Selection Strategy (ADDRESS)” developed by Su
et al. (2009) in their previous LURmodelling studies. A simple linear re-
gression between each buffer-based variable within each buffer width
and daytime/nighttime daily averaged Ta was performed for each of
the four different seasons in different time periods (2013, 2014, 2015,
2016 and 2013–2016) to check if there is any hidden temporal trend
across the study period. It is necessary to confirm whether the correla-
tions are temporally robust when combining with spatial variability.
Pearson correlation coefficients (r) were calculated and plotted as a
distance-decay curve of distance. Only those buffer-based variables
with the highest |r | among all buffers and at the critical positions of
the curves were selected as the explanatory variables for further step-
wise regression modelling (details of the determination criterion refers
to Su et al., 2009. Selecting explanatory variables at the critical buffer
from an extensive variables data set avoids iterative regression compu-
tations and the over-fittingproblemduring the stepwiseMLRmodelling
caused by themulticollinearity among too many independent variables
(Babyak, 2004).

2.4.2. Stepwise MLR modelling
StepwiseMLRmodellingwas performed to develop the daytime and

nighttime UHI estimation LUR models for different seasons (spring,
summer, fall and winter). During the stepwise regression process, the
modelswere initially determined using twodifferentmodelling criteria:
minimum Akaike information criterion (AICc) and minimum Bayesian
information criterion (BIC), in both forward and backward directions
using SAS JMP statistical software. The model with the highest adjusted

coefficient of determination (R2) was selected. As the results, a total of
10 models were developed (daytime and nighttime, four seasons and
annual average). Multicollinearity (the condition when predictor
variables are highly correlated with each other) leads to limited
independent explanatory capacity and introduces suspicious
regressions.(Franke, 2010) In the subsequent process, the significant
level (measured as p-value) and variance inflation factor (VIF) of each
explanatory variables in all these resultant models were checked to
identify multicollinearity issues in all resultant regression models. As a
result, variables with p-value N 0.0001 and VIF N 2 were excluded.

2.4.3. Model validation
To evaluate the model performance, we conducted the leave-one-

out cross-validation (LOOCV) to compare the difference between the
monitored Ta and estimated Ta. The root-mean-square error (RMSE)
and the R2 from the LOOCV (RLOOCV2 ) were used to validate the resultant
LUR models:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
ij¼1

T ‘
aij−Taij

� �2

vuut

R2
LOOCV ¼

Pn
i j¼1 T ‘

aij−T̂a

� �
Pn

i j¼1 Taij−T̂a

� �2

where Taij is the monitored air temperature at the location i on day j. Tai‘

is the estimated air temperature at the location i on day j acquired by

using the LURmodels. T̂a is the average value of estimated air tempera-
ture Taij

‘ . n is total amount of data points in the spatiotemporal data set
used for LUR modelling.

3. Results

3.1. Critical buffer width of spatial variables

As mentioned, a sensitivity test was performed to determine the
critical buffer of spatial variables. Only those spatial variables calculated
within its corresponding critical buffers were selected as the explanato-
ry variables for further stepwise regression modelling. Results of the
sensitivity test (Table 2) indicate that the critical buffers of these
buffer-based spatial predictors remain unchanged across different
years. Most of the spatial variables have the same critical buffer width
across the day and night (except those spatial variables with diurnal ef-
fects). In short, the consistency of critical buffer width among different
years implies that the modelling was temporally robust. RES, COM,
GOV land use have the same critical buffer of 1500 m while different
buffers of 750 m and 400 m have been determined for IND and OPN
land use. The building functions and related anthropogenic heat emis-
sion in IND land use area are different from other land use types. OPN
land use in Hong Kong refers to public open space, urban parks, country
parks and other vegetated areas. A feature of OPN areas is that they are
beneficial to its surroundings by providing better urban ventilation and
vegetation cooling effects. This is also a possible explanation to the sim-
ilar critical bufferwidth between OPN and FVC. Two critical buffers have

been identified for h and BVD. The larger buffer (1500 m) is the same as
the RES, COM, GOV land use and that represents the influence of the

spatial pattern of land use. The smaller buffer (300 m) of h and BVD is
the same as the two other geomorphological variables λp and λF , and
that indicates the microscale impacts of building geometry on the
local microclimatic condition. These findings are also consistent with
the optimal scale of LCZ site determined for the high-density scenario
of Hong Kong by a previous local study (Lau et al., 2015). z0 has been
adopted as an indicator of detecting the urban air path (Gál and
Sümeghy, 2007; Gál and Unger, 2009) and estimating the spatial vari-
ability of UHI (Cardoso et al., 2017; van Hove et al., 2015). The critical
buffer identified for z0 (750 m) by this study could also provide a refer-
ence for the experimental design of fieldmeasurement of urban climate
(Voogt and Oke, 2003). The critical buffer of Ψsky in the built environ-
ment of Hong Kong is 50 m which is smaller than the findings in a pre-
vious study (Lindberg, 2007). This implies that the effect of geometrical
variable Ψsky on radiation/energy balance and ventilation is more



Table 2
Critical buffers of the spatial predictors by daytime/nighttime and seasons (unit: m).

Spring Summer Fall Winter

Predictors Daytime Nighttime Daytime Nighttime Daytime Nighttime Daytime Nighttime

RES 1500 1500 1500 1500 1500 1500 1500 1500
COM 1500 1500 1500 1500 1500 1500 1500 1500
IND 750 750 750 750 750 750 750 750
GOV 1500 1500 1500 1500 1500 1500 1500 1500
OPN 400 400 400 400 400 400 400 400
FVC 400 500 400 500 500 500 500 500
POP 400,2000 400,2000 400,2000 400,2000 400,2000 400,2000 400,2000 400,2000
AADTPT 1000 1000 1000 1000 1000 1000 1000 1000
AADTPG 200,1000 200,1000 200,1000 200,1000 200,1000 200,1000 200,1000 200,1000

h 1500 300,1500 1500 300,1500 1500 300,1500 1500 300,1500

λp 300 300 300 300 300 300 300 300
BVD 1500 300,1500 1500 300,1500 1500 300,1500 1500 300,1500
Ψsky 50 50 50 50 50 50 50 50

λF
300 300 300 300 300 300 300 300

z0 750 750 750 750 750 750 750 750
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localized (basically at the street canyon scale) in a high-density urban
environment.

3.2. The resultant LUR models for UHI estimation

A total of ten models were developed for daytime and night UHI in
four different seasons by using the 4-year dataset. The resultant models
are shown in Table 3 (regression plots were shown in Fig. 6). All models
achieve a high significant level that fulfills the criterion of p-value b

0.0001. The R2 values of these ten models range from 0.562 to 0.762.

Most of the models have an R2 of approximately 0.65–0.75 which is a
moderately good model performance. The RMSE of nighttime models
are generally smaller than daytime models. The results of model
cross-validation show that the RLOOCV

2 of all models are at a very close

level with the corresponding R2 and that validates the reliability of the
model performance. In another prior study, the Kriging/Co-kriging
geo-interpolation method was used to provide an estimation of the
Table 3
List of resultant daytime and nighttime UHI estimation models by seasons. All variables fulfill t

Resultant UHI estimation models

Seasons Day/night Model structure

Spring Daytime −0.701(CLD)− 0.363(Spd)− 0.492(MSLP) + (3.488e-02)(KINX)
+ 525.353

Nighttime −0.258(Spd) − 0.510(MSLP) + (2.097e-02)(KINX) − (4.066e-03)
+ 539.973

Summer Daytime −0.726(CLD) − (7.886e-02)(Spd) + (1.049e-03)(CAPV) − (6.823
(1.511e-02)(z00750) + 31.942

Nighttime −0.335(CLD) − 0.175(MSLP) + (8.481e-04)(CAPV) − (5.831e-03
+ (1.106e-07)(RES1500) + 203.835

Fall Daytime −0.419(CLD) − 0.192(Spd) − 0.367(MSLP) − 0.248(SHOW) − (7
402.018

Nighttime −0.174(Spd) − 0.375(MSLP) − 0.211(SHOW) − (5.506e-03)(Z) −
408.011

Winter Daytime −0.558(CLD) − 0.289(Spd) − 0.347(MSLP) − 0.251(SHOW) − (6
378.299

Nighttime −(4.377e-02)(CLD) − 0.168(Spd) − 0.346(MSLP) − 0.199(SHOW
371.640

Annual Daytime −0.426(CLD) − 0.232(Spd) − 0.700(MSLP) − (6.455e-03)(Z) + (
Nighttime −0.153(Spd) − 0.686(MSLP) − (5.679e-03)(Z) + 13.916(BVD150
long-term averaged summertime UHI spatial pattern for Hong Kong
(Cai et al., 2017). The Z, NDVI, and Ψsky were used as covariates during
the interpolation process. The prediction accuracy of all interpolation
results measured by the RLOOCV2 ranges from 0.574 to 0.614. This accura-
cy is still lower than the summertime LUR models developed by this
present study despite the temporally aggregated data only provide a
long-term averaged estimation (without time-series information). The
better performance of LUR method indicates that incorporating land
use, building variables and sounding data provides better fine-scale spa-
tiotemporal estimation in unmonitored areas.

Basic weather records CLD, Spd and MSLP, as temporal predictors,
show in all resultant models. CLD shows in all daytime models and has
a strong negative correlation with Ta which is as expected because the
amount of cloud determines the incoming solar radiation during day-
time. Fewer clouds allow more incoming solar radiation to reach the
ground surface and that consequently increases the land surface tem-
perature and then increases daytime air temperature near the ground
surface. Ta is negatively correlated with the Spd in all daytime and
he criterion of p-value b 0.0001 and VIF b 2.

Model performance evaluation

R2 R2 RMSE RLOOCV
2 p-Value

− (5.178e-03)(Z) + (5.381e-07)(RES1500) 0.685 0.684 2.058 0.684 b0.0001

(Z) − 1.576(Ψsky0050) − 1.191(FVC0500) 0.678 0.678 1.864 0.678 b0.0001

e-03)(Z) + (4.328e-07)(RES1500) − 0.663 0.663 1.525 0.662 b0.0001

)(Z) + 6.760(BVD1500) + 1.341(λF0300) 0.654 0.654 1.235 0.654 b0.0001

.157e-03)(Z) + (1.802e-02)(h1500) + 0.591 0.591 1.970 0.658 b0.0001

1.539(Ψsky0050) − 1.749(FVC0500) + 0.645 0.645 1.955 0.644 b0.0001

.181e-03)(Z) + (2.467e-02)(h1500) + 0.591 0.591 2.285 0.590 b0.0001

) − (5.497e-03)(Z) + 15.473(BVD1500) + 0.563 0.562 2.251 0.562 b0.0001

4.231e-07)(RES1500) + 735.977 0.748 0.748 2.890 0.748 b0.0001
0) + 717.341 0.762 0.762 2.705 0.762 b0.0001
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nocturnal models because air flows take heat away and cool down the
near surface atmosphere. Larger background wind speed contributes
to a better condition of urban air ventilation for mitigating the UHI.
MSLP along with three other sounding indices (KINX, CAPV and SHOW)
show in these resultant models as important temporal predictors as
well. They depict themeteorological conditions and atmospheric stabil-
itywhich are influential to the UHI. Ta linearly reduces as the attitude in-
creases within the troposphere (for altitude Z b 11,000m). As expected,
elevation of the monitoring locations are included in all models and
have the regression coefficients basically consistent with the Earth At-
mosphere Model (NASA, 2014), as follows:

For Zb11000; Ta ¼ 15:04−0:00649 Z

where Z is the altitude, Ta is the air temperature.

3.3. LUR spatial mapping of UHI

Based on the resultant models, the long-term averaged spatial map-
ping of UHI was plotted and shown in Fig. 6. The spatial estimations of
UHI were mapped using the spatial resolution of 10 m, the resolution
of land use data used in this present study. Regarding the other spatial
predictors, as shown in resultant LUR models, two categories of vari-
ables - LU/LC and urban surface geomorphometry - are clearly identified
as the essential predictors. LU/LC variables, RES1500 (the total area of
residential land usewithin the buffer of 1500m) and FVC500 (fractional
vegetation cover within the buffer of 500 m) are included in resultant
models. RES is positively correlated with Ta. It can be seen from the
UHI mapping that the spatial distribution of areas with higher Ta is con-
sistent with the RES land use area, especially during summer. The area
of residential land use largely reflects the spatial distribution of anthro-
pogenic heat emission (for example, the heat emitted by the summer-
time air conditioning which is a considerable part of the
anthropogenic heat source of Hong Kong) (Giridharan et al., 2005).
RES is also positively correlated with the population distribution
(which is the reason of the exclusion of spatial variable POP of all resul-
tantmodels). FVC represents the coverage ratio of urban vegetation/for-
ests which is similar to the NDVI. The difference between FVC and NDVI
is that NDVI differentiates between vegetation and bare land based on
the remotely sensed signal of near infrared band (of satellite images in
the format of raster) while FVC was directly calculated using LU/LC
data (in the format of vector data layer in GIS). Therefore, FVC provides
more details and has a higher accuracy than NDVI if the LU/LC data is
available. In this study, results show that the Ta is negatively correlated
with FVC which confirms the cooling effect of urban greenery and its
importance in UHI mitigation in high-density Hong Kong (Ng et al.,
2012). The spatial pattern of greenery area can be observed on the
UHI spatial maps

Building bulks store heat by absorbing shortwave solar radiation
during the day and release it by emitting longwave radiation during
the night. Larger BVD stores more heat than open area during daytime
and release more longwave radiation during nighttime. Building geom-
etrywith a smallerΨsky impedes the longwave radiation back to the sky
and traps the heat within the street canyons/gaps between building
bulks. The above makes the nighttime cooling rate of ambient air in
the urban areamuch slower than in the rural area, and thus exacerbates
the spatial variability in Ta. As a result, a higher Ta remains in the areas
with a large BVD value and lower Ψsky. They can be seen in the north
of Hong Kong Island and the Kowloon Peninsula. Those built-up areas
with a relatively small BVD in the New Territories are cooling faster
than those large BVD areas thus have lower Ta. Unlike our previous
LUR models of air quality (Shi et al., 2017), urban traffic variables
were not included in the LURmodelling for UHI. This implies that the in-
fluence of urban traffic may be less decisive than other predictors de-
spite being one of the most decisive factors of air quality (Shi et al.,
2016).
There are still a few clusters of outliners appear in the regression
plot. This indicates that there are still potentials of improving UHI LUR
models for Hong Kong. Better prediction performance is possible with
more informative datasets of variables (e.g. sounding data with a finer
temporal scale, building energy consumption records andmore detailed
data of anthropogenic heat estimation, etc.).

4. Discussion

4.1. Applying LUR in UHI estimation for sub-tropical high-density urban
environment

The present study is an attempt to estimate the spatiotemporal UHI
pattern in a sub-tropical city with extremely high-density urban envi-
ronment using LUR modelling. A prior local study has been conducted
to associate the short-term meteorological factors with UHI-related
mortality in Hong Kong by calculating an UHI index at the geographical
tertiary planning units (TPU) level of the city of Hong Kong (Goggins
et al., 2012). However, a major limitation of this prior study, which is
also shared by some other earlier studies, is that the direct use of mete-
orological observations from nearby fixed monitoring station may not
reflect the actual individual exposure. To overcome above limitation,
we provide a fine-scale mapping of spatial variability of Ta using LUR
modelling approach in this study, which could provide more accurate
information in the representation of the individual exposure condition.
LUR method is originally designed for evaluating individual environ-
mental exposure (Kriz et al., 1995). Therefore, identifying UHI hotspots
with LUR spatial mapping can provide more information to policy-
makers for a more effective health management process than taking
each TPU as a whole. The determination of the critical buffer width for
each predictor separately is one of the most important procedures of
LUR modelling (Hoek et al., 2008). Previous urban climate studies usu-
ally analyzed all predictors/variables of the study area based on a grid
system with a fixed resolution. However, the critical buffer widths of
different spatial predictors may vary due to the complex physical basis
of the energy balance and ventilation in the urban microclimate envi-
ronment. For example, as proved by this present study, themicroclimat-
ic effect of Ψsky on radiation balance and ventilation is more localized
than other geomorphometric variables. LUR allows the determination
of the spatial scale individually for different predictors and that is help-
ful in obtaining a better prediction performance. Moreover, the findings
and outputs of this present study could be further expanded to other
megacities with similar urban scenario (e.g. Guangzhou and Shenzhen,
China).

4.2. Estimating spatial pattern of UHI by using geomorphometry as fine-
scale spatial predictors

The investigation of fine-scale spatial variability of UHI in an urban
environment is an important part of urban planning and policy
decision-making, especially for a high-density urban environment be-
cause the complicated urban/building morphology significantly chang-
es the microclimatic conditions in urban areas by disturbing the wind
field and modifying the energy balance within street canyons. As a re-
sult, the microclimatic variability is increased, and thus the UHI pattern
is altered. Compared to the previous studies, the spatial mapping of UHI
was downscaled by this present study from the TPU level to a very fine
spatial scale byparameterizing theurban geomorphometry based on in-
terdisciplinary knowledge.

4.3. LUR UHImodelling as quantitative recommendation for environmental
urban design

Urban climate and urban form are interdependent (Eliasson, 1990;
Landsberg, 1981). From the viewpoint of urban planning and design,
more compact urban forms are commonly thought to be more
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sustainable because they save land resources, reduce traffic commuting
cost and promote an efficient use of public facilities (Yin et al., 2013).
However, a high-density urban environment without appropriate plan-
ning/design and management leads to urban environmental degrada-
tion (Betanzo, 2007). LUR models developed by this present study
enrich the current understanding on the influence of urban design on
the urban climatic condition by identifying influential urban design pa-
rameters, determining their critical buffers and investigating their
quantitative correlationswith Ta. For example, as found in themodelling
process, λF(0−15m) at the buffer of 300m has the strongest positive cor-
relation (regression coefficient of 1.341) with Ta during nighttime. This
finding indicates that the Ta of a specific location is strongly influenced
by the horizontal permeability of podium layer within its surrounding
of 300 m due to the impact of the building geometrical permeability
on ventilation. An increase of 20,000m2 in building frontal area is asso-
ciated with a 0.5 °C increase in Ta. Simply speaking, designing and con-
structing one single large building without proper consideration on
urban ventilation may lead to an increase of 0.5 °C in UHI intensity of
the whole neighborhood. Such information could substantially enrich
the current urban design guideline – Chapter 11 of the Hong Kong Plan-
ning Standards and Guidelines (HKPSG) (PlanD, 2005) and help with
the UHI mitigation.

5. Conclusion

Assessing the exposure to urban environmental heat is essential. The
fine-scale estimation of the spatiotemporal pattern of UHI is urgently
needed for heat exposure assessment and public health management.
LUR is a promisingmethod of predicting environmental spatiotemporal
variability and estimating human exposure. In this present study, we
modelled the fine-scale spatiotemporal UHI pattern using the LUR
method with land use, building variables and sounding data. Our resul-
tant spatiotemporal LUR models provide a daily-resolved estimation of
air temperature (for both the daytime and the nighttime) at a very fine
spatial scale (of a 10m resolution), which provide a robust basis for heat
exposure assessment. The study outputs also enable the integration of
environmental consideration into urban environmental planning policy
for a better quality of living environment. The findings of this present
study could be further expanded to other cities with a similar densely-
populated urban scenario.
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