Effects of Sea Breeze on City Ventilation - Important for Air Ventilation Assessments?

Universität

Tobias Gronemeier¹, Siegfried Raasch¹, Edward Ng²

¹Leibniz University Hannover, Germany ²Chinese University of Hong Kong, China

Why we did it

- As urban population increases, preserving an acceptable city climate becomes a major challenge of future city planning
- Air Ventilation Assessments (AVAs) help city planners to predict city ventilation of planned construction sites
- To sufficiently predict ventilation, an AVA must cover the real
- · Current AVA focus only on neutral conditions
- → Is this sufficient for summery weak-wind conditions in a coastal city area?

How we did it

- LES simulation of Kowloon peninsula (Hong Kong), using the model PALM
- Summer weak-wind condition: easterly background wind: 1.5 ms⁻¹, fixed surface heat flux: 200 Wm⁻²
- Two cases:
- homogeneous heating throughout domain
- sea-breeze case where only land is heated
- Divide city into 3 regions (according to [2]): C1: SW ventilated; C2: weakly ventilated; C3: SE ventilated
- Passive scalar released at surface within city area

Definitions:

 $s* = \frac{s}{Q_s t_e}$

t_e: emission time

Q_s: emission rate

Figure 1: Model domain with terrain height in m and region definition.

How is the ventilation?

- Sea breeze penetrates city area along the entire coastline, forming a convergence zone above the city
- Higher V_r at west coast due to lower building density and flat terrain
- Comparison shows higher V_r in sea-breeze case especially in western part of Kowloon

and normalized velocity ratio $V_{\rm r,\ norm}$ (right).

Is the pollution dispersion influenced by sea-breeze?

- Scalar concentration differs significantly between cases
- · Strong west-east gradient in sea-breeze case, north-south gradient in homog. heating case
- · Different wind fields yield large differences in s* between cases
- Depending on case, high s* values are observed in different city areas

Figure 3: Normalized scalar concentration s* and wind vectors for the (left) sea-breeze case and (right) homogeneous-heating case.

Looking at different city regions

- C1, C2, C3 correspond to different city regions according to [2]
- Mean wind direction (dir, Tab.1) agrees with classification made by [2] for sea-breeze case but not for homog. heating case
- Although C1 has highest ventilation, pollution is also highest
- Between Kowloon and Hong Kong Island, complex wind circulation transports pollution over sea where it re-enters the city area
- Vanishingly low correlation between V_r and mean building height H_{avg} confirm that H_{avg} plays a minor role for city ventilation (Fig.4, see also [1])
- · V, and plan-area index (PAI) are to some degree correlated, with C2 (city center) showing strongest correlation

	V _r		s*		dir	
C1	1.74	1.46	0.0023	0.0023	224° (SW)	149° (SE)
C2	1.29	1.21	0.0022	0.0022	165° (S)	168° (S)
C3	1.38	1.34	0.0020	0.0020	137° (SE)	145° (SE)

Table 1: Mean values within regions C1-C3; left: sea-breeze case, right: homog. heating case.

Figure 4: Correlation between velocity ratio V_r and (left) mean building height H_{avg} and (right) plan-area index PAI; each data point represents a 100m x 100m area within the specified region; sea-breeze case.

Let's summarize

- Ventilation changes significantly between sea-breeze case and homogeneously heated case in strength and direction
- · More complex wind circulation lead to differences in pollution concentration (W-E gradient instead of N-S)
- · Main wind direction from measurements can only be reproduced if sea-breeze is considered
- → It is essential to cover sea-breeze effects if a sufficient analysis of the city ventilation is focused during summery weak-wind conditions!

What's next

- Further detailed analysis of wind system between Kowloon and Hong Kong Island should reveal more details of seabreeze effects on ventilation
- Compare results with real-world measurements in Hong
- Using PALM's new nesting methods, a larger area can be simulated to study effects of large-scale wind systems (see also poster 1D-51)

References & Acknowledgments

- [1] Gronemeier, T., S. Raasch, E. Ng (2017). Effects of unstable stratification on ventilation in Hong Kong. Atmosphere, 8, 1-15. doi:10.3390/atmos8090168
- [2] Ng, E., V. Cheng, C. Chan (2008). Urban climatic map and standards for wind environment - feasibility study. Technical Input Report No. 1: Methodologies and findings of user's wind comfort level survey. Hong Kong Planning

This study was supported by a research grant (14408214) from General Research Fund of Hong Kong Research Grants Council (HK RGC-GRF). All simulations were carried out on the Cray CX-40 systems of the North-German Supercomputing Alliance (HLRN). T. Gronemeier was supported by MOSAIK, funded by the German Federal Ministry of Education and Research (BMBF) under grant 01LP1601A (http://www.fona.de)